蛋白质与动物营养
合集下载
动物营养学(蛋白质营养)
天门冬氨酸 Asp HOOC·CH2·CH(NH2)COOH 谷氨酸 Glu HOOC·CH2·CH2·CH(NH2)COOH
一、蛋白质的组成
(二)氨基酸
3.碱性氨基酸
赖氨酸Lys NH2(CH2)4·CH(NH2)COOH
精氨酸Arg NH2·C(NH)NH·(CH2)3·CH(NH2)COOH
二、蛋白质代谢的动态平衡
▪ 蛋白质周转受年龄影响,其合成与分 解受激素的调控。
第四节 蛋白质、氨基酸的质量与利用
▪ 必需、非必需及限制性氨基酸 ▪ 蛋白质质量的评定方法
一、必需、非必需及限制性氨基酸
(一)必需氨基酸、半必需氨基酸及条件性必需氨基酸 1、必需氨基酸
即指动物自身不能合成或合成的量不能满足 动物的需要,必须由饲粮提供的氨基酸。 对成年动物,必需氨基酸有8种: 赖氨酸、 蛋氨酸、色氨酸、苏氨酸、苯丙氨酸、亮氨 酸、异亮氨酸、缬氨酸 生长家畜还有精氨酸和组氨酸 雏鸡还有甘氨酸
酸,进入循环系统与从饲粮中来的氨基酸 混合在一起转运而来; ▪ 三是经组织利用糖等非蛋白物质合成的非 必需氨基酸。
一、一般代谢
(一)氨基酸的代谢
氨基酸的主要去路也有三:
▪ 一是可用于合成组织蛋白质,供机体组织更新、 生长,及形成产品的需要;
▪ 二是可作为合成各种重要的生物活性物质的原料; ▪ 三含氮部分如氨在肝脏中形成代谢废物尿素或尿
(一)消化吸收
瘤胃降解生成的肽,除部分被用于合成 微生物蛋白外,也可直接通过瘤胃壁或瓣 胃壁吸收,尤其是分子量小的二肽、三肽。
2、在真胃和小肠的消化吸收
蛋白质在真胃和小肠的消化过程,基 本上与单胃动物相类似,是由胃肠道分泌 的各种蛋白酶和肽酶,将蛋白质分解为肽 和氨基酸,而后被吸收。
一、蛋白质的组成
(二)氨基酸
3.碱性氨基酸
赖氨酸Lys NH2(CH2)4·CH(NH2)COOH
精氨酸Arg NH2·C(NH)NH·(CH2)3·CH(NH2)COOH
二、蛋白质代谢的动态平衡
▪ 蛋白质周转受年龄影响,其合成与分 解受激素的调控。
第四节 蛋白质、氨基酸的质量与利用
▪ 必需、非必需及限制性氨基酸 ▪ 蛋白质质量的评定方法
一、必需、非必需及限制性氨基酸
(一)必需氨基酸、半必需氨基酸及条件性必需氨基酸 1、必需氨基酸
即指动物自身不能合成或合成的量不能满足 动物的需要,必须由饲粮提供的氨基酸。 对成年动物,必需氨基酸有8种: 赖氨酸、 蛋氨酸、色氨酸、苏氨酸、苯丙氨酸、亮氨 酸、异亮氨酸、缬氨酸 生长家畜还有精氨酸和组氨酸 雏鸡还有甘氨酸
酸,进入循环系统与从饲粮中来的氨基酸 混合在一起转运而来; ▪ 三是经组织利用糖等非蛋白物质合成的非 必需氨基酸。
一、一般代谢
(一)氨基酸的代谢
氨基酸的主要去路也有三:
▪ 一是可用于合成组织蛋白质,供机体组织更新、 生长,及形成产品的需要;
▪ 二是可作为合成各种重要的生物活性物质的原料; ▪ 三含氮部分如氨在肝脏中形成代谢废物尿素或尿
(一)消化吸收
瘤胃降解生成的肽,除部分被用于合成 微生物蛋白外,也可直接通过瘤胃壁或瓣 胃壁吸收,尤其是分子量小的二肽、三肽。
2、在真胃和小肠的消化吸收
蛋白质在真胃和小肠的消化过程,基 本上与单胃动物相类似,是由胃肠道分泌 的各种蛋白酶和肽酶,将蛋白质分解为肽 和氨基酸,而后被吸收。
反刍动物营养学-蛋白质营养ppt课件
各国现行饲养标准中的瘤胃微生物真蛋白质小肠消化率采用 平均参数: • 英国(AFRC,1993)为0.85 • 法国(INRA,1989)为0.80 • 美国(NRC,1996)为0.80 • 德国(Rohr,1987)为0.90 • 中国(2000)对瘤胃微生物粗蛋白质的小肠消化率用0.70。
内源氮
蛋白质的一级、二级、三级、四级结构。
反刍动物蛋白质消化过程
蛋白质的吸收过程
小肠蛋白质 蛋白酶 氨基酸、小肽 肠系膜静脉 门静脉 氨基酸合成、分解 肝静脉 肝脏 血液循环 小 肠
各组织、乳腺等
蛋白质的代谢
蛋白质瘤胃降解
微生物蛋白
细菌对蛋白质的降解
• 首先在细胞外利用细菌分泌的蛋白酶将蛋白降解为寡肽, 进一步降解为小肽、游离氨基酸。 • 细菌摄入小肽和游离氨基酸:
NFC-CA-CB1 NDF-[NDFIP(%CP)*CP]/100-CC [NDF*木质素(%NDF)*2.4]/100
饲养实际常见几种情况
• 低能低蛋白日粮:进入瘤胃的尿素再循环氮增多,虽对微生物可提供 一部分氮源,但由于能量和氮源不足,使瘤胃微生物蛋白质的产量降 低。 • 高能低蛋白:瘤胃能量有富余,但氮源不足,可用一部分非蛋白氮 (NPN)去补充,以降低瘤胃微生物蛋白质的成本,并提高微生物蛋白 质的产量。 • 高能高蛋白:当降解蛋白质能满足微生物的需要,多余的降解蛋白质 则是浪费,这时应选择降解率低的饲料,或采取降低降解率的措施, 以便获得更多的小肠蛋白质。 • 青饲料加高可溶性蛋白:蛋白质降解和氨的释放速度过快,与碳水化 合物的分解速度不相匹配,影响了微生物蛋白质的预期产量,因此应 调整日粮,以降低蛋白质降解速度。
• • • • • 小肽分解为氨基酸 利用游离氨基酸合成微生物蛋白 将游离氨基酸分解为氨和碳架 利用氨合成氨基酸 氨向细胞外扩散
内源氮
蛋白质的一级、二级、三级、四级结构。
反刍动物蛋白质消化过程
蛋白质的吸收过程
小肠蛋白质 蛋白酶 氨基酸、小肽 肠系膜静脉 门静脉 氨基酸合成、分解 肝静脉 肝脏 血液循环 小 肠
