MATLAB数值积分微分

合集下载

Matlab中常用的数值计算方法

Matlab中常用的数值计算方法

Matlab中常用的数值计算方法数值计算是现代科学和工程领域中的一个重要问题。

Matlab是一种用于数值计算和科学计算的高级编程语言和环境,具有强大的数值计算功能。

本文将介绍Matlab中常用的数值计算方法,包括数值积分、数值解微分方程、非线性方程求解和线性方程组求解等。

一、数值积分数值积分是通过数值方法来近似计算函数的定积分。

在Matlab中,常用的数值积分函数是'quad'和'quadl'。

'quad'函数可以用于计算定积分,而'quadl'函数可以用于计算无穷积分。

下面是一个使用'quad'函数计算定积分的例子。

假设我们想计算函数f(x) = x^2在区间[0, 1]上的定积分。

我们可以使用如下的Matlab代码:```f = @(x) x^2;integral = quad(f, 0, 1);disp(integral);```运行这段代码后,我们可以得到定积分的近似值,即1/3。

二、数值解微分方程微分方程是描述自然界各种变化规律的数学方程。

在科学研究和工程应用中,常常需要求解微分方程的数值解。

在Matlab中,可以使用'ode45'函数来求解常微分方程的数值解。

'ode45'函数是采用基于Runge-Kutta方法的一种数值解法。

下面是一个使用'ode45'函数求解常微分方程的例子。

假设我们想求解一阶常微分方程dy/dx = 2*x,初始条件为y(0) = 1。

我们可以使用如下的Matlab代码:```fun = @(x, y) 2*x;[x, y] = ode45(fun, [0, 1], 1);plot(x, y);```运行这段代码后,我们可以得到微分方程的数值解,并绘制其图像。

三、非线性方程求解非线性方程是指方程中包含非线性项的方程。

在很多实际问题中,我们需要求解非线性方程的根。

matlab微分与积分

matlab微分与积分
quadl函数来求定积分。该函数的调用格式 为:
[I,n]=quadl('fname',a,b,tol,trace) 其中参数的含义和quad函数相似,只是用高
阶自适应递推法,该函数可以更精确地求 出定积分的值,且一般情况下函数调用的 步数明显小于quad函数,从而保证能以更 高的效率求出所需的定积分值。
(3) fft(X,[],dim)或fft(X,N,dim):这是对于矩 阵而言的函数调用格式,前者的功能与 FFT(X)基本相同,而后者则与FFT(X,N) 基本相同。只是当参数dim=1时,该函数 作用于X的每一列;当dim=2时,则作用于 X的每一行。
数值微积分以及数值分析
2020/5/17
1
数值微分
数值微分的实现 两种方式计算函数f(x)在给定点的数值导数:1.用多项式或
者样条函数 2. 利用数据的有限差分
在MATLAB中,没有直接提供求数值导数的函数,只有计 算向前差分的函数diff,其调用格式为:
DX=diff(X):计算向量X的向前差分,DX(i)=X(i+1)-X(i), i=1,2,…,n-1。
I=
2.4674
2020/5/17
8
3.Trapz : 计算梯形面积的和来计算定积分 在MATLAB中,对由表格形式定义的函数关系的求定积分
问题用trapz(X,Y)函数。其中向量X,Y定义函数关系 Y=f(X)。
例 用trapz函数计算定积分。 命令如下:
X=1:0.01:2.5; Y=exp(-X); %生成函数关系数据向量 trapz(X,Y) ans =
• Help dell2
2020/5/17
3
数值积分
数值积分基本原理 求解定积分的数值方法多种多样,如简单 的梯形法、辛普生(Simpson)•法、牛顿- 柯特斯(Newton-Cotes)法等都是经常采用 的方法。它们的基本思想都是将整个积分 区i积=1间分,2[问,a…,题b,n]分就,成分其n解中个为x子1=求区a和,间问x[nx+题1i,=x。bi+。1],这样求定

