(完整版)(数值积分与微分的MATLAB命令)
MATLAB_简介(5)MATLAB数值积分与微分

二重积分dblquad()与三重积分
0
2
[ y sin(x ) x cos(y )]dxdy
fun=inline('y*sin(x)+x*cos(y)')
Q=dblquad(fun,pi,2*pi,0,pi) Q = -9.8698 [x,y]=meshgrid(pi:.1:2*pi,0:.1:pi); z=fun(x,y); mesh(x,y,z)
>> plot(x,y,'o',x,y)
>> title('y(x) data plot') >> ylabel('y(x)'), xlabel('x') >> dy=diff(y)./diff(x); >> xd=x(1:length(x)-1); >> plot(xd,dy) >> title('Approximate derivative using diff') >> ylabel('dy/dx'), xlabel('x')
注意二者皆以后向差分计算且数据点只剩 4 个 而不是5个。而 dy/dx 的 数值微分则为 dy/dx=diff(y)./diff(x)。 因此要计算下列多项式在 [-4, 5] 区间的微分
>> x=linspace(-4,5); % 产生100个x的离散点
>> p=[1 -3 -11 27 10 -24]; %被积函数各项的系数
%函数计算的次数n
q= -0.4605 n= 53
再来看一个积分式
matlab中积分的命令

matlab中积分的命令Matlab中有多种命令可以用于数值积分,本文将介绍其中几个常用的积分命令,包括quad、quadl、quadgk和integral。
这些命令可以用于一维和多维积分,可以求解定积分和非定积分。
一、quad命令quad命令用于求解一维定积分,其语法为:Q = quad(fun,xmin,xmax)其中fun为要积分的函数句柄,xmin和xmax为积分的下限和上限。
quad命令使用自适应的数值积分方法,可以在较高的精度下求解积分。
二、quadl命令quadl命令也用于求解一维定积分,其语法为:Q = quadl(fun,xmin,xmax)quadl命令使用高斯-勒让德求积法,可以在较高的精度下求解积分。
与quad命令相比,quadl命令在处理某些特定类型的函数时更为准确和稳定。
三、quadgk命令quadgk命令用于求解一维非定积分,其语法为:Q = quadgk(fun,xmin,xmax)quadgk命令使用高斯-科特斯求积法,可以在较高的精度下求解非定积分。
与quad命令和quadl命令相比,quadgk命令对积分区间的长度不敏感,适用于各种类型的函数。
四、integral命令integral命令用于求解一维定积分和非定积分,其语法为:Q = integral(fun,xmin,xmax)integral命令根据输入的积分区间长度自动选择合适的数值积分方法,可以在较高的精度下求解积分。
与quad命令、quadl命令和quadgk命令相比,integral命令更加智能化,可以根据积分函数的特点自动调整积分算法。
除了以上介绍的命令外,Matlab还提供了其他一些用于数值积分的命令,如dblquad、triplequad和quad2d等。
这些命令可以用于求解二维和多维积分,适用于更复杂的问题。
在使用这些积分命令时,需要注意以下几点:1. 积分区间的选择:根据积分函数的特点选择合适的积分区间,以确保求解的准确性和稳定性。
(完整word版)matlab符号积分和微分等等

教案
的MATLAB命令。
例6.26 创建符号矩阵.
>> e=[1 3 5;2 4 6;7 9 11]; %建立数值矩阵
>〉m=sym(e)%创建符号矩阵
m =
[1, 3,5]
[ 2,4, 6]
[ 7, 9,11]
在命令窗口的显示中,数值矩阵只显示元素的数值,而符号矩阵的每行元素放在一对方括号内;在工作空间窗口显示的变量图标两者也不同,数值矩阵的图标为,符号矩阵(也称为符号对象)的图标为,二者很容易区分。
2、符号表达式的基本运算函数
符号表达式的运算与普通数值运算的方式不同,它的运算结果是符号表达式或符号矩阵。
在MATLAB运算中,浮点运算速度最快,而符号计算占用时间和内存都比较多,但它的计算结果最精确.在默认情况下,当用函数sym生成符号变量后,MATLAB将对这些变量进行符号计算。
在MATLAB符号计算工具箱中提供来了很多函数用于符号计算。
下面将介绍一些常用的符号运算函数,如表6-6所示。
表6-6 常用的符号函数
函数格式说明
symadd(S1,S2)符号表达式S1加上符号表达式S2
symsub(S1,S2)符号表达式S1减去符号表达式S2
symmul(S1,S2)符号表达式S1乘上符号表达式S2
symdiv(S1,S2)符号表达式S1除符号表达式S2
sympow(S,p)符号表达式S1的p次幂,p可以是表达式
例6.27 计算表达式x3—1与表达式x-1的和、差、积、商和乘方。
>> syms x。
第7章 MATLAB数值积分与微分