各组织、乳腺等
蛋白质的代谢
蛋白质瘤胃降解
微生物蛋白
细菌对蛋白质的降解
• 首先在细胞外利用细菌分泌的蛋白酶将蛋白降解为寡肽, 进一步降解为小肽、游离氨基酸。 • 细菌摄入小肽和游离氨基酸:
NFC-CA-CB1 NDF-[NDFIP(%CP)*CP]/100-CC [NDF*木质素(%NDF)*2.4]/100
饲养实际常见几种情况
• 低能低蛋白日粮:进入瘤胃的尿素再循环氮增多,虽对微生物可提供 一部分氮源,但由于能量和氮源不足,使瘤胃微生物蛋白质的产量降 低。 • 高能低蛋白:瘤胃能量有富余,但氮源不足,可用一部分非蛋白氮 (NPN)去补充,以降低瘤胃微生物蛋白质的成本,并提高微生物蛋白 质的产量。 • 高能高蛋白:当降解蛋白质能满足微生物的需要,多余的降解蛋白质 则是浪费,这时应选择降解率低的饲料,或采取降低降解率的措施, 以便获得更多的小肠蛋白质。 • 青饲料加高可溶性蛋白:蛋白质降解和氨的释放速度过快,与碳水化 合物的分解速度不相匹配,影响了微生物蛋白质的预期产量,因此应 调整日粮,以降低蛋白质降解速度。
• • • • • 小肽分解为氨基酸 利用游离氨基酸合成微生物蛋白 将游离氨基酸分解为氨和碳架 利用氨合成氨基酸 氨向细胞外扩散
第二节 蛋白质与动物营养
所以为使尿素能为反刍动物高效地利用和避免nh中毒一是要为细菌蛋白质合成创造有利的条件即创造瘤胃中nh的生成与利用之间的动态平衡二是要减缓nh为细菌蛋白质合成创造有利的条件a补加尿素的日粮必须有一定量易消化的碳水化合物瘤胃细菌在利用nh合成菌体蛋白质的过程中需要同时供给可利用能量和碳架后者主要由碳水化合物酵解供给碳水化合物的性质直接影响尿素的利用效果试验证明牛羊日粮中单独因粗纤维导源时尿素利用率仅为22而供给足量的粗纤维和淀粉时尿素的利用率提高到60以上因此淀粉的降解速度与尿素分解速度相近能源与氮源释放趋于同步有利于菌体蛋白质的合成因此粗饲料为主的日粮中添加尿素时应适当增加淀粉质的精料通常每100g尿素至少应供给1000g易溶性碳水化合物其中23应为淀粉13为可溶性糖
内江职业技术学院生物系精品课程《动物营养与饲料》理论教案
课后小节 作业布置
教学过程
备注
第二节
蛋白质与动物营养
蛋白质是一种复杂的高分子有机化合物,它是体现生命现象的物质基础。一切生命活动均与蛋 白质密切相关。因此蛋白质在动物机体生命活动过程中具有特殊重要作用。一、蛋白质的营养生理功能
(一) 、蛋白质是动物机体的结构物质 动物体各种组织器官如肌肉、皮肤、内脏、血液、神经和骨骼等,均是由蛋白质作为结构物质 而形成,蛋白质是动物体内除水分外含量最高的物质,通常可占到 50%左右。某些组织器官如肌肉、 肝脏、脾脏等蛋白质含量可高达 80%。各种组织器官之所以具有特异性的生理功能,主要是因组成 该组织器官的蛋白质种类和存在形成不同所致。如球蛋白是构成体组织的主要组分,白蛋白是构成 体液的主要组分,角蛋白与胶质蛋白则是构成筋腱、韧带、毛发和蹄角等的主要组分。因此,动物 体的妊娠、生长、泌乳、产毛、产蛋等过程均是以特定的蛋白质作为物质基础的。 (二) 、蛋白质是更新组织的必需物质 动物体在新陈代谢过程中组织细胞通过蛋白质的不断分解与合成而更新,这种更新过程正是生 命的最基本特征。即使成年动物在其体蛋白含量基本恒定的情况下亦需要不断摄入蛋白质以补充体 组织蛋白合成之需,这是因为组织蛋白质在更新过程中分解生成的氨基酸并不能全部用于再合成蛋 白质,其中有一小部分氨基酸经一系列变化而分解为尿素、尿酸及其他代谢产物而排出体外。据实 验测定,动物体蛋白总量中每天约有 0.25-0.30%进行更新,若按比计算则每经 12-14 个月体组织蛋 白质即全部更新一次。 (三) 、蛋白质是机体的调节物质 蛋白质对于生命的重要意义不仅在于它是生命的组成成分,更重要的是为机体提供了多种具有 特殊生物学功能的物质。例如,催化和调节代谢过程的酶和激素,增强防御机能和提高抗病力的免 疫球蛋白,运输脂溶性维生素和其他脂肪代谢产物的脂蛋白,运载 O2 的血红蛋白,遗传信息的传递 物质,维持机体内环境酸碱平衡的缓冲物质等都与蛋白质有关。 (四) 、蛋白质可氧化供能 蛋白质的主要营养作用不是氧化供能,但在分解过程中,可氧化产生部分能量,尤其是当食入 蛋白质过量或蛋白质品质不佳时,多余的氨基酸经脱氨基作用后,不含 N 的部分α -酮酸可以氧化供 能或转化为体脂肪贮存起来,以备能量不足时动用。
内江职业技术学院生物系精品课程《动物营养与饲料》理论教案
课后小节 作业布置
教学过程
备注
第二节
蛋白质与动物营养
蛋白质是一种复杂的高分子有机化合物,它是体现生命现象的物质基础。一切生命活动均与蛋 白质密切相关。因此蛋白质在动物机体生命活动过程中具有特殊重要作用。一、蛋白质的营养生理功能
