数值积分的matlab实现
Matlab中常用的数值计算方法

Matlab中常用的数值计算方法数值计算是现代科学和工程领域中的一个重要问题。
Matlab是一种用于数值计算和科学计算的高级编程语言和环境,具有强大的数值计算功能。
本文将介绍Matlab中常用的数值计算方法,包括数值积分、数值解微分方程、非线性方程求解和线性方程组求解等。
一、数值积分数值积分是通过数值方法来近似计算函数的定积分。
在Matlab中,常用的数值积分函数是'quad'和'quadl'。
'quad'函数可以用于计算定积分,而'quadl'函数可以用于计算无穷积分。
下面是一个使用'quad'函数计算定积分的例子。
假设我们想计算函数f(x) = x^2在区间[0, 1]上的定积分。
我们可以使用如下的Matlab代码:```f = @(x) x^2;integral = quad(f, 0, 1);disp(integral);```运行这段代码后,我们可以得到定积分的近似值,即1/3。
二、数值解微分方程微分方程是描述自然界各种变化规律的数学方程。
在科学研究和工程应用中,常常需要求解微分方程的数值解。
在Matlab中,可以使用'ode45'函数来求解常微分方程的数值解。
'ode45'函数是采用基于Runge-Kutta方法的一种数值解法。
下面是一个使用'ode45'函数求解常微分方程的例子。
假设我们想求解一阶常微分方程dy/dx = 2*x,初始条件为y(0) = 1。
我们可以使用如下的Matlab代码:```fun = @(x, y) 2*x;[x, y] = ode45(fun, [0, 1], 1);plot(x, y);```运行这段代码后,我们可以得到微分方程的数值解,并绘制其图像。
三、非线性方程求解非线性方程是指方程中包含非线性项的方程。
在很多实际问题中,我们需要求解非线性方程的根。
数值积分的MATLAB实现

数值积分的MATLAB实现数值积分是通过数值方法计算定积分的近似值。
MATLAB是一种功能强大的数值计算软件,提供了多种函数和工具箱用于数值积分的实现。
在MATLAB中,常用的数值积分方法包括梯形法则、辛普森法则和龙贝格法。
梯形法则是最简单的数值积分方法之一、它的基本思想是将要积分的区间划分成多个小的梯形并计算每个梯形的面积,然后将这些面积相加得到最终的近似积分值。
在MATLAB中,可以使用trapz函数进行梯形法则的计算。
例如,要计算函数sin(x)在区间[0, pi]的积分,可以使用以下代码:```MATLABx = linspace(0, pi, 1000); % 在[0, pi]区间生成1000个等间隔的点y = sin(x); % 计算函数sin(x)在每个点的值integral_value = trapz(x, y) % 使用梯形法则进行数值积分```辛普森法则是一种更精确的数值积分方法,它使用二次多项式来逼近被积函数。
在MATLAB中,可以使用simpson函数进行辛普森法则的计算。
例如,上面例子中的积分可以改用辛普森法则进行计算:```MATLABintegral_value = simpson(x, y) % 使用辛普森法则进行数值积分```龙贝格法是一种高效的自适应数值积分方法,它通过逐步加密网格和逼近函数来提高积分的精度。
在MATLAB中,可以使用quad和quadl函数进行龙贝格法的计算。
例如,计算函数sin(x)在区间[0, pi]的积分:```MATLAB```除了上述方法外,MATLAB还提供了许多其他的数值积分函数和工具箱,用于处理不同类型的积分问题。
例如,int和integral函数可以用于处理多重积分和奇异积分。
Symbolic Math Toolbox中的函数可以用于计算符号积分。
需要注意的是,数值积分是一种近似方法,计算结果的误差与划分区间的精细程度有关。
数值积分matlab

数值积分matlab数值积分是一种数学方法,用于计算函数在一定区间内的定积分。
在实际应用中,很多函数的解析式难以求得,因此需要使用数值积分方法来近似计算。
Matlab是一种常用的数值计算软件,其中包含了许多数值积分的函数。
下面介绍几种常见的数值积分方法及其在Matlab中的实现。
1.矩形法矩形法是一种简单粗略的数值积分方法,它将被积函数在区间上近似为一个常数,并将该常数乘以区间长度作为近似定积分的结果。
Matlab中使用的函数为:integral(@(x)f(x),a,b)其中f(x)为被积函数,a和b为积分区间上下限。
