MATLAB 《数学实验》报告10-Matlab中的各种积分运算

MATLAB 《数学实验》报告10-Matlab中的各种积分运算
MATLAB 《数学实验》报告10-Matlab中的各种积分运算

《数学实验》报告

学号10120 姓名成绩

实验内容:Matlab中的各种积分运算

一实验目的

熟悉Matlab中关于积分运算的各种命令,掌握利用MATLAB 软件进行求不定积分,定积分等积分运算方法。

二预备知识

(1)熟悉不定积分及定积分的运算原理。

(2)熟悉用Matlab软件提供的命令函数int()可以完成积分运算,如int(fun),int(fun,x),int(fun,x,a,b).

三实验内容与要求

(1)求函数的积分

∫(x^5+x^3-(√x)/4)dx ∫

(sinax sinbx sincx) dx

(x*)/(1+x)^2 dx

2)求二重积分(3)求三重积分。

(4)

σd

x

y

x

D

??-

+)

(2

2

,其中D是由直线

x

y

y=

=,2

x

y2

=

所围成的区

域。

(5)计算???Ωxyzdxdydz ,其中Ω为球面1222=++z y x 及三个坐标面所围成的

(6)计算???Ωzdxdydz 其中Ω为由曲面222y x z +=及22

x z -=所围成的闭

数值积分算法与MATLAB实现陈悦5133201讲解

东北大学秦皇岛分校 数值计算课程设计报告 数值积分算法及MATLAB实现 学院数学与统计学院 专业信息与计算科学 学号5133201 姓名陈悦 指导教师姜玉山张建波 成绩 教师评语: 指导教师签字: 2015年07月14日

1 绪论 数值分析是计算数学的一个主要部分,计算数学是数学科学的一个分支,它研究用计算机求解各种数学问题的数值检索方其理论与软件的实现.而数值分析主要研究数值计算. 现科学技术的发展与进步提出了越来越多的复杂的数值计算问题,这些问题的圆满解决已远人工手算所能胜任,必须依靠电子计算机快速准确的数据处理能力.这种用计算机处理数值问题的方法,成为科学计算.今天,科学计算的应用范围非常广泛,天气预报、工程设计、流体计算、经济规划和预测以及国防尖端的一些科研项目,如核武器的研制、导弹和火箭的发射等,始终是科学计算最为活跃的领域. 1.1 数值积分介绍 数值积分是数值分析的重要环节,实际问题当中常常需要计算积分,有些数值方法,如微分方程和积分方程的求解,也都和积分计算相联系. 求某函数的定积分时,在多数情况下,被积函数的原函数很难用初等函数表达出来,因此能够借助微积分学的牛顿-莱布尼兹公式计算定积分的机会是不多的.另外,许多实际问题中的被积函数往往是列表函数或其他形式的非连续函数,对这类函数的定积分,也不能用不定积分方法求解.由于以上原因,数值积分的理论与方法一直是计算数学研究的基本课题.对微积分学做出杰出贡献的数学大师,如I.牛顿、L.欧拉、C.F.高斯、拉格朗日等人都在数值积分这个领域作出了各自的贡献,并奠定了这个分支的理论基础. 构造数值积分公式最通常的方法是用积分区间上的n 次插值多项式代替被积函数,由此导出的求积公式称为插值型求积公式.特别在节点分布等距的情形称为牛顿-科特斯公式,例如梯形公式(Trapezoidal Approximations)与抛物线公式(Approximations Using Parabolas)就是最基本的近似公式.但它们的精度较差.龙贝格算法是在区间逐次分半过程中,对梯形公式的近似值进行加权平均获得准确程度较高的积分近似值的一种方法,它具有公式简练、计算结果准确、使用方便、稳定性好等优点,因此在等距情形宜采用龙贝格求积公式(Rhomberg Integration).当用不等距节点进行计算时,常用高斯型求积公式计算,它在节点数目相同情况下,准确程度较高,稳定性好,而且还可以计算无穷积分.数值积分还是微分方程数值解法的重要依据.许多重要公式都可以用数值积分方程导出.现探讨数值积分算法以及运用MATLAB软件的具体实现