Matlab中常用的积分和微分算法解析

Matlab中常用的积分和微分算法解析

Matlab中常用的积分和微分算法解析积分和微分是数学中重要的概念和工具,广泛应用于科学、工程和计算领域。

在Matlab中,提供了丰富的积分和微分算法,可以方便地进行数值计算和符号计算。

在本文中,我们将解析Matlab中常用的积分和微分算法,并探讨其应用。

一、数值积分算法数值积分是通过将求和转化为积分的方式,对函数在一定区间内的近似计算。

在Matlab中,有许多数值积分算法可供选择,包括梯形法则、辛普森法则和高斯求积法等。

1. 梯形法则梯形法则是一种基本的数值积分算法。

它将区间分成多个小梯形,并将每个小梯形的面积近似表示为梯形的面积,然后将这些面积相加得到最终的近似积分值。

在Matlab中,可以使用trapz函数来实现梯形法则的计算。

例如,对函数f(x)在区间[a, b]上进行积分,可以使用如下代码:```matlaba = 0;b = 1;x = linspace(a, b, 100);y = f(x);integral_value = trapz(x, y);```其中,linspace函数用于生成均匀分布的点,f(x)是待积分的函数。

trapz函数可以自动计算积分值。

2. 辛普森法则辛普森法则是一种更精确的数值积分算法。

它将区间分成多个小三角形,并将每个小三角形的面积近似表示为一个带有二次多项式的面积,然后将这些面积相加得到最终的近似积分值。

在Matlab中,可以使用quad函数来实现辛普森法则的计算。

例如,对函数f(x)在区间[a, b]上进行积分,可以使用如下代码:```matlaba = 0;b = 1;integral_value = quad(@f, a, b);```其中,@f表示函数句柄,quad函数可以自动计算积分值。

3. 高斯求积法高斯求积法是一种更高精度的数值积分算法。

它利用多个节点和权重,通过插值的方式来近似积分值。

在Matlab中,可以使用gaussquad函数来实现高斯求积法的计算。

MATLAB_简介(5)MATLAB数值积分与微分

MATLAB_简介(5)MATLAB数值积分与微分

二重积分dblquad()与三重积分

0

2
[ y sin(x ) x cos(y )]dxdy
fun=inline('y*sin(x)+x*cos(y)')
Q=dblquad(fun,pi,2*pi,0,pi) Q = -9.8698 [x,y]=meshgrid(pi:.1:2*pi,0:.1:pi); z=fun(x,y); mesh(x,y,z)
>> plot(x,y,'o',x,y)
>> title('y(x) data plot') >> ylabel('y(x)'), xlabel('x') >> dy=diff(y)./diff(x); >> xd=x(1:length(x)-1); >> plot(xd,dy) >> title('Approximate derivative using diff') >> ylabel('dy/dx'), xlabel('x')
注意二者皆以后向差分计算且数据点只剩 4 个 而不是5个。而 dy/dx 的 数值微分则为 dy/dx=diff(y)./diff(x)。 因此要计算下列多项式在 [-4, 5] 区间的微分
>> x=linspace(-4,5); % 产生100个x的离散点
>> p=[1 -3 -11 27 10 -24]; %被积函数各项的系数
%函数计算的次数n
q= -0.4605 n= 53
再来看一个积分式

数值积分与数值微分matlab

数值积分与数值微分matlab

2 数值微分
2.1 数值差分与差商
任意函数f(x)在x点的导数是通过极限定义的:
f ( x h) f ( x ) f ( x) lim h 0 h f ( x ) f ( x h) f ( x) lim h 0 h f ( x h / 2) f ( x h / 2) f ( x) lim h 0 h
( x2k , f 2k ), ( x2k 1, f 2k 1 ), ( x2k 2 , f 2k 2 ) k 0,1, , m 1
数值积分的实现方法
1.变步长辛普生法 基于变步长辛普生法,MATLAB给出了quad 函数来求定积分。该函数的调用格式为: [I,n]=quad('fun',a,b,tol,trace) 其中fun是被积函数名。a和b分别是定积分 的下限和上限。tol用来控制积分精度,缺 省时取tol=10-6。返回参数I即定积分值,n为被积函数