2.梯形法梯形法将被积函数在区间上近似为一个线性函数,并将该线性函数与x轴围成的梯形面积作为近似定积分的结果。
Matlab中使用的函数为:trapz(x,y)其中x和y均为向量,表示被积函数在离散点上的取值。
3.辛普森法辛普森法将被积函数在区间上近似为一个二次函数,并将该二次函数与x轴围成的曲线面积作为近似定积分的结果。
Matlab中使用的函数为:quad(@(x)f(x),a,b)其中f(x)为被积函数,a和b为积分区间上下限。
以上三种数值积分方法都是基于离散化的思想,将连续的被积函数离散化为一组离散点上的取值,然后通过不同的近似方式计算定积分。
在实际应用中,不同的方法适用于不同类型的问题,需要根据具体情况选择合适的方法。
除了以上三种常见数值积分方法外,Matlab还提供了许多其他数值积分函数,如高斯求积、自适应辛普森法等。
在使用这些函数时,需要注意参数设置和误差控制等问题,以保证计算结果的准确性和可靠性。
总之,在进行数值计算时,数值积分是一种非常重要且常用的方法。
Matlab提供了丰富而强大的数值积分函数库,可以方便地进行各种类型问题的求解。
数值分析MATLAB编程——数值积分法

数值分析MATLAB编程——数值积分法1、调用函数--f.Mfunction y=f(x)%------------------------------------------------------------函数1 y=sqrt(4-sin(x)*sin(x));%------------------------------------------------------------函数2 %y=sin(x)/x;%if x==0% y=0;%end%------------------------------------------------------------函数3 %y=exp(x)/(4+x*x);%------------------------------------------------------------函数4 %y=(log(1+x))/(1+x*x);2、复合梯形公式--tixing.M%复合梯形公式clear alla=input('请输入积分下限:');b=input('请输入积分上限:');n=input('区间n等分:');h=(b-a)/n;x=a:h:b;T=0;for k=1:n;T=0.5*h*(f(x(k))+f(x(k+1)))+T;endT=vpa(T,8)3、复合Simpson公式--simpson.M%复合Simpson公式clear alla=input('请输入积分下限:');b=input('请输入积分上限:');n=input('区间n等分:');h=(b-a)/n;x=a:h:b;S=0;for k=1:n;xx=(x(k)+x(k+1))/2;S=(1/6)*h*(f(x(k))+4*f(xx)+f(x(k+1)))+S;endS=vpa(S,8)4、Romberg算法--romberg.M%Romberg算法clear alla=input('请输入积分下限:');b=input('请输入积分上限:');n=input('区间n等分:');num=0:n;R=[num'];h=b-a;T=h*(f(a)+f(b))/2;t(1)=T;for i=2:n+1;u=h/2;H=0;x=a+u;while x<b;H=H+f(x);x=x+h;endt(i)=(T+h*H)/2;T=t(i);h=u;endR=[R,t'];for i=2:n+1for j=n+1:-1:1if j>=it(j)=(4^(i-1)*t(j)-t(j-1))/(4^(i-1)-1);elset(j)=0;endendR=[R,t'];endR=vpa(R,8)R(n,n)5、变步长算法(以复化梯形公式为例)--tixing2.M%复合梯形公式,确定最佳步长format longclear alla=input('请输入积分下限:');b=input('请输入积分上限:');eps=input('请输入误差:');k=1;T1=(b-a)*(f(a)+f(b))/2;T2=(T1+(b-a)*(f((a+b)/2)))/2; while abs((T1-T2)/3)>=epsM=0;n=2^k;h=(b-a)/n;T1=T2;x=a:h:b;for i=1:n;xx=(x(i)+x(i+1))/2;M=M+f(xx);endT2=(T1+h*M)/2;k=k+1;endT=vpa(T2,8)n=2^k。