MatLab在中学数学教学中的应用

MatLab在中学数学教学中的应用 摘要:多媒体教学受到人们的日益重视,制作多媒体课件的能力日趋成为衡量一个教师教学能力的标准之一。MatLab功能强大且简单易用,本文首先对MatLab的发展历史和基本组成框架进行了简单介绍。在此基础上,利用MabLab函数绘制了学数学教学过程中常见的二维和三维函数。并得出结论认为,MatLab适用于中学多媒体课件的制作。 关键词:多媒体教学中学数学MatLab 1 引言 随着计算机技术的发展,多媒体教学越来越受到人们的重视。现代教育理论认为[1]:全面实施素质教育,传统教学陈旧的教学手段和简单的教学技术在当今世界的多层次教学、演示教学、实验教学等现代化课堂教学中就显得力不从心。实验心理学家赤瑞特拉通过大量的实验证实:人类获取的信息83%来自视觉,11%来自听觉,1.5%来自触觉,这三个加起来达到95.5%。可见如何充分利用这三者来提高教学质量是人类认知心理学的要求。 多媒体计算机辅助教学是指利用多媒体计算机,综合处理和控制符号、语言、文字、声音、图形、图像、影像等多种媒体信息,把多媒体的各个要素按教学要求,进行有机组合并通过屏幕或投影机投影显示出来,同时按需要加上声音的配合,以及使用者与计算机之间的人机交互操作,完成教学或训练过程。Matlab 是美国MathWorks 公司自20 世纪80 年代中期推出的数学软件,具有优秀的数值计算能力和卓越的数据可视化能力。尽管MatLab 并不是一专门的教学软件,但其强大的绘图功能使得数学教学中的抽象概念直观易解。 2 多媒体教学特点 多媒体技术的特性主要包括信息载体的多样化、集成性和交互性三个方面[2]。信息载体的多样化指的就是信息媒体的多样化多媒体就是要把机器处理的信息多样化或多维化, 使之在信息交互的过程中, 具有更加广阔和更加自由的空间。多媒体的集成性主要表现在两个方面,即多媒体信息媒体的集成和处理这些媒体的设备的集成,。对于前者而言,各种信息媒体尽管可能会是多通道的输入或输出,但应该成为一体。对于后者而言,指的是多媒体的各种设备应该成为一体。多媒体的交互性则是指用户在使用多媒体过程中可以与之进行交互,输入目标参数,从而得到理想中的多媒体信息输出。 多媒体技术的特性决定了多媒体教学如下特点: 1)教学手段集成化 多媒体计算机集激光唱盘、录像机、电视机和计算机控制于一体, 即可以充分利用语音和电视教学的优势, 又有计算机交互式教学的特点,克服了传统教学手段三个“一”(一支粉笔、一本书、一张嘴)的单一性缺点。 2)教学方式多样化

用递推公式计算定积分(matlab版)

用递推公式计算定积分 实验目的: 1.充分理解不稳定的计算方法会造成误差的积累,在计算过程中会导致误差的迅速增加,从而使结果产生较大的误差。 2.在选择数值计算公式来进行近似计算时,应学会选用那些在计算过程中不会导致误差迅速增长的计算公式。 3.理解不稳定的计算公式造成误差积累的来源及具体过程; 4.掌握简单的matlab语言进行数值计算的方法。 实验题目: 对n=0,1,2,…,20,计算定积分: 实验原理: 由于y(n)= = – 在计算时有两种迭代方法,如下: 方法一: y(n)=– 5*y(n-1),n=1,2,3, (20) 取y(0)= = ln6-ln5 ≈ 0.182322 方法二: 利用递推公式:y(n-1)=-*y(n),n=20,19, (1) 而且,由 = * ≤≤* =

可取:y(20)≈*()≈0.008730. 实验容: 对算法一,程序代码如下: function [y,n]=funa() syms k n t; t=0.182322; n=0; y=zeros(1,20); y(1)=t; for k=2:20 y(k)=1/k-5*y(k-1); n=n+1; end y(1:6) y(7:11) 对算法二,程序代码如下: %计算定积分; %n--表示迭代次数; %y用来存储结果; function [y,n]=f(); syms k y_20;

y=zeros(21,1); n=1; y_20=(1/105+1/126)/2; y(21)=y_20; for k=21:-1:2 y(k-1)=1/(5*(k-1))-y(k)/5; n=n+1; end 实验结果: 由于计算过程中,前11个数字太小,后9个数字比较大,造成前面几个数字只显示0.0000的现象,所以先输出前6个,再输出7—11个,这样就能全部显示出来了。 算法一结果: [y,n]=funa %先显示一y(1)—y(6) ans = 0.1823 -0.4116 2.3914 -11.7069 58.7346

【数学建模学习】Matlab的数值积分

Matlab 的数值积分问题 (1)求和命令sum 调用格式. 如果x 是向量,则sum(x) 给出x 的各个元素的累加和;如果x 是矩阵,则sum(x)是一个元素为x 的每列列和的行向量. 例3.1 调用命令sum 求向量x 的各个元素的累加和。 解:输入 x=[1,2,3,4,5,6,7,8,9,10]; sum(x) 得到 ans=55 例3.2 调用命令sum 求矩阵x 的各列元素的累加和。 解:输入 x=[1,2,3;4,5,6;7,8,9] x= 1 2 3 4 5 6 7 8 9 sum(x) 得到 ans=12 15 18 2.定积分的概念. 定积分是一个积分和的极限. 例如取x e x f =)(,求定积分?10dx e x 的近似值。 积分区间为[0,1],等距划分为20个子区间, x=linspace(0,1,21); 选取每个子区间的端点,并计算端点处的函数值. y=exp(x); 取区间的左端点处的函数值乘以区间长度全部加起来. y1=y(1:20); s1=sum(y1)/20 s1=1.6757 s1可作为定积分?10dx e x 的近似值。 若选取右端点: y2=y(2:21); s2=sum(y2)/20 s2=1.7616 s2也可以作为定积分?10dx e x 的近似值。 下面我们画出图象. plot(x,y);hold on for i=1:20 fill([x(i),x(i+1),x(i+1),x(i),x(i)],[0,0,y(i),y(i),0],'b')