1
2
x2 / x
sin( x y)dxdy
2
clear • f=@(x,y)(exp(-x.^2/2).*sin(x.^2+y)); • I=dblquad(f,-2,2,-1,1) I= 1.5745
1 2
I
1 2

e
x2 / x
sin( x y)dxdy
2
例6 计算三重定积分 命令如下: fxyz=@(x,y,z)(4*x.*z.*exp(-z.*z.*y-x.*x)); triplequad(fxyz,0,pi,0,pi,0,1,1e-7) ans= 1.7328
数值积分
• • • •
z1=trapz(x,y1); z2=trapz(x,y2); z=z2-z1; area=(z/(18*18))*40*40

经典matlab数值积分与微分PPT培训课件

经典matlab数值积分与微分PPT培训课件

辛普森法
将积分区间划分为若干个等宽 的小区间,每个小区间上取抛 物线面积近似代替函数面积。
牛顿-莱布尼茨法
利用定积分的几何意义,通过 求和式来近似计算定积分的值 。
Matlab中的数值积分函数
quad
trapz
simpson
quadl
使用矩形法进行数值积 分。
使用梯形法进行数值积 分。
使用辛普森法进行数值 积分。
案例二
计算函数$f(x) = sin(x)$在区间 [0, π]的积分。
描述
使用Matlab的数值积分函数计 算函数$f(x) = sin(x)$在区间[0, π]的积分,并分析结果的准确性。
数值微分案例分析
案例一
计算函数$f(x) = x^3$在点x=2的导 数值。
描述
使用Matlab的数值微分函数(如diff 或gradient)计算函数$f(x) = x^3$ 在点x=2的导数值。
书籍推荐
《Matlab从入门到精通》、 《Matlab数值分析》等,适 合有一定基础的读者深入学 习。
Matlab的未来发展展望
云端化 随着云计算技术的发展,Matlab 可能会推出云端版本,让用户无 需安装软件即可使用Matlab的功 能。
可视化增强 Matlab在数据可视化方面具有优 势,未来可能会进一步增强其可 视化功能,提供更多样化的图表 和可视化效果。
截断误差
由于差分代替导数,会产生截断误差,这种误差的大小取决于差 分的阶数和步长。
舍入误差
由于计算机的浮点运算精度限制,会导致舍入误差,这种误差的 大小取决于计算机的浮点精度。
04
经典案例分析
数值积分案例分析
案例一
计算函数$f(x) = x^2$在区间 [0, 2]的积分。

(完整版)数值积分及matlab实现

(完整版)数值积分及matlab实现
将积分区间细分,在每一个小区间内用简单函 数代替复杂函数进行积分,这就是数值积分的思想, 用代数插值多项式去代替被积函数发f(x)进行积分 是本章讨论数值积分的主要内容。
建立数值积分公式的途径比较多, 其中最常用的
有两种:
(1)由积分中值定理可知,对于连续函数f(x),在
积分区间[a,b]内存在一点ξ,使得
分,因此将 选(x取) 为插值多项式, 这样f(x)的积分就
可以用其插值多项式的积分来近似代替
2.2 插值求积公式
设已知f(x)在节点 xk (k 0,1, , n) 有函数值 f (xk ) ,作n次拉格朗日插值多项式
式中
n
P(x) f (xk )lk (x)
k 0
lk (x)
n j0
b
n
f (x)dx
a
Ak f (xk )
k 0
为插值型求积公式的充要条件是公式
(
x)dx
时,则称求积公式为插值
设插值求积公式的余项为 R( f ) ,由插值余项定理得
R( f ) b f (x) P(x)dx b f (n1) ( ) (x)dx
a
a (n 1)!
其中 a, b
当f(x)是次数不高于n的多项式时,有 f (n1) (x) 0 R( f ) =0,求积公式(4)能成为准确的等式。由于闭区 间[a,b]上的连续函数可用多项式逼近,所以一个 求积公式能对多大次数的多项式f(x)成为准确等式, 是衡量该公式的精确程度的重要指标,为此给出以 下定义。
数值积分与微分
2009.4.22
数值积分和数值微分
1 引言 我们知道,若函数f(x)在区间[a,b]上连续且其原
函数为F(x),则可用Newton-Leibnitz公式