MATLAB数值积分及算例

6.2.3 被积函数由一个表格定义
(要求积分,但是函数没有直接给出,只是自己在 做实验时得到的一组相关联的数据)
在MATLAB中,对由表格形式定义的函数关系的求定积分问 题用trapz(X,Y)函数。其中向量X,Y定义函数关系Y=f(X)。
例4 用trapz函数计算定积分。
命令如下:
X=1:0.01:2.5; Y=exp(-X); trapz(X,Y)
例2 求定积分:
x sin x
dx
0 (1 cos x cos x)
(1) 被积函数文件fx.m。
function f=fx(x) f=x.*sin(x)./(1+cos(x).*cos(x));
(2) 调用函数quad8求定积分。
I=quad8('fx',0,pi)
例3
分别用quad函数和quad8函数求定积分
global ki;ki=0; I=dblquad('fxy',-2,2,-1,1) ki
6.2 数值积分的实现方法
6.2.1 变步长辛普生法
基于变步长辛普生法,MATLAB给出了quad函数来 求定积分。该函数的调用格式为:
[I, n] = quad('fname', a, b, tol, trace) 其中fname是被积函数名。a和b分别是定积分的下 限 和 上 限 。 tol 用 来 控 制 积 分 精 度 , 缺 省 时 取 tol=0.001。trace控制是否展现积分过程,若取非0则 展现积分过程,取0则不展现,缺省时取trace=0。 返回参数I即定积分值,n为被积函数的调用次数。
2.5 exdx
1
的近似值,并在相同的积分精度下,比较函数的调
matlab切比雪夫数值积分

一、介绍MATLAB 是一款用于高级数学和工程计算的软件,切比雪夫数值积分是一种常见的数值积分方法。
本文将介绍MATLAB中切比雪夫数值积分的原理和实现方式,并结合实例进行详细讲解。
二、切比雪夫数值积分原理切比雪夫数值积分是一种通过在特定区间上拟合切比雪夫多项式来进行数值积分的方法。
其原理是利用切比雪夫多项式的性质,将被积函数在给定区间上进行插值拟合,从而计算积分值。
切比雪夫数值积分的优点在于其在一定条件下可以达到很高的精度,尤其适用于非光滑函数的数值积分。
三、MATLAB中的切比雪夫数值积分实现在MATLAB中,可以利用内置的函数chebfun来实现切比雪夫数值积分。
chebfun是一个专门用于处理切比雪夫多项式的工具包,其中包含了丰富的函数和方法,可以方便地进行数值积分。
1. 定义被积函数需要定义被积函数,并将其转换为chebfun对象。
如果要计算函数f(x)在区间[a, b]上的积分值,可以使用以下代码将f(x)转换为chebfun对象:```matlabF = chebfun((x) f(x), [a, b]);```2. 计算积分值接下来,可以使用内置的积分函数sum来计算切比雪夫数值积分的结果。
可以使用以下代码计算chebfun对象F在区间[a, b]上的积分值:```matlabI = sum(F);```这样,就可以得到函数f(x)在区间[a, b]上的切比雪夫数值积分结果I。
四、实例演示接下来,我们通过一个具体的实例来演示MATLAB中切比雪夫数值积分的实现。
假设要计算函数f(x) = sin(x) 在区间[0, π] 上的积分值。
1. 定义被积函数定义函数f(x) 并转换为chebfun对象:```matlabF = chebfun((x) sin(x), [0, pi]);```2. 计算积分值使用sum函数计算积分值:```matlabI = sum(F);```通过上述步骤,就可以得到函数f(x)在区间[0, π]上的切比雪夫数值积分结果I。
三角形单元数值积分 matlab

三角形单元数值积分 matlab
在Matlab中进行三角形单元数值积分可以通过使用内置的函数
来实现。
一种常用的方法是使用`integral`函数来进行数值积分。
假设我们有一个三角形单元的函数f(x),我们可以使用以下步骤来
进行数值积分:
步骤1,定义三角形单元的函数f(x)。
这可能涉及到使用三角
形的顶点坐标和函数值来定义一个插值函数。
步骤2:使用`integral`函数对定义的函数f(x)进行数值积分。
例如,如果我们的函数是f(x),我们可以使用以下命令来进行数值
积分:
matlab.