end 如果选取右端点,则可画出图象. for i=1:20 fill([x(i),x(i+1),x(i+1),x(i),x(i)],[0,0,y(i+1),y(i+1),0],'b') hold on end plot(x,y,'r') 在上边的语句中,for … end 是循环语句,执行语句体内的命令20次,fill 命令可以填充多边形,在本例中,用的是兰色(blue)填充. 可试取50个子区间看一看结果怎样.下面按等分区间计算。 syms k n s=symsum(exp(k/n)/n,k,1,n); limit(s,n,inf) 得结果 ans=exp(1)-1 3.计算定积分 例3.6 计算?10dx e x . 解:输入命令: syms x; int(exp(x),0,1) 得结果 ans=exp(1)-1. 这与我们上面的运算结果是一致的. ⒈ 由给定数据进行梯形求积 假设已经建立起向量T N T N y y y y x x x x ],,,[,],,,[2121 ==,则可用以下语句进行梯形求积: sum((2*y(1:end-1,:)+diff(y)).*diff(x))/2 MATLAB 提供的trapz()函数也可直接用梯形法求解积分问题,该函数调用格式为 S=trapz(x,y) [例1-6-17] 试用梯形法求出),0(π∈x 区间内,函数sin(x),cos(x),sin(x/2)的定积分值。 [求解] >> x1=[0:pi/30:pi]'; y=[sin(x1) cos(x1) sin(x1/2)]; x=[x1 x1 x1]; S=sum((2*y(1:end-1,:)+diff(y)).*diff(x))/2 >> S1=trapz(x1,y) [例1-6-18] 用定步长方法求解积分?2 /30)15cos(πdx x 。 [求解] 鉴于求解区域内被积函数有很强的振荡,可先用下述语句绘制被积函数的曲线。 >> x=[0:0.01:3*pi/2,3*pi/2]; y=cos(15*x); plot(x,y) 采用不同的步距,可分别得到积分近似结果。 >> syms x, A=int(cos(15*x),0,3*pi/2) % 求理论值 >> h0=[0.1,0.01,0.001,0.0001,0.00001,0.000001]; v=[]

数值积分的matlab实现

实验10 数值积分 实验目的: 1.了解数值积分的基本原理; 2.熟练掌握数值积分的MATLAB 实现; 3.会用数值积分方法解决一些实际问题。 实验内容: 积分是数学中的一个基本概念,在实际问题中也有很广泛的应用。同微分一样,在《微积分》中,它也是通过极限定义的,由于实际问题中遇到的函数一般都以列表形式给出,所以常常不能用来直接进行积分。此外有些函数虽然有解析式,但其原函数不是初等函数,所以仍然得不到积分的精确值,如不定积分?1 0 d sin x x x 。这时我们一般考虑用数值方法计算其 近似值,称为数值积分。 10.1 数值微分简介 设函数()y f x =在* x 可导,则其导数为 h x f h x f x f h ) ()(lim )(**0* -+='→ (10.1) 如果函数()y f x =以列表形式给出(见表10-1),则其精确值无法求得,但可由下式求得其近似值 h x f h x f x f ) ()()(*** -+≈' (10.2) 表 10-1 一般的,步长h 越小,所得结果越精确。(10.2)式右端项的分子称为函数()y f x =在 *x 的差分,分母称为自变量在*x 的差分,所以右端项又称为差商。数值微分即用差商近似 代替微商。常用的差商公式为: 000()() ()2f x h f x h f x h +--'≈ (10.3) h y y y x f 243)(2 100-+-≈ ' (10.4)

h y y y x f n n n n 234)(12+-≈ '-- (10.5) 其误差均为2 ()O h ,称为统称三点公式。 10.2 数值微分的MATLAB 实现 MATLAB 提供了一个指令求解一阶向前差分,其使用格式为: dx=diff(x) 其中x 是n 维数组,dx 为1n -维数组[]21321,, ,n x x x x x x ---,这样基于两点的数值导 数可通过指令diff(x)/h 实现。对于三点公式,读者可参考例1的M 函数文件diff3.m 。 例1 用三点公式计算()y f x =在=x 1.0,1.2,1.4处的导数值,()f x 的值由下表给 解:建立三点公式的M 函数文件diff3.m 如下: function f=diff3(x,y) n=length(x);h=x(2)-x(1); f(1)=(-3*y(1)+4*y(2)-y(3))/(2*h); for j=2:n-1 f(j)=(y(j+1)-y(j-1))/(2*h); end f(n)=(y(n-2)-4*y(n-1)+3*y(n))/(2*h); 在MATLAB 指令窗中输入指令: x=[1.0,1.1,1.2,1.3,1.4];y=[0.2500,0.2268,0.2066,0.1890,0.1736];diff3(x,y) 运行得各点的导数值为:-0.2470,-0.2170,-0.1890,-0.1650,-0.0014。所以()y f x =在=x 1.0,1.2,1.4处的导数值分别为-0.2470,-0.1890和-0.0014。 对于高阶导数,MATLAB 提供了几个指令借助于样条函数进行求导,详细使用步骤如下: step1:对给定数据点(x,y ),利用指令pp=spline(x,y),获得三次样条函数数据pp ,供后面ppval 等指令使用。其中,pp 是一个分段多项式所对应的行向量,它包含此多项式的阶数、段数、节点的横坐标值和各段多项式的系数。 step2:对于上面所求的数据向量pp ,利用指令[breaks,coefs,m,n]=unmkpp(pp)进行处理,生成几个有序的分段多项式pp 。 step3:对各个分段多项式pp 的系数,利用函数ppval 生成其相应导数分段多项式的系数,再利用指令mkpp 生成相应的导数分段多项式 step4:将待求点xx 代入此导数多项式,即得样条导数值。 上述过程可建立M 函数文件ppd.m 实现如下: function dy=ppd(pp) [breaks,coefs,m]=unmkpp(pp);