补充比较:
• 求:
s
1
2
1 0
x dxdy
y
• • • • •
(1)符号计算法 syms x y s=vpa(int(int(x^y,x,0,1),y,1,2)) s= .40546510810816438197801311546432
• • • • • •
(2)数值积分法 format long s_n=dblquad(@(x,y)x.^y,0,1,1,2) s_n = 0.40546626724351
M t , y 为矩阵
3.全隐式常微分方程
f t , y, y 0
7.2.1 数值微分的实现 在MATLAB中,没有直接提供求数值导数的 函数,只有计算向前差分的函数diff,其调 用格式为: DX=diff(X):计算向量X的向前差分, DX(i)=X(i+1)-X(i),i=1,2,…,n-1。 DX=diff(X,n):计算X的n阶向前差分。例如, diff(X,2)=diff(diff(X))。 DX=diff(A,n,dim):计算矩阵A的n阶差分, dim=1时(缺省状态),按列计算差分;dim=2, 按行计算差分。
例7-5 计算二重定积分 (1) 建立一个函数文件fxy.m: function f=fxy(x,y) global ki; ki=ki+1; %ki用于统计被积函数的调用次数 f=exp(-x.^2/2).*sin(x.^2+y); (2) 调用dblquad函数求解。 global ki;ki=0; I=dblquad('fxy',-2,2,-1,1) ki I= 1.57449318974494 ki = 1038
MATLAB编程与工程应用——第8章 MATLAB数值积分与微分

exp81mmatlab数值积分与微分二数值积分的实现方法只是tol的缺省值取106该函数可以更精确地求出定积分的值且一般情况下函数调用的步数明显小于quad函数从而保证能以更高的效率求出所需的定积分值
MATLAB数值积分与微分 第8章 MATLAB数值积分与微分
8.1 数值积分 8.2 数值微分
第8章
第8章 MATLAB数值积分与微分
二、数值积分的实现方法
2.牛顿-柯特斯法 牛顿- [I,n]=quadl('fname',a,b,tol,trace) 其中参数的含义和quad函数相似, 只是tol的缺省值取10-6。 该函数可以更精确地求出定积分的值,且一般情况下函 数调用的步数明显小于quad函数,从而保证能以更高的 效率求出所需的定积分值。 例8.2 求funx在[0,1]上的定积分。 exp8_2.m funx在[0,1]上的定积分。 上的定积分
第8章
MATLAB数值积分与微分
8.1 数值积分
二、数值积分的实现方法
1.变步长辛普生法 [I,n]=quad('fname',a,b,tol,trace) fname是被积函数名。 a和b分别是定积分的下限和上限。 tol用来控制积分精度,缺省时取tol=0.001。 trace控制是否展现积分过程,若取非0则展现积分过程, 取0则不展现,缺省时取trace=0。 I为定积分值 n为被积函数的调用次数。 例8.1 求funx在[0,1]上的定积分。 exp8_1.m funx在[0,1]上的定积分。 上的定积分
第8章
exp8_3.m
MATLAB数值积分与微分
8.1 数值积分
三、二元函数重积分的数值计算
数值积分与数值微分matlab

2 数值微分
2.1 数值差分与差商
任意函数f(x)在x点的导数是通过极限定义的:
f ( x h) f ( x ) f ( x) lim h 0 h f ( x ) f ( x h) f ( x) lim h 0 h f ( x h / 2) f ( x h / 2) f ( x) lim h 0 h
( x2k , f 2k ), ( x2k 1, f 2k 1 ), ( x2k 2 , f 2k 2 ) k 0,1, , m 1
数值积分的实现方法
1.变步长辛普生法 基于变步长辛普生法,MATLAB给出了quad 函数来求定积分。该函数的调用格式为: [I,n]=quad('fun',a,b,tol,trace) 其中fun是被积函数名。a和b分别是定积分 的下限和上限。tol用来控制积分精度,缺 省时取tol=10-6。返回参数I即定积分值,n为被积函数
1
2
x2 / x
sin( x y)dxdy
2
clear • f=@(x,y)(exp(-x.^2/2).*sin(x.^2+y)); • I=dblquad(f,-2,2,-1,1) I= 1.5745
1 2
I
1 2
e
x2 / x
sin( x y)dxdy
2
例6 计算三重定积分 命令如下: fxyz=@(x,y,z)(4*x.*z.*exp(-z.*z.*y-x.*x)); triplequad(fxyz,0,pi,0,pi,0,1,1e-7) ans= 1.7328
数值积分
• • • •
z1=trapz(x,y1); z2=trapz(x,y2); z=z2-z1; area=(z/(18*18))*40*40
利用MATLAB求解微分方程数值解的相关命令