integral(@(x) f(x), a, b)。
其中a和b是积分的下限和上限。
步骤3,根据需要,可以使用不同的数值积分方法,例如
'auto'(自动选择方法)、'tiled'(瓦片方法)或者
'ArrayValued'(对数组进行积分)等。
另外,如果需要对三角形单元进行数值积分,也可以考虑使用`trapz`函数进行梯形数值积分。
这可以通过将三角形边界上的点作为离散数据点来实现。
需要注意的是,在使用Matlab进行三角形单元数值积分时,需要确保对积分区域进行合适的离散化,以便进行数值计算。
同时,也需要考虑数值积分的精度和误差控制,以确保得到准确的积分结果。
总之,Matlab提供了丰富的数值积分函数和方法,可以方便地对三角形单元进行数值积分,用户可以根据具体情况选择合适的方法来进行数值积分计算。
matlab高斯数值积分

matlab高斯数值积分
在MATLAB 中,可以使用内置函数 integral 来进行高斯数值积分(Gaussian numerical integration)。
integral 函数使用自适应的高斯-库恩法(Gaussian-Kronrod method)来进行数值积分,可以处理一般的积分问题。
下面是 integral 函数的基本语法:
I = integral(fun, a, b)
其中:
•fun 是一个函数句柄,表示要进行积分的函数。
可以是已有的内置函数、自定义函数,或者用匿名函数表示。
• a 和 b 是积分的上下限。
以下是一个简单的示例,演示如何使用 integral 函数进行高斯数值积分:
在上述示例中,我们定义了一个函数 f,并将其作为参数传递给 integral 函数,然后指定积分的上下限。
最后,通过调用 integral 函数进行数值积分,并将结果存储在变量 I 中。
最后便可打印输出 I 显示积分结果。
请注意,integral 函数提供了更多的选项来调整数值积分的
精度和计算参数,如 'AbsTol'、'RelTol'、'MaxIntervalCount' 等。
可以根据具体的需求进行设置。
使用 integral 函数可以方便地进行高斯数值积分,但在处理特定问题时还需注意数值积分的误差控制和积分函数的光滑性,以确保得到精确的结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验10 数值积分实验目的:1.了解数值积分的基本原理; 2.熟练掌握数值积分的MATLAB 实现; 3.会用数值积分方法解决一些实际问题。
实验内容:积分是数学中的一个基本概念,在实际问题中也有很广泛的应用。
同微分一样,在《微积分》中,它也是通过极限定义的,由于实际问题中遇到的函数一般都以列表形式给出,所以常常不能用来直接进行积分。
此外有些函数虽然有解析式,但其原函数不是初等函数,所以仍然得不到积分的精确值,如不定积分⎰10 d sin x x x。
这时我们一般考虑用数值方法计算其近似值,称为数值积分。
10.1 数值微分简介设函数()y f x =在*x 可导,则其导数为hx f h x f x f h )()(lim )(**0*-+='→ (10.1)如果函数()y f x =以列表形式给出(见表10-1),则其精确值无法求得,但可由下式求得其近似值hx f h x f x f )()()(***-+≈' (10.2)表 10-1一般的,步长h 越小,所得结果越精确。
(10.2)式右端项的分子称为函数()y f x =在*x 的差分,分母称为自变量在*x 的差分,所以右端项又称为差商。
数值微分即用差商近似代替微商。
常用的差商公式为:000()()()2f x h f x h f x h +--'≈(10.3)hy y y x f 243)(2100-+-≈' (10.4)hy y y x f nn n n 234)(12+-≈'-- (10.5)其误差均为2()O h ,称为统称三点公式。
10.2 数值微分的MATLAB 实现MATLAB 提供了一个指令求解一阶向前差分,其使用格式为: dx=diff(x) 其中x 是n 维数组,dx 为1n -维数组[]21321,,,n x x x x x x ---,这样基于两点的数值导数可通过指令diff(x)/h 实现。