(一) 、蛋白质是动物机体的结构物质 动物体各种组织器官如肌肉、皮肤、内脏、血液、神经和骨骼等,均是由蛋白质作为结构物质 而形成,蛋白质是动物体内除水分外含量最高的物质,通常可占到 50%左右。某些组织器官如肌肉、 肝脏、脾脏等蛋白质含量可高达 80%。各种组织器官之所以具有特异性的生理功能,主要是因组成 该组织器官的蛋白质种类和存在形成不同所致。如球蛋白是构成体组织的主要组分,白蛋白是构成 体液的主要组分,角蛋白与胶质蛋白则是构成筋腱、韧带、毛发和蹄角等的主要组分。因此,动物 体的妊娠、生长、泌乳、产毛、产蛋等过程均是以特定的蛋白质作为物质基础的。 (二) 、蛋白质是更新组织的必需物质 动物体在新陈代谢过程中组织细胞通过蛋白质的不断分解与合成而更新,这种更新过程正是生 命的最基本特征。即使成年动物在其体蛋白含量基本恒定的情况下亦需要不断摄入蛋白质以补充体 组织蛋白合成之需,这是因为组织蛋白质在更新过程中分解生成的氨基酸并不能全部用于再合成蛋 白质,其中有一小部分氨基酸经一系列变化而分解为尿素、尿酸及其他代谢产物而排出体外。据实 验测定,动物体蛋白总量中每天约有 0.25-0.30%进行更新,若按比计算则每经 12-14 个月体组织蛋 白质即全部更新一次。 (三) 、蛋白质是机体的调节物质 蛋白质对于生命的重要意义不仅在于它是生命的组成成分,更重要的是为机体提供了多种具有 特殊生物学功能的物质。例如,催化和调节代谢过程的酶和激素,增强防御机能和提高抗病力的免 疫球蛋白,运输脂溶性维生素和其他脂肪代谢产物的脂蛋白,运载 O2 的血红蛋白,遗传信息的传递 物质,维持机体内环境酸碱平衡的缓冲物质等都与蛋白质有关。 (四) 、蛋白质可氧化供能 蛋白质的主要营养作用不是氧化供能,但在分解过程中,可氧化产生部分能量,尤其是当食入 蛋白质过量或蛋白质品质不佳时,多余的氨基酸经脱氨基作用后,不含 N 的部分α -酮酸可以氧化供 能或转化为体脂肪贮存起来,以备能量不足时动用。
蛋白质的营养1
(二)单胃动物对饲料蛋白质品质的要求
氨基酸的种类 2、非必需氨基酸 从饲料供应角度讲,氨基酸有必需与 非必需之分.但从营养角度考虑,二者 都是动物合成体蛋白和产品蛋白所 必需的营养,且它们之间关系密切。。
(二)单胃动物对饲料蛋白质品质的要求
氨基酸的种类 2、非必需氨基酸 某些必需氨基酸是合成某些非必需 氨基酸的前体,如果饲粮中某些非 必需氨基酸不足时,则会动用必需 氨基酸来转化代替。这点,在饲养 实践中不可忽视。
(二)氨基酸的营养生理作用
(一)蛋白质的营养生理作用
蛋白质是构建机体组织细胞的基本物
质 动物体表的被毛、角、蹄都是角蛋白 和胶质蛋白构成的。动物的皮肤、肌 肉、神经、结缔组织、卵子、精子及 各种内脏器官均以蛋白质为基本成分。
(一)蛋白质的营养生理作用
蛋白质是体液、酶、激素与抗体的
主要成份。 这些物质都是动物生命活动所必须 的调节因子。蛋白质是体液的重要 成分。酶本身就是具有特殊催化作 用的蛋白质可促进细胞内生化反应 的顺利进行。
三 单胃动物蛋白质营养特点
单胃动物蛋白质的消化代谢特点
单胃动物对饲料蛋白质品质的要求
理想蛋白质与饲粮氨基酸的平衡
提高饲料蛋白质转化效率的措施
(一)单胃动物蛋白质的消化代谢特点
消化吸收 单胃动物对饲料蛋白质的消化,主要是通 过消化道分泌的各种蛋白酶对蛋白质的水 解作用而实现的。
(一) 蛋白质的消化代谢特点
(一)单胃动物蛋白质的消化代谢特点
消化吸收
氨基酸吸收主要在小肠上2/3的部位 进行。小肠蛋白质吸收的主要功能 单位即其粘膜表面分布的许多绒毛。
(一)单胃动物蛋白质的消化 不同,大量的氨基酸是在十二指肠 被吸收的,随着食糜沿肠道进一步 移动,氨基酸的吸收程度亦随之降 低。 被吸收的氨基酸主要是经门脉到肝脏。
动物营养学课件第四章蛋白质与动物营养
动物营养学课件第四章蛋 白质与动物营养
探索蛋白质营养与动物的关系,深入了解蛋白质的构成、作用和消化吸收机 制,以及其在动物饲料中的应用和环境保护的重要性。
蛋白质的定义和基本结构
1 蛋白质的重要性
了解蛋白质在动物体内发挥的关键作用,维持生命的基本结构和功能。
2 蛋白质结构
深入解析蛋白质的基本结构,如氨基酸序列和螺旋结构。
肌肉发育
深入探索蛋白质在肌肉合成和力量提升中的关键 作用。
蛋白质在不同动物饲料中的应用
畜禽饲料
详细讲解蛋白质在畜禽饲料中的配比与应用方 法,以优化动物的生产性能和健康。
水生动物饲料
深入了解蛋白质在水生动物饲料中的营养要求 和饲料配方的选择。
蛋白质营养与环保的关系
1 减少氨气排放
2 提高资源利用效率
蛋白质质量评价方法
1
生物学值评价
通过测定蛋白质中氨基酸的相对含量,评定蛋白质的营养价值。来自2胃肠道消化率评价
评估蛋白质被消化吸收的比率以及运输速度。
3
草饲动物试验评价
通过饲养动物并观察其生长情况,评价不同蛋白质来源的质量。
蛋白质对动物生长发育的影响
生长促进
了解蛋白质对动物生长发育的重要作用,如促进 细胞增殖和组织修复。
蛋白质在动物体内的作用
建筑物质
蛋白质构成动物体内大部分 的体组织,如肌肉、骨骼和 器官。
代谢调节
蛋白质参与调节代谢过程, 如激素和酶的合成与调控。
免疫响应
蛋白质为免疫系统提供重要 的抗体和免疫细胞。
理解蛋白质的消化与吸收
消化过程 吸收机制
深入了解蛋白质在胃酸和酶的作用下如何被 分解。
解析蛋白质在肠道中如何被吸收并转化为氨 基酸。
探索蛋白质营养与动物的关系,深入了解蛋白质的构成、作用和消化吸收机 制,以及其在动物饲料中的应用和环境保护的重要性。
蛋白质的定义和基本结构
1 蛋白质的重要性
了解蛋白质在动物体内发挥的关键作用,维持生命的基本结构和功能。
2 蛋白质结构
深入解析蛋白质的基本结构,如氨基酸序列和螺旋结构。
肌肉发育
深入探索蛋白质在肌肉合成和力量提升中的关键 作用。
蛋白质在不同动物饲料中的应用
畜禽饲料
详细讲解蛋白质在畜禽饲料中的配比与应用方 法,以优化动物的生产性能和健康。