Matlab中的数值积分和微分方法

Matlab中的数值积分和微分方法

Matlab中的数值积分和微分方法在数学和工程领域,数值积分和微分是解决问题的常见方法之一。

而在计算机科学中, Matlab作为一种强大的数值计算软件,提供了许多数值积分和微分的函数,使得这两个问题的解决变得更加简单和高效。

本文将探讨 Matlab 中常用的数值积分和微分方法,包括不定积分、定积分、数值微分和高阶数值微分。

我们将逐一讨论这些方法的原理和使用方法,并展示一些实际的应用案例,以帮助读者更好地理解和应用这些技术。

一、不定积分不定积分是指求一个函数的原函数。

在 Matlab 中,我们可以使用 `int` 函数来实现不定积分的计算。

例如,如果我们想求解函数 f(x) = x^2 的不定积分,可以使用下面的代码:```syms x;F = int(x^2);```这里的 `syms x` 表示将 x 定义为一个符号变量,`int(x^2)` 表示求解函数 x^2 的不定积分。

得到的结果 F 将是一个以 x 为变量的符号表达式。

除了求解简单函数的不定积分外,Matlab 还支持求解复杂函数的不定积分,例如三角函数、指数函数等。

我们只需要将函数表达式作为 `int` 函数的参数即可。

二、定积分定积分是指求函数在一个闭区间上的积分值。

在 Matlab 中,我们可以使用`integral` 函数来计算定积分。

例如,如果我们想计算函数 y = x^2 在区间 [0, 1] 上的积分值,可以使用下面的代码:```y = @(x) x^2;result = integral(y, 0, 1);```这里的 `@(x)` 表示定义一个匿名函数,`integral(y, 0, 1)` 表示求解函数 y = x^2 在区间 [0, 1] 上的积分。

得到的结果 result 将是一个数值。

与不定积分类似,Matlab 还支持对复杂函数求解定积分,只需要将函数表达式作为 `integral` 函数的第一个参数,并指定积分的区间。

Matlab与工程计算 第七章 数值积分、微分

Matlab与工程计算 第七章  数值积分、微分
oad wind div = divergence(x,y,z,u,v,w); slice(x,y,z,div,[90 134],[59],[0]); shading interp daspect([1 1 1]) camlight
Xiamen University
Matlab and Engineering Calculation
dx=diff(f([x,3.01]))/0.01; %直接对f(x)求数值导数 gx=g(x); %求函数f的导函数g在假设点的导数
plot(x,dpx,x,dx,'.',x,gx, 'r-'); %作图
Xiamen University
Matlab and Engineering Calculation
f ' ( x) =
f ( x + h) − f ( x ) h
Xiamen University
Matlab and Engineering Calculation
例6-6 生成以向量V=[1,2,3,4,5,6]为基础的范得蒙矩阵,按列 进行差分运算。 命令如下: V=vander(1:6) DV=diff(V) %计算V的一阶差分
7.1.2 数值积分的实现方法(Quadrature)
1.自适应辛普生法 基于变步长辛普生法,MATLAB给出了quad函数来 求定积分。该函数的调用格式为: [I,n]=quad(fun,a,b,tol,trace) fun是被积函数名、句柄或内联函数对象; a和b分别是定积分的下限和上限; tol用来控制积分精度,缺省时取tol=10-6; trace控制是否展现积分过程,若取非0则展现积分过 程,取0则不展现,缺省时取trace=0 I即定积分值,n为被积函数的调用次数。