matlab实现数值分析插值及积分

Matlab实现数值分析插值及积分 摘要: 数值分析(numerical analysis)是研究分析用计算机求解数学计算问题的数值计算方法及其理论的学科,是数学的一个分支,它以数字计算机求解数学问题的理论和方法为研究对象。在实际生产实践中,常常将实际问题转化为数学模型来解决,这个过程就是数学建模。学习数值分析这门课程可以让我们学到很多的数学建模方法。 分别运用matlab数学软件编程来解决插值问题和数值积分问题。题目中的要计算差值和积分,对于问题一,可以分别利用朗格朗日插值公式,牛顿插值公式,埃特金逐次线性插值公式来进行编程求解,具体matlab代码见正文。编程求解出来的结果为:=+。 其中Aitken插值计算的结果图如下: 对于问题二,可以分别利用复化梯形公式,复化的辛卜生公式,复化的柯特斯公式编写程序来进行求解,具体matlab代码见正文。编程求解出来的结果为: 0.6932 其中复化梯形公式计算的结果图如下:

问题重述 问题一:已知列表函数 表格 1 分别用拉格朗日,牛顿,埃特金插值方法计算。 问题二:用复化的梯形公式,复化的辛卜生公式,复化的柯特斯公式计算积分,使精度小于5。 问题解决 问题一:插值方法 对于问题一,用三种差值方法:拉格朗日,牛顿,埃特金差值方法来解决。 一、拉格朗日插值法: 拉格朗日插值多项式如下: 首先构造1+n 个插值节点n x x x ,,,10 上的n 插值基函数,对任一点i x 所对应的插值基函数 )(x l i ,由于在所有),,1,1,,1,0(n i i j x j +-=取零值,因此)(x l i 有因子 )())(()(110n i i x x x x x x x x ----+- 。又因)(x l i 是一个次数不超过n 的多项式,所以只 可能相差一个常数因子,固)(x l i 可表示成: )())(()()(110n i i i x x x x x x x x A x l ----=+- 利用1)(=i i x l 得:

matlab求定积分之实例说明

一、符号积分 符号积分由函数int来实现。该函数的一般调用格式为: int(s):没有指定积分变量和积分阶数时,系统按findsym函数指示的默认变量对被积函数或符号表达式s求不定积分; int(s,v):以v为自变量,对被积函数或符号表达式s求不定积分; int(s,v,a,b):求定积分运算。a,b分别表示定积分的下限和上限。该函数求被积函数在区间[a,b]上的定积分。a和b可以是两个具体的数,也可以是一个符号表达式,还可以是无穷(inf)。当函数f关于变量x在闭区间[a,b]上可积时,函数返回一个定积分结果。当a,b中有一个是inf时,函数返回一个广义积分。当a,b中有一个符号表达式时,函数返回一个符号函数。 例: 求函数x^2+y^2+z^2的三重积分。内积分上下限都是函数,对z积分下限是sqrt(x*y),积分上限是x^2*y;对y积分下限是sqrt(x),积分上限是x^2;对x的积分下限1,上限是2,求解如下: >>syms x y z %定义符号变量 >>F2=int(int(int(x^2+y^2+z^2,z,sqrt(x*y),x^2*y),y,sqrt(x),x^2),x,1,2) %注意定积分的书写格式 F2 = 1610027357/6563700-6072064/348075*2^(1/2)+14912/4641*2^(1/4)+64/225*2 ^(3/4) %给出有理数解 >>VF2=vpa(F2) %给出默认精度的数值解 VF2 = 224.92153573331143159790710032805 二、数值积分 1.数值积分基本原理 求解定积分的数值方法多种多样,如简单的梯形法、辛普生(Simpson)?法、牛顿-柯特斯(Newton-Cotes)法等都是经常采用的方法。它们的基本思想都是将整个积分区间[a,b]分成n个子区间[xi,xi+1],i=1,2,…,n,其中x1=a,xn+1=b。这样求定积分问题就分解为求和问题。 2.数值积分的实现方法 基于变步长辛普生法,MATLAB给出了quad函数来求定积分。该函数的调用格式为: [I,n]=quad('fname',a,b,tol,trace) 基于变步长、牛顿-柯特斯(Newton-Cotes)法,MATLAB给出了quadl函数来求定积分。该函数的调用格式为: [I,n]=quadl('fname',a,b,tol,trace) 其中fname是被积函数名。a和b分别是定积分的下限和上限。tol用来控制积分精度,缺省时取tol=0.001。trace控制是否展现积分过程,若取非0则展现积分过程,取0则不展现,缺省时取trace=0。返回参数I即定积分值,n为被积函数的调用次数。 例: 求函数'exp(-x*x)的定积分,积分下限为0,积分上限为1。 >>fun=inline('exp(-x.*x)','x'); %用内联函数定义被积函数fname