水生动物饲料
深入了解蛋白质在水生动物饲料中的营养要求 和饲料配方的选择。
蛋白质营养与环保的关系
1 减少氨气排放
2 提高资源利用效率
蛋白质质量评价方法
1
生物学值评价
通过测定蛋白质中氨基酸的相对含量,评定蛋白质的营养价值。来自2胃肠道消化率评价
评估蛋白质被消化吸收的比率以及运输速度。
3
草饲动物试验评价
通过饲养动物并观察其生长情况,评价不同蛋白质来源的质量。
蛋白质对动物生长发育的影响
生长促进
了解蛋白质对动物生长发育的重要作用,如促进 细胞增殖和组织修复。
蛋白质在动物体内的作用
建筑物质
蛋白质构成动物体内大部分 的体组织,如肌肉、骨骼和 器官。
代谢调节
蛋白质参与调节代谢过程, 如激素和酶的合成与调控。
免疫响应
蛋白质为免疫系统提供重要 的抗体和免疫细胞。
理解蛋白质的消化与吸收
消化过程 吸收机制
深入了解蛋白质在胃酸和酶的作用下如何被 分解。
解析蛋白质在肠道中如何被吸收并转化为氨 基酸。
蛋白质与动物营养
具有神经递质作用;
调节机体免疫; 促进大鼠肠细胞分泌缩胆囊素(CCK)。 促进细胞的生长和DNA的合成。
二、蛋白质的不足与过量
蛋白质不足的后果
蛋白质过量的危害
(一)蛋白质不足的后果
消化机能紊乱 幼龄动物生长发育受阻 易患贫血症及其他疾病 影响繁殖 生产性能下降
(二)蛋白质过量的危害
利用氨化物。
(3)瘤胃氮素循环
概念 意义
(二)反刍动物对非蛋白氮的利用
1.反刍动物利用非蛋白氮的机制 以尿素为例,其利用机制简述如下: 尿素 碳水化合物 氨+酮酸 氨 酮酸 氨基酸
2.提高尿素利用率的措施
日粮中有易消化的碳水化合物。 日粮中蛋白质水平要适宜 保证供给矿物质 喂法、喂量 减缓尿素分解速度
胃,60-70%在小肠,其余在大肠。
消化酶:胃蛋白酶、胰蛋白酶、糜蛋白酶、
羧基肽酶及氨基肽酶 。
消化过程:以猪为例(见下图)
猪蛋白质消化代谢特点
由消化代谢过程,猪对蛋白质消化代谢 的特点:蛋白质消化吸收的主要场所是小肠, 并在酶的作用下进行;其次是大肠,在微生 物的作用下进行。因此,猪能大量利用饲料 中的蛋白质,但不能大量利用氨化物。
(四)提高饲料蛋白质转化率的措施
配合日粮时原料应多样化 补饲氨基酸添加剂
合理地供给蛋白质营养
日粮中蛋白质与能量要有适当比例 控制饲粮中的粗纤维水平 掌握好饲粮中蛋白质水平 豆类饲料的湿热处理
保证其他养分的供给
四、反刍动物蛋白质营养特点及应用
反刍动物蛋白质消化代谢特点 反刍动物对非蛋白氮(NPN)的利用 反刍动物对必需氨基酸的需要
(三)反刍动物对必需氨基酸的需要
研究确认,蛋氨酸是反刍动物最主要的限制性
调节机体免疫; 促进大鼠肠细胞分泌缩胆囊素(CCK)。 促进细胞的生长和DNA的合成。
二、蛋白质的不足与过量
蛋白质不足的后果
蛋白质过量的危害
(一)蛋白质不足的后果
消化机能紊乱 幼龄动物生长发育受阻 易患贫血症及其他疾病 影响繁殖 生产性能下降
(二)蛋白质过量的危害
利用氨化物。
(3)瘤胃氮素循环
概念 意义
(二)反刍动物对非蛋白氮的利用
1.反刍动物利用非蛋白氮的机制 以尿素为例,其利用机制简述如下: 尿素 碳水化合物 氨+酮酸 氨 酮酸 氨基酸
2.提高尿素利用率的措施
日粮中有易消化的碳水化合物。 日粮中蛋白质水平要适宜 保证供给矿物质 喂法、喂量 减缓尿素分解速度
胃,60-70%在小肠,其余在大肠。
消化酶:胃蛋白酶、胰蛋白酶、糜蛋白酶、
羧基肽酶及氨基肽酶 。
消化过程:以猪为例(见下图)
猪蛋白质消化代谢特点
由消化代谢过程,猪对蛋白质消化代谢 的特点:蛋白质消化吸收的主要场所是小肠, 并在酶的作用下进行;其次是大肠,在微生 物的作用下进行。因此,猪能大量利用饲料 中的蛋白质,但不能大量利用氨化物。
(四)提高饲料蛋白质转化率的措施
配合日粮时原料应多样化 补饲氨基酸添加剂
合理地供给蛋白质营养
日粮中蛋白质与能量要有适当比例 控制饲粮中的粗纤维水平 掌握好饲粮中蛋白质水平 豆类饲料的湿热处理
保证其他养分的供给
四、反刍动物蛋白质营养特点及应用
反刍动物蛋白质消化代谢特点 反刍动物对非蛋白氮(NPN)的利用 反刍动物对必需氨基酸的需要
(三)反刍动物对必需氨基酸的需要
研究确认,蛋氨酸是反刍动物最主要的限制性
动物营养与饲料学2蛋白质的营养
三、AA平衡理论及理想蛋白
(5)理想蛋白的发展 —— 可消化理想蛋白
—— 不同基因型、不同生产目的或体重 阶段的最佳模式可能不同
—— 寡肽营养与理想蛋白 —— AA及蛋白质周转与理想蛋白
三、AA平衡理论及理想蛋白
(6)理想蛋白的应用 ➢ 建立动物AA需要量 ➢ 指导饲粮配制及合成氨基酸的应用,充
(4)其他养分: 碳水化合物、P、S
二、微生物蛋白质的品质
1.数量
当瘤胃微生物的外流速度和微生物的繁殖速度 相近时,MCP的产量最高。
最大产量随瘤胃的稀释速度的增加而增加。 一般: 瘤胃1kg干物质-----90-230g MCP, 可满足100kg动物的正常生长需要或日产10kg 奶的奶牛需要。
61
60
57
异亮氨酸
55
61
60
60
57
亮氨酸
100
80
111
100
107
苯丙+酪氨酸 96
88
120
95
107
苏氨酸
60
64
64
65
64
色氨酸
15
16
20
18
21
缬氨酸
70
64
75
68
71