matlab中的微分方程的数值积分

matlab中的微分方程的数值积分

MATLAB是一种流行的数学软件,用于解决各种数学问题,包括微分方程的数值积分。

微分方程是许多科学和工程问题的数学描述方式,通过数值积分可以得到微分方程的数值解。

本文将介绍在MATLAB中如何进行微分方程的数值积分,以及一些相关的技巧和注意事项。

一、MATLAB中微分方程的数值积分的基本方法1. 常微分方程的数值积分在MATLAB中,常微分方程的数值积分可以使用ode45函数来实现。

ode45是一种常用的数值积分函数,它使用4阶和5阶Runge-Kutta 方法来求解常微分方程。

用户只需要将微分方程表示为函数的形式,并且提供初值条件,ode45就可以自动进行数值积分,并得到微分方程的数值解。

2. 偏微分方程的数值积分对于偏微分方程的数值积分,在MATLAB中可以使用pdepe函数来实现。

pdepe可以求解具有定解条件的一维和二维偏微分方程,用户只需要提供偏微分方程的形式和边界条件,pdepe就可以进行数值积分,并得到偏微分方程的数值解。

二、在MATLAB中进行微分方程数值积分的注意事项1. 数值积分的精度和稳定性在进行微分方程的数值积分时,需要注意数值积分的精度和稳定性。

如果数值积分的精度不够,可能会导致数值解的误差过大;如果数值积分的稳定性差,可能会导致数值解发散。

在选择数值积分方法时,需要根据具体的微分方程来选择合适的数值积分方法,以保证数值解的精度和稳定性。

2. 初值条件的选择初值条件对微分方程的数值解有很大的影响,因此在进行微分方程的数值积分时,需要选择合适的初值条件。

通常可以通过对微分方程进行分析,或者通过试验求解来确定合适的初值条件。

3. 数值积分的时间步长在进行微分方程的数值积分时,需要选择合适的时间步长,以保证数值积分的稳定性和效率。

选择时间步长时,可以通过试验求解来确定合适的时间步长,以得到最优的数值解。

三、MATLAB中微分方程数值积分的实例以下通过一个简单的例子来演示在MATLAB中如何进行微分方程的数值积分。

如何在MATLAB中进行数值计算

如何在MATLAB中进行数值计算

如何在MATLAB中进行数值计算1.基本数学操作:-加法、减法、乘法、除法:使用+、-、*、/操作符进行基本算术运算。

-幂运算:使用^或.^(点乘)操作符进行幂运算。

- 开平方/立方:可以使用sqrt(或power(函数进行开平方和立方运算。

2.矩阵操作:- 创建矩阵:可以使用矩阵构造函数如zeros(、ones(、rand(等创建矩阵。

- 矩阵运算:使用*操作符进行矩阵相乘,使用transpose(函数进行矩阵转置。

- 矩阵求逆和求解线性方程组:使用inv(函数求矩阵的逆,使用\操作符求解线性方程组。

3.数值积分和微分:- 数值积分:使用integral(函数进行数值积分。

可以指定积分函数、积分上下限和积分方法。

- 数值微分:使用diff(函数进行数值微分。

可以指定微分函数和微分变量。

4.解方程:- 一元方程:使用solve(函数可以解一元方程。

该函数会尝试找到方程的精确解。

- 非线性方程组:使用fsolve(函数可以求解非线性方程组。

需要提供初始值来开始求解过程。

-数值方法:可以使用牛顿法、二分法等数学方法来求解方程。

可以自定义函数来实现这些方法。

5.统计分析:- 统计函数:MATLAB提供了丰富的统计分析函数,如mean(、std(、var(等用于计算均值、标准差、方差等统计量。

- 直方图和密度估计:使用histogram(函数可以绘制直方图,并使用ksdensity(函数进行核密度估计。

- 假设检验:使用ttest(或anova(函数可以进行假设检验,用于比较多组数据之间的差异。

6.数值优化:- 非线性最小化:使用fminunc(函数可以进行非线性最小化。

需要提供目标函数和初始点。

- 线性规划:使用linprog(函数可以进行线性规划。

需要提供目标函数和限制条件。

- 整数规划:使用intlinprog(函数可以进行整数规划。

需要提供目标函数和整数约束。

7.拟合曲线:- 线性拟合:使用polyfit(函数进行线性拟合。

数值积分与微分MATLAB公式

数值积分与微分MATLAB公式