数值积分用matlab实现

数值积分用m a t l a b实 现

东北大学秦皇岛分校 数值计算课程设计报告 数值积分及Matlab实现 学院数学与统计学院 专业信息与计算科学 学号5133117 姓名楚文玉 指导教师张建波姜玉山 成绩 教师评语: 指导教师签字: 2015年07月14日

1 绪论 在科研计算中,经常会碰到一些很难用公式定理直接求出精确解的积分问题,对于这类问题,我们一般转化为数值积分问题,用计算机来实现求解问题. 1.1 课题的背景 对于定积分()b a f x dx ?在求某函数的定积分时,在一定条件下,虽然有牛顿-莱布里 茨公式()()()b a I f x dx F b F a ==-?可以计算定积分的值,但在很多情况下的原函数() f x 不易求出或非常复杂.被积函数的原函数很难用初等函数表达出来,例如 2 sin (),x x f x e x -= 等;有的函数()f x 的原函数()F x 存在,但其表达式太复杂,计算量太大,有的甚至无法有解析表达式.因此能够借助牛顿-莱布尼兹公式计算定积分的情形是不多的.另外,许多实际问题中的被积函数()f x 往往是列表函数或其他形式的非连续函数,对这类函数的定积分,也不能用不定积分方法求解,只能设法求其近似值.因此,探讨近似计算的数值积分方法是有明显的实际意义的,即有必要研究定积分的数值计算方法,以解决定积分的近似计算.而数值积分就是解决此类问题的一种有效的方法,它的特点是利用被积函数在一些节点上的信息求出定积分的近似值.微积分的发明是人类科学史上一项伟大的成就,在科学技术中,积分是经常遇到的一个重要计算环节数值积分是数学上重要的课题之一,是数值分析中重要的内容之一.随着计算机的出现,近几十年来,对于数值积分问题的研究已经成为一个很活跃的研究领域.现在,数值积分在计算机图形学,积分方程,工程计算,金融数学等应用科学领域都有着相当重要的应用,所以研究数值积分问题有着很重要的意义.国内外众多学者在数值积分应用领域也提出了许多新方法.在很多实际应用中,只能知道积分函数在某些特定点的取值,比如天气测量中的气温、湿度、气压等,医学测量中的血压、浓度等等.通过这个课题的研究,我们将会更好地掌握运用数值积分算法求出特殊积分函数的定积分的一些基本方法、理论基础;并且通过Matlab 软件编程的实现,应用于实际生活中. 1.2 课题的主要内容框架

【方法】Matlab中常见数学函数的使用

【关键字】方法 给自己看的----Matlab的内部常数(转) 2008/06/19 14:01 [Ctrl C/V--学校 ] MATLAB基本知识 Matlab的内部常数 pi 圆周率 exp(1) 自然对数的底数e i 或j 虚数单位 Inf或inf 无穷大 Matlab的常用内部数学函数

没有发现matlab有这一命令,不过我们可以调用maple的命令,调用方法如下: 首先加载maple中的student函数库,加载方法为:maple(’with(student)’) 然后运行maple中的配方命令,格式为: maple(’completesquare(f)’)把f配方,其中f为代数表达式或代数方程 mapl e(’completesquare(f,x)’)把f按指定的变量x配方,其中f同上 maple(’completesquare(f,{x,y,...})’)把f按指定的变量x,y,...配方maple(’completesquare(f,[x,y,...])’)把f按指定的变量x,y,...配方, 如何用matlab进行多项式运算 (1)合并同类项 syms 表达式中包含的变量 collect(表达式,指定的变量) (2)因式分解 syms 表达式中包含的变量factor(表达式) (3)展开 syms 表达式中包含的变量 expand(表达式) 我们也可在matlab中调用maple的命令进行多项式的运算,调用格式如下: maple(’maple中多项式的运算命令’) 如何用matlab进行分式运算 发现matlab只有一条处理分式问题的命令,其使用格式如下: [n,d]=numden(f)把符号表达式f化简为有理形式,其中分子和分母的系数为整数且分子分母不含公约项,返回结果n为分子,d为分母。注意:f必须为符号表达式 不过我们可以调用maple的命令,调用方法如下: maple(’denom(f)’)提取分式f的分母 maple(’numer(f)’)提取分式f的分子 maple(’normal(f)’ ) 把分式f的分子与分母约分成最简形式 maple(’expand(f)’) 把分式f的分子展开,分母不变且被看成单项。 maple(’factor(f)’) 把分式f的分母和分子因式分解,并进行约分。 如何用Matlab进行因式分解 syms 表达式中包含的变量factor(表达式) 如何用Matlab展开 syms 表达式中包含的变量expand(表达式) 如何用Matlab进行化简 syms 表达式中包含的变量simplify(表达式) 如何用Matlab合并同类项 syms 表达式中包含的变量collect(表达式,指定的变量) 如何用Matlab进行数学式的转换 调用Maple中数学式的转换命令,调用格式如下: maple(‘Maple的数学式转换命令’)