_______________________________________________________
(2)水桶理论
苏氨酸 缬氨酸 色氨酸 异亮氨酸
蛋氨酸
三、AA平衡理论及理想蛋白
(2)水桶理论
苏氨酸 缬氨酸 色氨酸 异亮氨酸
蛋氨酸
三、AA平衡理论及理想蛋白
(3)氨基酸的缺 乏
某(几)种氨基酸含量不足,不能满足 动物需要,而影响动物生产性能。
蛋白质与动物营养二
微生物蛋白质(MCP)的品质 1、数量:理论上当瘤胃微生物的外流速度和微生物繁殖速度相近时,
MCP产量最高 2、品质:MCP含所有EAA,品质仅次于动物性蛋白质,与豆粕蛋
白质相当,优于谷物蛋白。 3、MCP次于优质饲料蛋白的原因: 1)优质蛋白AA组成比MCP好 2)饲料蛋白质转化为MCP时,有20~30%的N损耗 3)微生物N中有10~20%为核酸N,对动物无营养价值 因此,保护优质蛋白,防止瘤胃降解可提高蛋白的生物学价值
包埋方法:血粉包埋(富含抗降解蛋白质的物质)、 12~22个碳原子的脂肪酸(中性条件下不易分解,在 酸性条件下易分解)
抗生素
蛋白质与动物营养(二)
一、反刍动物蛋白质消化与代谢
摄入蛋白质的70%(40%-80%)被瘤胃微生 物消化,其余进入真胃和小肠消化
消化过程(P24 图1-4)
二、反刍动物对NPN的利用
蛋白质消化吸收的主要场所是瘤胃,靠微生物降解, 其次在小肠,在酶的作用下进行,吸收在小肠。可大 量利用氨化物。
对NPN的利用过程 尿素→氨+CO2 碳水化合物→酮酸+挥发性脂肪酸 氨+酮酸→谷氨酸→其他AA→微生物蛋白
瘤(9m胃gN/1H030达m到l),5m微M生(物m蛋M白=1达m到mo最l/L大毫合摩成尔水每平升,)超过 此浓度NH3被吸收入血合成尿素。
二、反刍动物对NPN的利用
蛋白 质过 瘤瘤 胃胃 降蛋 解R白 蛋RBDP白PP
蛋白质降解率(%)=RDP/食入CP 微生物蛋白经过二次合成、分解,导致能源消耗
二、反刍动物对NPN的利用
瘤胃的氮素循环 唾液腺
口腔
瘤胃NH3 血液 肝脏 尿素 尿 意义:提高了CP利用率,改善了CP的品质
二、反刍动物对NPN的利用
MCP产量最高 2、品质:MCP含所有EAA,品质仅次于动物性蛋白质,与豆粕蛋
白质相当,优于谷物蛋白。 3、MCP次于优质饲料蛋白的原因: 1)优质蛋白AA组成比MCP好 2)饲料蛋白质转化为MCP时,有20~30%的N损耗 3)微生物N中有10~20%为核酸N,对动物无营养价值 因此,保护优质蛋白,防止瘤胃降解可提高蛋白的生物学价值
包埋方法:血粉包埋(富含抗降解蛋白质的物质)、 12~22个碳原子的脂肪酸(中性条件下不易分解,在 酸性条件下易分解)
抗生素
蛋白质与动物营养(二)
一、反刍动物蛋白质消化与代谢
摄入蛋白质的70%(40%-80%)被瘤胃微生 物消化,其余进入真胃和小肠消化
消化过程(P24 图1-4)
二、反刍动物对NPN的利用
蛋白质消化吸收的主要场所是瘤胃,靠微生物降解, 其次在小肠,在酶的作用下进行,吸收在小肠。可大 量利用氨化物。
对NPN的利用过程 尿素→氨+CO2 碳水化合物→酮酸+挥发性脂肪酸 氨+酮酸→谷氨酸→其他AA→微生物蛋白
瘤(9m胃gN/1H030达m到l),5m微M生(物m蛋M白=1达m到mo最l/L大毫合摩成尔水每平升,)超过 此浓度NH3被吸收入血合成尿素。
二、反刍动物对NPN的利用
蛋白 质过 瘤瘤 胃胃 降蛋 解R白 蛋RBDP白PP
蛋白质降解率(%)=RDP/食入CP 微生物蛋白经过二次合成、分解,导致能源消耗
二、反刍动物对NPN的利用
瘤胃的氮素循环 唾液腺
口腔
瘤胃NH3 血液 肝脏 尿素 尿 意义:提高了CP利用率,改善了CP的品质
二、反刍动物对NPN的利用
水生动物营养基础—蛋白质营养
理想蛋白质是指各种氨基酸之间(必需氨基酸之间、非必需氨基酸之间 以及必需氨基酸与非必需氨基酸之间)具有最佳平衡的蛋白质。
5.必需氨基酸缺乏症与过多症
鱼类缺乏必需氨基酸,一般不表现出典型的缺乏症,主要表现为活动力 降低,食欲减退,生长缓慢,吃进饵料后又吐出来等症状;
虾类则表现为生长慢、死亡率高等症状。 例如缺乏赖氨酸,骨胶原形成减慢,并引起鳍腐烂。
有的维生素是由氨基酸转变或与蛋白质结合存在,如尼克酸可由色氨酸转化。
3.为水生动物提供能量
鱼类利用碳水化合物的能力较差,不能将饲料碳水化合物作为机体的主要 能源,这也是鱼类饲料中要求高蛋白含量的根本原因。
脂肪和蛋白质是水生生物主要的能量来源物质。 如鱼类和虾类。特别是在饲料能量不足时,鱼类将大量氧化氨基酸作为机 体所需要的能量来源。
某些非必需氨基酸在鱼体内是由必需氨基酸转化而来的,如酪氨酸可由 苯丙氨酸转变而来,胱氨酸可由蛋氨酸转变而来,即当饲料酪氨酸及胱氨 酸含量丰富时,在体内就不必再消耗用苯丙氨酸和蛋氨酸来合成,因其具 有节省苯丙氨酸和蛋氨酸的功用,故将酪氨酸、胱氨酸称为“半必需氨基 酸'。
2.限制性氨基酸
限制性氨基酸:一定饲料或日粮的某一种或几种必需氨基酸的含量低于动 物的需要量,而且由于它们的不足限制了动物对其他必需氨基酸和非必需氨基 酸的利用。其中缺乏最严重的称第一限制性氨基酸,相应为第二、第三、第四 等限制性氨基酸。
大量的试验结果证明,由 30个氨基酸组成的胰多肽能促进动物 采食,提高胰高血糖素的浓度,提高血液中生长激素浓度,从而提高 增重以及饲料转化率。
3.促进矿物质元素的吸收和利用