数值积分与微分实验目的:1)用matlab软件掌握梯形公式、辛普森公式和蒙特卡罗方法计算数值积分;2)通过实例学习用数值积分和数值微分解决实际问题。

实验内容:第一题:用梯形、辛普森和蒙特卡罗方法计算积分。

改变步长(对梯形),改变精度要求(对辛普森),改变随机点数目(对蒙特卡罗),进行比较、分析。

1e22x-,-2≤x≤2y=π2解:用三种方法计算积分的源程序如下:10-,108-;对对梯形公式取h=4/50,4/100,4/10000;对辛普森分别取精度为103-,7从得到的结果可以看到对梯形公式,步长越小,计算的积分结果越准确;对于辛普森公式,在一般的103-精度下结果已经很准确(小数点后前六位均为准确数字),提高精度后结果更加精确,可见辛普森具有很高的优越性,但它的局限性在于必须要有函数解析式;对于蒙特卡罗方法,虽然结果具有随机性,但随着n 增大,得到的结果越来越接近准确值。

解:用中点公式计算导数k.则∆P=k∆V。

因为∆V=1,所以∆P数值上等于k。

取h=0.1,利用三次样条计算P在V-h,V+h处的数值,从而利用中点公式计算导数。

结果为 ∆p =2.3341(2/in lbf ) 同理可以算出V=50时,∆p=2.7891(2/in lbf ) 求导的问题也可以用书后补充知识中样条求导的方法解决,计算后可以得到相同结果。

利用三次样条插值计算V 在40~70之间时相应的一系列P 值,然后用梯形公式计算积分即得气体作功。

第三题:冰淇淋的下部为锥体,上部为半球。

设它由锥面z=22y x +和球面1)1(222=-++z y x 围成,用蒙特卡罗方法计算它的体积。

解:两个曲面方程联立可以解得几何体的边界方程为单位圆:22y x +=1。

应用蒙特卡罗均值估计法计算体积的思路如下:利用计算机每次产生两个0~1的随机数x,y ,若落在单位圆内,则计算球面与锥面上在(x,y )处的z 值之差,产生n 次随机数,并将得到的z 值累加,累即所求冰淇淋的体积为3.1336。

MATLAB中的微积分运算(数值符号)

MATLAB中的微积分运算(数值符号)

MATLAB中的微积分运算(数值符号)显然这个函数是单词differential(微分)的简写,⽤于计算微分。

实际上准确来说计算的是差商。

如果输⼊⼀个长度为n的⼀维向量,则该函数将会返回长度为n-1的向量,向量的值是原向量相邻元素的差,于是可以计算⼀阶导数的有限差分近似。

(1)符号微分1.常⽤的微分函数函数:diff(f) 求表达式f对默认⾃变量的⼀次微分值diff(f,x) 求表达式f对⾃变量x的⼀次积分值diff(f,n) 求表达式f对默认⾃变量的n次微分值diff(f,t,n)求表达式f对⾃变量t的n次微分值>> x=1:10x =1 2 3 4 5 6 7 8 9 10>> diff(x)ans =1 1 1 1 1 1 1 1 1例1:求矩阵中各元素的导数求矩阵[1/(1+a) (b+x)/cos(x)1/(x*y) exp(x^2)]对x的微分,可以输⼊以下命令A = sym('[1/(1+a),(b+x)/cos(x);1,exp(x^2)]');B = diff(A,'x')可得到如下结果:例2:求偏导数求的偏导数。

syms x y;f = x*exp(y)/y^2;fdx = diff(f,x)fdy = diff(f,y)可得到如下结果:例3:求复合函数的导数求的导数sym('x');y = 'x*f(x^2)'y1 = diff(y,'x')得到结果如下:例4:求参数⽅程的导数对参数⽅程求导syms a b tf1 = a*cos(t);f2 = b*sin(t);A = diff(f2)/diff(f1) %此处代⼊了参数⽅程的求导公式B = diff(f1)*diff(f2,2)-diff(f1,2)*diff(f2)/diff(f1)^3 %求⼆阶导数可得到如下结果:例5:求隐函数的导数求的⼀阶导数syms x yp = 'x*y(x)-exp(x+y(x))'%隐函数可进⾏整体表⽰%注意y(x)这种写法,它代表了y是关于x的函数p1 = diff(p,x)可得到如下结果:2.符号积分1符号函数的不定积分函数:int功能:求取函数的不定积分语法:int(f)int(f,x)说明:第⼀个是求函数f对默认⾃变量的积分值;第⼆个是求⾃变量f对对⾃变量t的不定积分值。