用MATLAB算多元函数积分

用MATLAB 计算多元函数的积分 三重积分的计算最终是化成累次积分来完成的,因此只要能正确的得出各累次积分的积分限,便可在MA TLAB 中通过多次使用int 命令来求得计算结果。但三重积分的积分域Ω是一个三维空间区域,当其形状较复杂时,要确定各累次积分的积分限会遇到一定困难,此时,可以借助MATLAB 的三维绘图命令,先在屏幕上绘出Ω的三维立体图,然后执行命令 rotate3d on ↙ 便可拖动鼠标使Ω的图形在屏幕上作任意的三维旋转,并且可用下述命令将Ω的图形向三个坐标平面进行投影: view(0,0),向XOZ 平面投影; view(90,0),向YOZ 平面投影; view(0,90),向XOY 平面投影. 综合运用上述方法,一般应能正确得出各累次积分的积分限。 例11.6.1计算zdv Ω ???,其中Ω是由圆锥曲面222z x y =+与平面z=1围成的闭区域 解 首先用MA TLAB 来绘制Ω的三维图形,画圆锥曲面的命令可以是: syms x y z ↙ z=sqrt(x^2+y^2); ↙ ezsurf(z,[-1.5,1.5]) ↙ 画第二个曲面之前,为保持先画的图形不会被清除,需要执行命令 hold on ↙ 然后用下述命令就可以将平面z=1与圆锥面的图形画在一个图形窗口内: [x1,y1]=meshgrid(-1.5:1/4:1.5); ↙ z1=ones(size(x1)); ↙ surf(x1,y1,z1) ↙ 于是得到Ω的三维图形如图:

由该图很容易将原三重积分化成累次积分: 111zdv dy -Ω=???? 于是可用下述命令求解此三重积分: clear all ↙ syms x y z ↙ f=z; ↙ f1=int(f,z.,sqrt(x^2+ y^2),1); ↙ f2=int(f1,x,-sqrt(1- y^2), sqrt(1- y^2)); ↙ int(f2,y,-1,1) ↙ ans= 1/4*pi 计算结果为4 π 对于第一类曲线积分和第一类曲面积分,其计算都归结为求解特定形式的定积分和二重积分,因此可完全类似的使用int 命令进行计算,并可用diff 命令求解中间所需的各偏导数。 例11.6.2用MATLAB 求解教材例11.3.1 解 求解过程如下 syms a b t ↙ x=a*cos(t); ↙ y=a*sin(t); ↙ z=b*t; ↙ f=x^2 +y^2+z^2; ↙ xt=diff(x,t); ↙ yt=diff(y,t); ↙ zt=diff(z,t); ↙ int(f*sqrt(xt^2 +yt^2+zt^2),t,0,2*pi) ↙ ans= 2/3*( a^2 +b^2)^1/2*a^2*pi+8/3*( a^2 +b^2)^1/2*b^2*pi^3 对此结果可用factor 命令进行合并化简: factor (ans ) ans= 2/3*( a^2 +b^2)^1/2*pi*(3* a^2 +4*b^2*pi^2) 例11.6.3用MATLAB 求解教材例11.4.1 解 求解过程如下 syms x y z1 z2↙ f= x^2 +y^2; ↙ z1=sqrt(x^2 +y^2); ↙ z2=1; ↙ z1x=diff(z1,x); ↙ z1y=diff(z1,y); ↙ z2x=diff(z2,x); ↙ z2y=diff(z2,y); ↙

数值积分的算法比较及其MATLAB实现

编号: 审定成绩: 重庆邮电大学 毕业设计(论文) 设计(论文)题目:数值积分算法与MATLAB实现 学院名称:数理学院 学生姓名: 专业:数学与应用数学 班级: 学号: 指导教师: 答辩组负责人: 填表时间:年月 重庆邮电大学教务处制