酪蛋白的水解产物中,有一类含有可与Ca2+ 、Fe2+结合的磷酸丝氨 酸残基,能提髙其溶解性和吸收率。研究发现,铁能够以小肽铁的形 式到特定的靶组织而被利用。
5.必需氨基酸缺乏症与过多症
鱼类缺乏必需氨基酸,一般不表现出典型的缺乏症,主要表现为活动力 降低,食欲减退,生长缓慢,吃进饵料后又吐出来等症状;
虾类则表现为生长慢、死亡率高等症状。 例如缺乏赖氨酸,骨胶原形成减慢,并引起鳍腐烂。
有的维生素是由氨基酸转变或与蛋白质结合存在,如尼克酸可由色氨酸转化。
3.为水生动物提供能量
鱼类利用碳水化合物的能力较差,不能将饲料碳水化合物作为机体的主要 能源,这也是鱼类饲料中要求高蛋白含量的根本原因。
脂肪和蛋白质是水生生物主要的能量来源物质。 如鱼类和虾类。特别是在饲料能量不足时,鱼类将大量氧化氨基酸作为机 体所需要的能量来源。
某些非必需氨基酸在鱼体内是由必需氨基酸转化而来的,如酪氨酸可由 苯丙氨酸转变而来,胱氨酸可由蛋氨酸转变而来,即当饲料酪氨酸及胱氨 酸含量丰富时,在体内就不必再消耗用苯丙氨酸和蛋氨酸来合成,因其具 有节省苯丙氨酸和蛋氨酸的功用,故将酪氨酸、胱氨酸称为“半必需氨基 酸'。
2.限制性氨基酸
限制性氨基酸:一定饲料或日粮的某一种或几种必需氨基酸的含量低于动 物的需要量,而且由于它们的不足限制了动物对其他必需氨基酸和非必需氨基 酸的利用。其中缺乏最严重的称第一限制性氨基酸,相应为第二、第三、第四 等限制性氨基酸。
大量的试验结果证明,由 30个氨基酸组成的胰多肽能促进动物 采食,提高胰高血糖素的浓度,提高血液中生长激素浓度,从而提高 增重以及饲料转化率。
3.促进矿物质元素的吸收和利用
酪蛋白的水解产物中,有一类含有可与Ca2+ 、Fe2+结合的磷酸丝氨 酸残基,能提髙其溶解性和吸收率。研究发现,铁能够以小肽铁的形 式到特定的靶组织而被利用。
动物营养理想蛋白质
3、苯丙氨酸与缬氨酸、苏氨酸
4、亮氨酸与甘氨酸
5、苏氨酸与色氨酸
(六)氨基酸中毒
当一种氨基酸与其他氨基酸的比值特别 高时可出现氨基酸中毒。 难于出现中毒。 蛋氨酸达4%时,增重减少92%,而色氨酸、 赖氨酸、苏氨酸过量的毒性要小得多。
即使日粮氨基酸平衡,过高的蛋白质水平对家 禽也是一种应激,导致肾上腺皮质激素分泌增 加。生长减慢,血中尿酸水平上升
理想蛋白质的实质是将动物所需的蛋白 质氨基酸的组成和比例作为评定饲料蛋 白质的标准,并将其作为评价动物对蛋 白质和氨基酸的需要。按照理想蛋白的 概念,可消化或可利用的氨基酸才能与 之匹配。
理想蛋白的发展历史
对理想蛋白和可消化氨基酸模式的研究 有一个逐渐完善的过程。 ARC(英国)(1981)通过实验认为, 体组织蛋白质氨基酸组成比例为动物生 长阶段最佳的氨基酸组成比例。以各种 氨基酸占赖氨酸的百分比,表示理想蛋 白的模式,未考虑消化率的因素。
(七)氨基酸间的互作
1、蛋氨酸和胱氨酸
生成一分子的胱氨酸需两分子的蛋 氨酸。蛋氨酸的甲基可参与甲基化,用 于合成甲基甘氨酸(肌氨酸)、甜菜碱 和胆碱。
2、苯丙氨酸和酪氨酸
苯丙氨酸可用于满足家禽酪氨酸的需 要(分子比1:1)。该反应可逆,但生 成的苯丙氨酸量及少,没有实际意义。
3、甘氨酸和丝氨酸
丝氨酸可转化成等摩尔的甘氨酸,该 反应不可逆。
5、氨基酸转化成维生素
唯一能用氨基酸合成的维生素只有 烟酸。色氨酸可用来减轻烟酸的缺乏, 但其转化率很低。
(八)饲粮氨基酸的平衡
家禽饲粮常以植物性饲料为主,氨基酸 存在严重的不平衡。必需氨基酸不足或 比例不当,影响动物对蛋白质的利用和 生产性能。 添加合成的氨基酸 以可消化氨基酸为指标配制日粮
4、亮氨酸与甘氨酸
5、苏氨酸与色氨酸
(六)氨基酸中毒
当一种氨基酸与其他氨基酸的比值特别 高时可出现氨基酸中毒。 难于出现中毒。 蛋氨酸达4%时,增重减少92%,而色氨酸、 赖氨酸、苏氨酸过量的毒性要小得多。
即使日粮氨基酸平衡,过高的蛋白质水平对家 禽也是一种应激,导致肾上腺皮质激素分泌增 加。生长减慢,血中尿酸水平上升
理想蛋白质的实质是将动物所需的蛋白 质氨基酸的组成和比例作为评定饲料蛋 白质的标准,并将其作为评价动物对蛋 白质和氨基酸的需要。按照理想蛋白的 概念,可消化或可利用的氨基酸才能与 之匹配。
理想蛋白的发展历史
对理想蛋白和可消化氨基酸模式的研究 有一个逐渐完善的过程。 ARC(英国)(1981)通过实验认为, 体组织蛋白质氨基酸组成比例为动物生 长阶段最佳的氨基酸组成比例。以各种 氨基酸占赖氨酸的百分比,表示理想蛋 白的模式,未考虑消化率的因素。
(七)氨基酸间的互作
1、蛋氨酸和胱氨酸
生成一分子的胱氨酸需两分子的蛋 氨酸。蛋氨酸的甲基可参与甲基化,用 于合成甲基甘氨酸(肌氨酸)、甜菜碱 和胆碱。
2、苯丙氨酸和酪氨酸
苯丙氨酸可用于满足家禽酪氨酸的需 要(分子比1:1)。该反应可逆,但生 成的苯丙氨酸量及少,没有实际意义。
3、甘氨酸和丝氨酸
丝氨酸可转化成等摩尔的甘氨酸,该 反应不可逆。
5、氨基酸转化成维生素
唯一能用氨基酸合成的维生素只有 烟酸。色氨酸可用来减轻烟酸的缺乏, 但其转化率很低。
(八)饲粮氨基酸的平衡
家禽饲粮常以植物性饲料为主,氨基酸 存在严重的不平衡。必需氨基酸不足或 比例不当,影响动物对蛋白质的利用和 生产性能。 添加合成的氨基酸 以可消化氨基酸为指标配制日粮
动物营养学-蛋白质营养(1)
• • COOH • H2N-C-H • R • L- 型氨基酸