【MATLAB】实验五:数值微积分与方程数值求解

【MATLAB】实验五:数值微积分与方程数值求解

实验五 数值微积分与方程数值求解一、实验目的1. 掌握求数值导数和数值积分的方法。

2. 掌握代数方程数值求解的方法。

3. 掌握常微分方程数值求解的方法。

二、实验内容要求:命令手工 ( )输入1. 求函数在指定点的数值导数。

232()123,1,2,3026x x x f x x x x x==2. 用数值方法求定积分。

(1) 210I π=⎰的近似值。

(2) 2220ln(1)1x I dt xπ+=+⎰3. 分别用三种不同的数值方法解线性方程组。

6525494133422139211x y z u x y z u x y z u x y u +-+=-⎧⎪-+-=⎪⎨++-=⎪⎪-+=⎩4. 求非齐次线性方程组的通解。

1234123412342736352249472x x x x x x x x x x x x +++=⎧⎪+++=⎨⎪+++=⎩解:先建立M 函数文件,然后命令窗口中写命令。

121/119/112/115/111/1110/11100010X k k --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥=++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,其中12,k k 为任意常数。

5. 求代数方程的数值解。

(1) 3x +sin x -e x =0在x 0=1.5附近的根。

(2) 在给定的初值x 0=1,y 0=1,z 0=1下,求方程组的数值解。

23sin ln 70321050y x y z x z x y z ⎧++-=⎪+-+=⎨⎪++-=⎩ans =1289/6826. 求函数在指定区间的极值。

(1) 3cos log ()xx x x x f x e ++=在(0,1)内的最小值。

(2) 33212112122(,)2410f x x x x x x x x =+-+在[0,0]附近的最小值点和最小值。

(以下选作题,是微分方程的数值解)7. 求微分方程的数值解。

x 在[1.0e-9,20]2250(0)0'(0)0xd y dy y dx dx y y ⎧-+=⎪⎪⎪=⎨⎪=⎪⎪⎩解:M 文件:运行结果:8. 求微分方程组的数值解,并绘制解的曲线。

matlab数值分析实验报告

matlab数值分析实验报告

matlab数值分析实验报告Matlab数值分析实验报告引言数值分析是一门研究利用计算机进行数值计算和模拟的学科,它在科学计算、工程技术和金融等领域有着广泛的应用。

本次实验报告将介绍在Matlab环境下进行的数值分析实验,包括数值微分、数值积分和线性方程组求解等内容。

一、数值微分数值微分是通过数值方法计算函数的导数,常用的数值微分方法有前向差分、后向差分和中心差分。

在Matlab中,可以使用diff函数来计算函数的导数。

例如,对于函数f(x)=x^2,在Matlab中可以使用如下代码进行数值微分的计算:```matlabsyms x;f = x^2;df = diff(f, x);```二、数值积分数值积分是通过数值方法计算函数的定积分,常用的数值积分方法有梯形法则、辛普森法则和龙贝格积分法。

在Matlab中,可以使用trapz、quad和integral等函数来进行数值积分的计算。

例如,对于函数f(x)=sin(x),可以使用如下代码进行数值积分的计算:```matlabx = linspace(0, pi, 100);y = sin(x);integral_value = trapz(x, y);```三、线性方程组求解线性方程组求解是数值分析中的重要问题,常用的求解方法有高斯消元法和LU 分解法。

在Matlab中,可以使用\操作符来求解线性方程组。

例如,对于线性方程组Ax=b,可以使用如下代码进行求解:```matlabA = [1, 2; 3, 4];b = [5; 6];x = A\b;```四、实验结果与分析在本次实验中,我们分别使用Matlab进行了数值微分、数值积分和线性方程组求解的计算。