对于三点公式,读者可参考例1的M 函数文件diff3.m 。
例1 用三点公式计算()y f x =在=x 1.0,1.2,1.4处的导数值,()f x 的值由下表给解:建立三点公式的M 函数文件diff3.m 如下:function f=diff3(x,y) n=length(x);h=x(2)-x(1); f(1)=(-3*y(1)+4*y(2)-y(3))/(2*h); for j=2:n-1f(j)=(y(j+1)-y(j-1))/(2*h); endf(n)=(y(n-2)-4*y(n-1)+3*y(n))/(2*h);在MATLAB 指令窗中输入指令:x=[1.0,1.1,1.2,1.3,1.4];y=[0.2500,0.2268,0.2066,0.1890,0.1736];diff3(x,y)运行得各点的导数值为:-0.2470,-0.2170,-0.1890,-0.1650,-0.0014。
所以()y f x =在=x 1.0,1.2,1.4处的导数值分别为-0.2470,-0.1890和-0.0014。
对于高阶导数,MATLAB 提供了几个指令借助于样条函数进行求导,详细使用步骤如下: step1:对给定数据点(x,y ),利用指令pp=spline(x,y),获得三次样条函数数据pp ,供后面ppval 等指令使用。
其中,pp 是一个分段多项式所对应的行向量,它包含此多项式的阶数、段数、节点的横坐标值和各段多项式的系数。
step2:对于上面所求的数据向量pp ,利用指令[breaks,coefs,m,n]=unmkpp(pp)进行处理,生成几个有序的分段多项式pp 。
step3:对各个分段多项式pp 的系数,利用函数ppval 生成其相应导数分段多项式的系数,再利用指令mkpp 生成相应的导数分段多项式step4:将待求点xx 代入此导数多项式,即得样条导数值。
上述过程可建立M 函数文件ppd.m 实现如下:function dy=ppd(pp)[breaks,coefs,m]=unmkpp(pp);for i=1:mcoefsm(i,:)=polyder(coefs(i,:)); enddy=mkpp(breaks,coefsm);于是,如果已知节点处的值x,y ,可用下面指令计算xx 处的导数dyy :pp=spline(x,y),dy=ppd(pp);dyy=ppval(dy,xx);例2 基于正弦函数sin y x 的数据点,利用三点公式和三次样条插值分别求导,并与解析所求得的导数进行比较。
解:编写M 脚本文件bijiao.m 如下:h=0.1*pi;x=0:h:2*pi;y=sin(x); dy1=diff3(x,y);pp=spline(x,y);dy=ppd(pp);dy2=ppval(dy,x); z=cos(x);error1=norm(dy1-z),error2=norm(dy2-z) plot(x,dy1,'k:',x,dy2,'r--',x,z,'b')运行得结果为:error1 =0.0666,error2 =0.0025,生成图形见图10.1。
图10.1 三点公式、三次样条插值与解析求导比较图显然利用三次样条插值求导所得误差比三点公式求导小很多,同时由图2.15可知利用三次样条插值求导所得曲线与解析求导曲线基本重合,而三点公式在极值点附近和两个端点附近误差较大,其它点吻合的较好。
10.3 应用示例:湖水温度变化问题问题:湖水在夏天会出现分层现象,其特点是接近湖面的水的温度较高,越往下水的温度越低。
这种现象会影响水的对流和混合过程,使得下层水域缺氧,导致水生鱼类死亡。
对某个湖的水温进行观测得数据见表10-2。
表10-2 某湖的水温观测数据深度(m ) 0 2.3 4.9 9.1 13.7 18.3 22.9 27.2 温度(℃)22.822.822.820.613.911.711.111.1试找出湖水温度变化最大的深度。
1.问题的分析湖水的温度可视为关于深度的函数,于是湖水温度的变化问题便转化为温度函数的导数问题,显然导函数的最大绝对值所对应的深度即为温度变化最大的深度。
对于给定的数据,可以利用数值微分计算各深度的温度变化值,从而得到温度变化最大的深度,但考虑到所给的数据较少,由此计算的深度不够精确,所以采用插值的方法计算加密深度数据的导数值,以得到更准确的结果。