COOH H-C-NH2 R D- 型氨基酸
二、蛋白质的性质和分类
• (一)蛋白质的性质 • 1、蛋白质凭借游离的氨基和羧基具有两性。
在等电点易生成沉淀。
• 2、氨基酸的弱碱宝宝湿疹或弱酸性,使
蛋白质成为很好的缓冲剂。
• 3、蛋白质的变性 理化和生物学性质改变
L-[14C ]亮氨酸 103 141 L-[14C ]赖氨酸 123 81
• 每日合成蛋白质占组织器官蛋白质总量的百分比
蛋白质的周转代谢
• 在合成机体组织新的蛋白质的同时, 老组织的蛋白质也在不断的更新,使动 物能够很好地适应内外环境的变化。被 更新的组织蛋白质降解成氨基酸进入机 体氨基酸代谢库,相当部分有从新合成 蛋白质。这种老组织不断更新,被更新 的组织蛋白降解为氨基酸,而又重新用 于合成组织蛋白质的过程称为蛋白质的 周转代谢。
解速率和以碳水化合物形式存在的碳架的同步共给情 况。真蛋白与非蛋白氮的适当比例,饲粮总氮含量与 可利用碳水化合物的适宜比例。
• 2、蛋白质的热损害 • 反刍动物饲粮的热损害是指饲料中蛋白质肽链
上的氨基酸与碳水化合物中的半纤维素结合生成聚合 物的反应,该反应生成的聚合物含有11%的氮,类似 于木质素,完全不能被宿主和微生物消化。“人造木 质素”。
• (2)弹性蛋白 • (3)角蛋白
是弹性组成 如腱和动脉的蛋白质。弹性蛋白不能转变成白明胶。 是羽毛、毛发、爪、喙、蹄、角以及 脑灰质、• 髓和视网膜神经的蛋白质。它们不易溶解 脊 和消化,含较多的胱氨酸(14-15%)。
2.球蛋白
• (1)清蛋白 • 如卵清蛋白、血清蛋白、豆清蛋白、乳清蛋
• 一、一般代谢 • (一)氨基酸的代谢 • 经肠道吸收的氨基酸在体内用于体 蛋白的合成、分解提供能量或转化为其 他物质。 • 在氨基酸的代谢中,主要有转氨基 反应,脱氨基反应和脱羧基反应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五节 蛋白质与动物营养
蛋白质营养生理作用及缺乏 单胃动物蛋白质营养
反刍动物蛋白质营养 症
反刍动物对NPN的利用
一、蛋白质的营养生理作用
1.蛋白质是构成机体最基本的结构物质; 2.蛋白质是体液、酶、激素与抗体的重要成分; 3.蛋白质是遗传物质的基础; 4.蛋白质可分解供能; 5.蛋白质是动物产品的重要成分。
(三)反刍动物瘤胃氮素循环
1.概念:
瘤胃氮素循环:饲料中的蛋白质和氨化物在瘤胃中被细 菌降解生成的氨,除被合成菌体蛋白外,经瘤胃、真 胃和小肠吸收后转送到肝脏合成尿素,其中大部分经 肾脏随尿排出,一部分被运送到唾液腺随唾液返回瘤 胃,再次被细菌利用,氨如此循环反复被利用的过程 称为“瘤胃氮素循环”。
二、蛋白质不足的后果与过量的危害
蛋白质不足的后果: 饲料蛋白质不足或蛋白质品质低下,影响动物的健康、 生长、繁殖及生产性能。 蛋白质过量的危害: 饲粮中蛋白质给量超过动物的需要,不仅造成浪费, 而且会加重肝、肾负担,严重时会引起肝肾疾病。
三、单胃动物蛋白质营养 (一)单胃动物蛋白质消化代谢过程
(2)喂法:必须与精粗料均匀混合饲喂;尿素一天的 喂量要分几次饲喂;严禁 将尿素单独饲喂或溶于 水中饮用;不要与生豆类、苜蓿草籽等脲酶活性高 的饲料混合饲喂;采用高效尿素添加剂。
以尿素为例:
尿素 细菌脲酶 NH4+CO2
NH4+ 酮酸 细菌酶 氨基酸 细菌酶 菌体蛋白
菌体蛋白 真胃和小肠消化酶
氨基酸
(二)反刍动物日粮中使用NPN的目的
一是 在日粮蛋白质不足的情况下,补充NPN,提高采 食量和生产性能;
二是 用NPN适量代替高价格的蛋白质饲料,在不影响 生产性能的前提下,降低成本,提高生产效益;
三是 用于平衡日粮中可降解与过瘤胃蛋白,以充分发 挥瘤胃的功能,促进整个日粮的有效利用。
(三)提高尿素利用率的措施
1.补加尿素的日粮中必须有一定量易消化的碳水 化合物:建议每100Kg尿素,可搭配1Kg易消化 的碳水化合物,其中2/3为淀粉,1/3为可溶性 糖,以提高尿素利用率。 2.补加尿素的日粮中蛋白质水平要适宜:一般认 为补加尿素前,日粮蛋白质水平不应高于13%。
6.掌握好饲粮中蛋白质水平;
7.豆类饲料的湿热处理; 8.保证与蛋白质代谢相关的VA、VD、VB12及Fe、CU、CO 等的供应。
三、反刍动物蛋白质营养 (一)反刍动物蛋白质消化代谢
肝脏 饲料 蛋白质 蛋白质 瘤 胃 肽 氨基酸 纤毛原虫蛋白 菌体蛋白 氨化物 氨化物 氨 合成蛋白质 参与体代谢 合成新的 氨基酸 合成身体 各组织 蛋白质
饲料蛋白质(胃蛋白酶、胰蛋白酶、糜蛋白酶)氨基酸 (吸收)参与体内代谢 特点:蛋白质消化的主要部位在小肠,并在酶的作用下, 最终以大量氨基酸和少量寡肽的形式被机体吸收, 进而被利用。而氨化物在大肠被少量利用,绝大多 数被排除体外。
(二)提高单胃动物饲料蛋白质转化效率的措施
1.配合日粮时应多样化; 2.补饲氨基酸添加剂; 3.合理供给蛋白质营养; 4.日粮中蛋白质与能量要有适当比例; 5.控制饲粮中CF水平;
3.保证供给微生物生命活动所必需的矿物质:主要 是Co、S、Ca、P、Mg、Fe、Cu、Zn、Mn及I等的供
给。
在保证硫供应的同时,还要注意氮硫比和氮磷比, 含尿素日粮的最佳N:S=10—14:1,NP=8:1
4.控制喂量,注意喂法
(1)喂量:尿素的喂量约为日粮粗蛋白质量的20— 30%或不超过日粮干物质的1%。成年牛60—100g/头. 天,成年羊2—12g/头.天。