利用MATLAB求解微分方程数值解的相关命令利用MATLAB求解微分方程数值解的相关命令1 指令函数及调用格式1.1 指令函数:dsolve注:此指令函数用于求解微分方程(组)的符号(解析)解。
1.2 单变量常微分方程的调用格式:f=dsolve(‘eq’, ‘cond’, ‘v’)注:此调用格式用于求符号微分方程的通解或特解,其中eq代表微分方程,cond代表微分方程的初始条件(若缺少,则求微分方程的通解),v为指定自变量(如未指定,系统默认t为自变量)。
1.3 常微分方程组的调用格式:f=dsolve(‘eq1’, ‘eq2’,…, ‘eqn’, ‘cond1’, ‘cond2’,…, ‘condn’, ‘v1’, ‘v2’, …, ‘vn’)注:此调用格式用于求解符号常微分方程组。
其中eq1,...,eqn 代表n个微分方程构成的微分方程组;cond1,...,condn代表微分方程组的初始条件(若缺少,则求微分方程组的通解),v1 , (v)为指定自变量(如未指定,系统默认t为自变量)。
1.4 记述规定:MATLAB中,用D(注意:一定是大写)记述微分方程中函数的导数。
当y是因变量时,用‘Dny’表示‘y的n阶导数’。
如,Dy表示y的一阶导数y ',Dny表示y的n阶导数。
Dy(0)=5表示y ' (0)=5。
D3y+D2y+Dy-x+5=0表示微分方程y'''+y''+y'-x+5=0。
2 实例演示例1、求微分方程2'22xy xy xe-+=的通解命令输入:>> y=dsolve('Dy+2*x*y=2*x*exp(-x^2)','x')得结果为:y =(x^2+C1)*exp(-x^2)若输入命令:>>y=dsolve('Dy+2*x*y=2*x*exp(-x^2)')则系统默认t为自变量,而把真正的自变量x当作常数处理,把y 当作t的函数,得到错误的结果:y =exp(-2*x*t-x*(x-2*t))+exp(-2*x*t)*C1例2、求微分方程22420250d x dxxdt dt-+=的通解命令输入:>> x=dsolve('4*D2x-20*Dx+25*x=0')得结果为:x =C1*exp(5/2*t)+C2*exp(5/2*t)*t%系统默认t 为自变量例3、求微分方程'''54100y y y +-+=在条件'006,4x x y y ====下的特解。
(完整版)数值积分及matlab实现