2.模型的建立及求解记湖水的深度为h (m ),相应的温度为T (℃),且有)(h T T =,并假定函数)(h T 可导。
对给定的数据进行三次样条插值,并对其求导,得到)(h T 的插值导函数;然后将给定的深度数据加密,搜索加密数据的导数值的绝对值,找出其最大值及其相应的深度,相应的MATLAB 指令如下:h=[0 2.3 4.9 9.1 13.7 18.3 22.9 27.2];T=[22.8 22.8 22.8 20.6 13.9 11.7 11.1 11.1]; hh=0:0.1:27.2;pp=spline(h,T);dT=ppd(pp);dTT=ppval(dT,hh); [dTTmax,i]=max(abs(dTT)),hh(i) plot(hh,dTT,'b',hh(i),dTT(i),'r.'),grid on运行得导函数绝对值的最大值点为:h =11.4,最大值为1.6139,即湖水在深度为11.4m 时温度变化最大,如图10.2所示(黑点为温度变化最大的点)。
图10.2 湖水温度变化曲线图10.4 数值积分简介考虑定积分()d baf x x ⎰(10.6)如果被积函数()f x 是以列表形式给出,则其求解思想同数值微分类似,即用逼近多项式()n P x 近似地代替被积函数()f x ,然后计算积分()d bn aP x x ⎰,得(10.6)式的近似值;如果被积函数的原函数不是初等函数,则将积分区间进行细分,对每个小区间,用一个近似函数代替被积函数()f x ,然后积分得(10.6)式的近似值。
这两种类型最终都可归结为函数()f x 在节点k x 上的函数值()k f x 的某种线性组合,即下面数值求积公式:()d ()nbk k ak I f x x A f x ==≈∑⎰ 或 (10.7)[]0()d ()nbk k ak f x x A f x R f ==+∑⎰(10.8)其中[]R f 为截断误差。
此误差可用代数精度衡量,代数精度越高,误差越小;反之误差越大。
代数精度是用来衡量数值积分公式近似程度的办法,如果)(x f 是一个次数不超过m 的代数多项式,(10.7)式等号成立;而当)(x f 是一个1+m 次多项式时,(10.7)式不能精确成立,则称(10.7)式的代数精度为m 。
选取不同的近似函数,可产生不同的数值求积公式,常见的有:梯形公式、辛普森公式和高斯公式。
10.5 数值积分的MATLAB 实现MATLAB 提供了下面几个函数计算积分,其使用格式分别为:(1)trapz(x) 采用梯形公式计算积分(1=h ),x 为),,1,0(n k f k = (2)quad('fun',a,b,tol) 采用自适应Simpson 法计算积分(3)quadl('fun',a,b,tol) 采用自适应Gauss-Lobatto 法计算积分 其中fun 为被积函数;tol 是可选项,表示绝对误差,a ,b 为积分的上、下限。
例1分别利用梯形公式、Simpson 公式和Gauss-Lobatto 法计算⎰+12d 1x x ,并与其精确值比较。
解:先对积分作符号运算,然后将其计算结果转换为数值型,再将其与这三种方法求得的数值解比较,其MATLAB 指令为:syms xxz0=simple(int('sqrt(1+xx^2)',0,1)) z=double(z0);z=vpa(z,8) x=0:0.01:1;y=sqrt(1+x.^2);z1=trapz(y)*0.01;z1=vpa(z1,8),err1=z-z1;err1=vpa(err1,8)z2=quad('sqrt(1+x.^2)',0,1);z2=vpa(z2,8),err2=z-z2;err2=vpa(err2,8) z3=quadl('sqrt(1+x.^2)',0,1);z3=vpa(z3,8),err3=z-z3;err3=vpa(err3,8)运行得精确值为=--))12ln(2(211.1477936,三种公式计算得数值积分值分别为1.1477995,1.1477935和1.1477936,其相应误差分别为-.59e-5,.1e-6和0.,由三者误差可见,Gauss-Lobatto 法计算最为精确,Simpson 公式次之,梯形公式最差,但它也能精确到小数点后5位数。