摘要 在求一些函数的定积分时,由于原函数十分复杂难以求出或用初等函数表达,导致积分很难精确求出,只能设法求其近似值,因此能够直接借助牛顿-莱布尼兹公式计算定积分的情形是不多的。数值积分就是解决此类问题的一种行之有效的方法。积分的数值计算是数值分析的一个重要分支;因此,探讨近似计算的数值积分方法是有着明显的实际意义的。本文从数值积分问题的产生出发,详细介绍了一些数值积分的重要方法。 本文较详细地介绍了牛顿-科特斯求积公式,以及为了提高积分计算精度的高精度数值积分公式,即龙贝格求积公式和高斯-勒让德求积公式。除了研究这些数值积分算法的理论外,本文还将这些数值积分算法在计算机上通过MATLAB软件编程实现,并通过实例用各种求积公式进行运算,分析比较了各种求积公式的计算误差。 【关键词】数值积分牛顿-科特斯求积公式高精度求积公式MATLAB软件

ABSTRACT When the solution of the definite integral of some function values,because the original function is very complex and difficult to find the elementary function expression, the integral is difficult to accurately calculate, only managed to find the approximate value, and the case is small that allows to direct interface with the Newton - Leibniz formula to calculate the definite integral. Numerical integration is an effective method to solve such problems. The numerical integration is an important branch of numerical analysis; therefore, exploring the approximate calculation of the numerical integration method has obvious practical significance. This article departure from the numerical integration problem, described in detail some important numerical integration methods. This paper has introduced detail the Newton - Coates quadrature formula, and in order to improve the calculation accuracy of numerical integration formulas, More precise formulas have Romberg quadrature formulas and the Gauss - Legendre quadrature formula. In addition to the study of these numerical integration algorithm theory, the article also involve what these numerical integration algorithm be programmed by matlab software on the computer, and an example is calculated with a variety of quadrature formulas, finally analysis and comparison to various quadrature formulas calculation error. 【Key words】Numerical integration Newton-Cotes quadrature formula High-precision quadrature formula Matlab software

详解Matlab求积分的各种方法

详解Matlab求积分的各种方法 一、符号积分由函数int来实现。 该函数的一般调用格式为: int(s): 没有指定积分变量和积分阶数时,系统按findsym函数指示的默认变量对被积函数或符号表达式s求不定积分;int(s,v): 以v为自变量,对被积函数或符号表达式s求不定积分;int(s,v,a,b): 求定积分运算。 a,b分别表示定积分的下限和上限。 该函数求被积函数在区间[a,b]上的定积分。 a和b可以是两个具体的数,也可以是一个符号表达式,还可以是无穷(inf)。 当函数f关于变量x在闭区间[a,b]上可积时,函数返回一个定积分结果。 当a,b中有一个是inf时,函数返回一个广义积分。 当a,b中有一个符号表达式时,函数返回一个符号函数。 例: 求函数x^2+y^2+z^2的三重积分。 内积分上下限都是函数,对z积分下限是sqrt(x*y),积分上限是x^2*y;对y积分下限是sqrt(x),积分上限是x^2;对x的积分下限1,上限是2,求解如下: >>syms x y z %定义符号变 量>>F2=int(int(int(x^2+y^2+z^2,z,sqrt(x*y),x^2*y),y,sqrt(x),x^2),x,1,2) %注意定积分的书写格式F2 =57/-

/348075*2^(1/2)+14912/4641*2^(1/4)+64/225*2^(3/4) %给出有理数 解>>VF2=vpa(F2) %给出默认精度的数值解VF2 = 224.9 232805二、数值积分 1.数值积分基本原理求解定积分的数值方法多种多样,如简单的梯形法、辛普生(Simpson)?法、牛顿-柯特斯(Newton-Cotes)法等都是经常采用的方法。 它们的基本思想都是将整个积分区间[a,b]分成n个子区间[xi,xi+1], i=1,2,…,n,其中x1=a,xn+1=b。 这样求定积分问题就分解为求和问题。 2.数值积分的实现方法基于变步长辛普生法,MATLAB给出了quad函数来求定积分。 该函数的调用格式为: [I,n]=quad('fname',a,b,tol,trace)基于变步长、牛顿-柯特斯(Newton-Cotes)法,MATLAB给出了quadl函数来求定积分。 该函数的调用格式为: [I,n]=quadl('fname',a,b,tol,trace)其中fname是被积函数名。 a和b分别是定积分的下限和上限。 tol用来控制积分精度,缺省时取tol= 0.0 01。 trace控制是否展现积分过程,若取非0则展现积分过程,取0则不展现,缺省时取trace= 0。

数值积分算法与MATLAB实现

数值积分算法与MATLAB实现 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 摘要:在求一些函数的定积分时,由于原函数十分复杂难以求出或用初等函数表达,导致积分很难精确求出,只能设法求其近似值,因此能够直接借助牛顿-莱布尼兹公式计算定积分的情形是不多的。数值积分就是解决此类问题的一种行之有效的方法。积分的数值计算是数值分析的一个重要分支;因此,探讨近似计算的数值积分方法是有着明显的实际意义的。本文从数值积分问题的产生出发,详细介绍了一些数值积分的重要方法。 本文较详细地介绍了牛顿-科特斯求积公式,以及为了提高积分计算精度的高精度数值积分公式,即龙贝格求积公式和高斯-勒让德求积公式。除了研究这些数值积分算法的理论外,本文还将这些数值积分算法在计算机上通过MATLAB软件编程实现,并通过实例用各种求积公式进行运算,分析比较了各种求积公式的计算误差。 【关键词】数值积分牛顿-科特斯求积公式高精度求积公式MATLAB软件