建立数值积分公式的途径比较多, 其中最常用的
有两种:
(1)由积分中值定理可知,对于连续函数f(x),在
积分区间[a,b]内存在一点ξ,使得
分,因此将 选(x取) 为插值多项式, 这样f(x)的积分就
可以用其插值多项式的积分来近似代替
2.2 插值求积公式
设已知f(x)在节点 xk (k 0,1, , n) 有函数值 f (xk ) ,作n次拉格朗日插值多项式
式中
n
P(x) f (xk )lk (x)
k 0
lk (x)
n j0
b
n
f (x)dx
a
Ak f (xk )
k 0
为插值型求积公式的充要条件是公式
(
x)dx
时,则称求积公式为插值
设插值求积公式的余项为 R( f ) ,由插值余项定理得
R( f ) b f (x) P(x)dx b f (n1) ( ) (x)dx
a
a (n 1)!
其中 a, b
当f(x)是次数不高于n的多项式时,有 f (n1) (x) 0 R( f ) =0,求积公式(4)能成为准确的等式。由于闭区 间[a,b]上的连续函数可用多项式逼近,所以一个 求积公式能对多大次数的多项式f(x)成为准确等式, 是衡量该公式的精确程度的重要指标,为此给出以 下定义。
数值积分与微分
2009.4.22
数值积分和数值微分
1 引言 我们知道,若函数f(x)在区间[a,b]上连续且其原
函数为F(x),则可用Newton-Leibnitz公式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0.9008 n=
77
例题2求定积分
1 ex2 dx
1
>>quad(inline(‘exp(-x.^2)’),-1,1,0.5e-4) 或者 quad(@(x)exp(-x.^2),-1,1,0.5e-4)
7.triplequad 用于计算长方体区域上的三重积分
例 计算
dy
1 4xzex2 yz2 dzdydx
0
00
>>fun=@(x,y,z)4*x.*z.*exp(-x.^2-y.*z.^2)
>>S=triplequad(fun,0,pi,0,pi,0,1)
8.int 符号函数积分
例6 x=-1:0.1:1; y=exp(-x.^2); trapz(x,y)
4.自适应Lobatto方法 quadl命令适用于光滑函数, quadl调用被积函
数的次数明显少于quad命令,而且精度比quad函 数更高,其调用格式与quad一样 [I,n]=quad('fname',a,b,tol,trace)
8.1.2 数值积分的实现方法 1.变步长辛普生法(自适应simpson积分法) 基于变步长辛普生法,MATLAB给出了quad函数
来求定积分。该函数的调用格式为:
[I,n]=quad('fname',a,b,tol,trace)
其中fname是被积函数名。a和b分别是定积分的下 限和上限。tol用来控制积分精度,缺省时取
2.牛顿-柯特斯法 基于牛顿-柯特斯法,MATLAB给出了
quad8函数来求定积分。该函数的调用格式 为:
[I,n]=quad8('fname',a,b,tol,trace) 其中参数的含义和quad函数相似,只是tol的
缺省值取10-6。 该函数可以更精确地求出 定积分的值,且一般情况下函数调用的步 数明显小于quad函数,从而保证能以更高 的效率求出所需的定积分值。
0.28579444254754 n=
33
3.非函数表达式梯形积分(被积函数由一个表格定义) 在MATLAB中,对由表格形式定义的函数关系的求定积
分问题用trapz(X,Y)函数。其中向量X,Y定义函数关系 Y=f(X)。trapz(X,Y)采用梯形法计算Y在X点上的积分。 例5 用trapz函数计算定积分。 命令如下: X=1:0.01:2.5; Y=exp(-X); %生成函数关系数据向量 trapz(X,Y)
调用函数quad求定积分: format long; fx=inline('exp(-x)'); [I,n]=quad(fx,1,2.5,1e-10) I=
0.28579444254766 n=
65
调用函数quad8求定积分: format long; fx=inline('exp(-x)'); [I,n]=quad8(fx,1,2.5,1e-10) I=
例3 求定积分。 (1) 被积函数文件fx.m。 function f=fx(x) f=x.*sin(x)./(1+cos(x).*cos(x)); (2) 调用函数quad8求定积分。 I=quad8('fx',0,pi) I=
2.4674
例4 分别用quad函数和quad8函数求定积分的 近似值,并在相同的积分精度下,比较函数 的调用次数。
的二重定积分。参数tol,trace的 用法与函数quad完全相同。
例 计算二重积分
1
dy
2
x2
e2
sin(x2
y)dx
1 2
>>dblquad(' exp(-x.^2/2).*sin(x.^2+y)',-2,2,-1,1)
6.quad2d 平面区域二重积分,可以做变上 下限积分(高版本版才有此命令)
5.quadgk
对振荡的被积函数最有效,支持无限区间积分 (高版本版才有此命令)
8.1.3 重积分的数值求解 使用MATLAB提供的dblquad函数
就可以直接求出上述二重定积分的 数值解。该函数的调用格式为:
I=dblquad(f,a,b,c,d,tol,trace) 该函数求f(x,y)在[a,b]×[c,d]区域上
第8章 MATLAB数值积分与微分 8.1 数值积分 8.2 数值微分
8.1 数值积分 8.1.1 数值积分基本原理
求解定积分的数值方法多种多样,如简单 的梯形法、辛普生(Simpson)•法、牛顿-柯 特斯(Newton-Cotes)法等都是经常采用的方 法。它们的基本思想都是将整个积分区间 [中 为a,求xb1]=分和a,成问xn题n个+。1=子b区。间这[样xi,求xi+定1],积i分=1问,2,题…就,n分,解其
tol=10e-6。trace控制是否展现积分过程,若取非0
则展现积分过程,取0则不展现,缺省时取 trace=0。返回参数I即定积分值,n为被积函数的调用次
数。
例1 求定积分
3 e0.5x sin(x )dx
0
6
(1) 建立被积函数文件fesin.m。 function f=fesin(x) f=exp(-0.5*x).*sin(x+pi/6);