氨 基 酸
小肠 蛋白质 多肽 肽 氨基酸
脱氨 氨
氧化 供能 合成 酸 菌体蛋白 未消化蛋白质、氨化物随粪便排出体外 随尿排出
(二)反刍动物蛋白质消化代谢特点
蛋白质消化吸收的主要场所在瘤胃,靠微生物的降解, 其次在小肠,在酶的作用下进行。因此,反刍动物不仅 能大量利用饲料中的蛋白质,而且也能很好地利用氨化 物。 反刍动物的蛋白质营养实质上是微生物的蛋白质营养。
2.营养学意义: 瘤胃氮素循环既可提高饲料中粗蛋白质的利用率,又 可将食入的植物性粗蛋白质反复转化为菌体蛋白,供 动物利用,以提高饲料蛋白质的品质。
四、反刍动物对非蛋白氮的利用 (一)反刍动物利用非蛋白氮的机制
反刍动物对尿素、双缩脲等NPN的利用主要靠瘤胃中的细菌,利用 NPN作为氮源,以可溶性碳水化合物作为碳架和能量的来源,合成 菌体蛋白,进而和饲料蛋白质一样在动 物体消化酶的作用下,被 动物体消化利用。
蛋白质营养生理作用及缺乏 单胃动物蛋白质营养
反刍动物蛋白质营养 症
反刍动物对NPN的利用
一、蛋白质的营养生理作用
1.蛋白质是构成机体最基本的结构物质; 2.蛋白质是体液、酶、激素与抗体的重要成分; 3.蛋白质是遗传物质的基础; 4.蛋白质可分解供能; 5.蛋白质是动物产品的重要成分。
(三)反刍动物瘤胃氮素循环
1.概念:
瘤胃氮素循环:饲料中的蛋白质和氨化物在瘤胃中被细 菌降解生成的氨,除被合成菌体蛋白外,经瘤胃、真 胃和小肠吸收后转送到肝脏合成尿素,其中大部分经 肾脏随尿排出,一部分被运送到唾液腺随唾液返回瘤 胃,再次被细菌利用,氨如此循环反复被利用的过程 称为“瘤胃氮素循环”。
二、蛋白质不足的后果与过量的危害
蛋白质不足的后果: 饲料蛋白质不足或蛋白质品质低下,影响动物的健康、 生长、繁殖及生产性能。 蛋白质过量的危害: 饲粮中蛋白质给量超过动物的需要,不仅造成浪费, 而且会加重肝、肾负担,严重时会引起肝肾疾病。
三、单胃动物蛋白质营养 (一)单胃动物蛋白质消化代谢过程
(2)喂法:必须与精粗料均匀混合饲喂;尿素一天的 喂量要分几次饲喂;严禁 将尿素单独饲喂或溶于 水中饮用;不要与生豆类、苜蓿草籽等脲酶活性高 的饲料混合饲喂;采用高效尿素添加剂。
以尿素为例:
尿素 细菌脲酶 NH4+CO2
NH4+ 酮酸 细菌酶 氨基酸 细菌酶 菌体蛋白
菌体蛋白 真胃和小肠消化酶
氨基酸
(二)反刍动物日粮中使用NPN的目的
一是 在日粮蛋白质不足的情况下,补充NPN,提高采 食量和生产性能;
二是 用NPN适量代替高价格的蛋白质饲料,在不影响 生产性能的前提下,降低成本,提高生产效益;
三是 用于平衡日粮中可降解与过瘤胃蛋白,以充分发 挥瘤胃的功能,促进整个日粮的有效利用。
(三)提高尿素利用率的措施
1.补加尿素的日粮中必须有一定量易消化的碳水 化合物:建议每100Kg尿素,可搭配1Kg易消化 的碳水化合物,其中2/3为淀粉,1/3为可溶性 糖,以提高尿素利用率。 2.补加尿素的日粮中蛋白质水平要适宜:一般认 为补加尿素前,日粮蛋白质水平不应高于13%。
6.掌握好饲粮中蛋白质水平;
7.豆类饲料的湿热处理; 8.保证与蛋白质代谢相关的VA、VD、VB12及Fe、CU、CO 等的供应。
三、反刍动物蛋白质营养 (一)反刍动物蛋白质消化代谢
肝脏 饲料 蛋白质 蛋白质 瘤 胃 肽 氨基酸 纤毛原虫蛋白 菌体蛋白 氨化物 氨化物 氨 合成蛋白质 参与体代谢 合成新的 氨基酸 合成身体 各组织 蛋白质
饲料蛋白质(胃蛋白酶、胰蛋白酶、糜蛋白酶)氨基酸 (吸收)参与体内代谢 特点:蛋白质消化的主要部位在小肠,并在酶的作用下, 最终以大量氨基酸和少量寡肽的形式被机体吸收, 进而被利用。而氨化物在大肠被少量利用,绝大多 数被排除体外。
(二)提高单胃动物饲料蛋白质转化效率的措施
1.配合日粮时应多样化; 2.补饲氨基酸添加剂; 3.合理供给蛋白质营养; 4.日粮中蛋白质与能量要有适当比例; 5.控制饲粮中CF水平;
3.保证供给微生物生命活动所必需的矿物质:主要 是Co、S、Ca、P、Mg、Fe、Cu、Zn、Mn及I等的供
给。
在保证硫供应的同时,还要注意氮硫比和氮磷比, 含尿素日粮的最佳N:S=10—14:1,NP=8:1
4.控制喂量,注意喂法
(1)喂量:尿素的喂量约为日粮粗蛋白质量的20— 30%或不超过日粮干物质的1%。成年牛60—100g/头. 天,成年羊2—12g/头.天。
氨 基 酸
小肠 蛋白质 多肽 肽 氨基酸
脱氨 氨
氧化 供能 合成 酸 菌体蛋白 未消化蛋白质、氨化物随粪便排出体外 随尿排出
(二)反刍动物蛋白质消化代谢特点
蛋白质消化吸收的主要场所在瘤胃,靠微生物的降解, 其次在小肠,在酶的作用下进行。因此,反刍动物不仅 能大量利用饲料中的蛋白质,而且也能很好地利用氨化 物。 反刍动物的蛋白质营养实质上是微生物的蛋白质营养。
2.营养学意义: 瘤胃氮素循环既可提高饲料中粗蛋白质的利用率,又 可将食入的植物性粗蛋白质反复转化为菌体蛋白,供 动物利用,以提高饲料蛋白质的品质。
四、反刍动物对非蛋白氮的利用 (一)反刍动物利用非蛋白氮的机制
反刍动物对尿素、双缩脲等NPN的利用主要靠瘤胃中的细菌,利用 NPN作为氮源,以可溶性碳水化合物作为碳架和能量的来源,合成 菌体蛋白,进而和饲料蛋白质一样在动 物体消化酶的作用下,被 动物体消化利用。