前言 对于定积分,在求某函数的定积分时,在一定条件下,虽然有牛顿-莱布里茨公式可以计算定积分的值,但在很多情况下的原函数不易求出或非常复杂。被积函数的原函数很难用初等函数表达出来,例如等;有的函数的原函数存在,但其表达式太复杂,计算量太大,有的甚至无法有解析表达式。因此能够借助牛顿-莱布尼兹公式计算定积分的情形是不多的。另外,许多实际问题中的被积函数往往是列表函数或其他形式的非连续函数,对这类函数的定积分,也不能用不定积分方法求解,只能设法求其近似值。因此,探讨近似计算的数值积分方法是有明显的实际意义的,即有必要研究定积分的数值计算方法,以解决定积分的近似计算。而数值积分就是解决此类问题的一种有效的方法,它的特点是利用被积函数在一些节点上的信息求出定积分的近似值。 微积分的发明是人类科学史上一项伟大的成就,在科学技术中,积分是经常遇到的一个重要计算环节。数值积分是数学上重要的课题之一,是数值分析中重要的内容之一,也是应用数学研究的重点。随着计算机的出现,近几十年来,对于数值积分问题的研究已经成为一个很活跃的研究领域。现在,数值积分在计算

MATLAB数学软件在数学课堂中的应用

论文 摘要 MATLAB数学软件是集数值计算、图形处理等功能为一体的数学应用软件.传统的数学教学比较枯燥,而MATLAB数学软件应用于数学课堂中,给教学上带来了很大的方便,本文介绍利用MATLAB软件在运算、绘图方面的优势应用于基础数学教学里的数学分析、线性代数、概率统计、数值分析、运筹学、解析几何等.从而使得学生的积极性以及主动学习的兴趣大大增加. 关键词:MATLAB;数学教学;应用

MATLAB数学软件在数学课堂中的应用 The Application Of The Matlab in Mathematic Teaching ABSTRACT MATLAB is mathematical software capable of numerical computation, graphics pr -ocessing and so on. The traditional mathematical education is very boring while the ap--plication of MATLAB mathematical software in the mathematics class has brought gre -at convenience to teaching. This paper introduces how the strengths of the software, su-ch as operation and drawing, are used in mathematics teaching of mathematical analysi -s, linear algebra, probability statistics, numerical analysis, operational research, analyti-c geometry etc. As a result, it will enormously increase students’ enthusiasm and interes -t in study. Key words:MATLAB;mathematical education; application

利用Matlab实现Romberg数值积分算法----系统建模与仿真结课作业

利用Matlab 实现Romberg 数值积分算法 一、内容摘要 针对于某些多项式积分,利用Newton —Leibniz 积分公式求解时有困难,可以采用数值积分的方法,求解指定精度的近似解,本文利用Matlab 中的.m 文件编写了复化梯形公式与Romberg 的数值积分算法的程序,求解多项式的数值积分,比较两者的收敛速度。 二、数值积分公式 1.复化梯形公式求解数值积分的基础是将区间一等分时的Newton —Cotes 求积公式: I =(x)[f(a)f(b)]2 b a b a f dx -≈ +? 其几何意义是,利用区间端点的函数值、与端点构成的梯形面积来近似(x)f 在区间[a,b]上的积分值,截断误差为: 3" (b a)()12 f η-- (a,b)η∈ 具有一次的代数精度,很明显,这样的近似求解精度很难满足计算的要求,因而,可以采用将积分区间不停地对分,当区间足够小的时候,利用梯形公式求解每一个小区间的积分近似值,然后将所有的区间加起来,作为被求函数的积分,可以根据计算精度的要求,划分对分的区间个数,得到复化梯形公式: I =1 1 (b a)(b a) (x)dx [f(a)f(b)2(a )]2n b a k k f f n n -=--≈+++∑? 其截断误差为:

2" (b a)h ()12 R f η--= (a,b)η∈ 2.Romberg 数值积分算法 使用复化的梯形公式计算的数值积分,其收敛速度比减慢,为此,采用Romberg 数值积分。其思想主要是,根据I 的近似值2n T 加上I 与2n T 的近似误差,作为新的I 的近视,反复迭代,求出满足计算精度的近似解。 用2n T 近似I 所产生的误差可用下式进行估算: 12221 ()3 n n n I T T T -?=-=- 新的I 的近似值: 122 n n j T T -=?+ j =(0 1 2 ….) Romberg 数值积分算法计算顺序 i=0 (1) 002T i=1 (2) 102T (3) 012T i=2 (4) 202T (5) 112T (6) 022T i=3 (7) 302T (8) 212T (9) 122T (10) 032T i=4 (11) 402T (12) 312T (13) 222T (14) 132T … … … … 其中,第一列是二阶收敛的,第二列是四阶收敛的,第三列是六阶收敛的,第四列是八阶收敛的,即Romberg 序列。

相关文档
最新文档