通过实验结果可以发现,Matlab提供了丰富的数值计算函数和工具,能够方便地进行数值分析的计算和求解。

数值微分的计算结果与解析解相比较,可以发现数值微分的误差随着步长的减小而减小,但是当步长过小时,数值微分的误差会受到舍入误差的影响。

MATLAB教程第8章MATLAB数值积分与微分

MATLAB教程第8章MATLAB数值积分与微分

MATLAB教程第8章MATLAB数值积分与微分1.数值积分数值积分是计算函数的定积分值的近似方法。

在MATLAB中,有几个函数可以帮助我们进行数值积分。

(1) quad函数quad函数是MATLAB中用于计算一维定积分的常用函数。

它的语法如下:I = quad(fun, a, b)其中,fun是被积函数的句柄,a和b分别是积分区间的下界和上界,I是近似的积分值。

例如,我们可以计算函数y=x^2在区间[0,1]内的积分值:a=0;b=1;I = quad(fun, a, b);disp(I);(2) integral函数integral函数是在MATLAB R2024a版本引入的新函数,它提供了比quad函数更稳定和准确的积分计算。

integral函数的语法如下:I = integral(fun, a, b)其中fun、a和b的含义与quad函数相同。

例如,我们可以使用integral函数计算函数y = x^2在区间[0, 1]内的积分值:a=0;b=1;I = integral(fun, a, b);disp(I);2.数值微分数值微分是计算函数导数的近似方法。

在MATLAB中,可以使用diff 函数计算函数的导数。

(1) diff函数diff函数用于计算函数的导数。

它的语法如下:derivative = diff(fun, x)其中,fun是需要计算导数的函数,x是自变量。

例如,我们可以计算函数y=x^2的导数:syms x;fun = x^2;derivative = diff(fun, x);disp(derivative);(2) gradient函数gradient函数可以计算多变量函数的梯度。

它的语法如下:[g1, g2, ..., gn] = gradient(fun, x1, x2, ..., xn)其中fun是需要计算梯度的函数,x1, x2, ..., xn是自变量。

例如,我们可以计算函数f=x^2+y^2的梯度:syms x y;fun = x^2 + y^2;[gx, gy] = gradient(fun, x, y);disp(gx);disp(gy);以上是MATLAB中进行数值积分和微分的基本方法和函数。

matlab 数值解

matlab 数值解

matlab 数值解Matlab 数值解Matlab 是一种强大的数学软件,它包含了很多数学工具箱,可以用于数值分析和求解数学问题。

在本文中,我们将介绍Matlab 中的数值解方法,包括数值积分、数值微分、非线性方程求解和常微分方程的数值解法。

数值积分数值积分是一种数学方法,用于求解函数的定积分。

在Matlab 中,可以使用 quad 和 quadl 函数进行数值积分。

其中,quad 函数用于计算一般积分,而 quadl 函数用于计算不定积分。

数值微分数值微分是一种数学方法,用于计算函数的导数。

在Matlab 中,可以使用diff 和gradient 函数进行数值微分。

其中,diff 函数用于计算一维函数的导数,而 gradient 函数用于计算多维函数的梯度。

非线性方程求解非线性方程是一种形式为 f(x)=0 的方程,其中 f(x) 是一个非线性函数。

在 Matlab 中,可以使用 fzero 和 fsolve 函数进行非线性方程求解。

其中,fzero 函数用于求解单变量非线性方程,而fsolve 函数用于求解多变量非线性方程。

常微分方程的数值解法常微分方程是一种形式为y'=f(t,y) 的方程,其中y 是未知函数,t 是自变量,f(t,y) 是已知函数。

在Matlab 中,可以使用ode45 和ode23 函数进行常微分方程的数值解法。

其中,ode45 函数是一种常用的数值解法,可以求解大部分常微分方程,而 ode23 函数则是一种高效的数值解法,适用于求解简单的常微分方程。

总结在本文中,我们介绍了Matlab 中的数值解方法,包括数值积分、数值微分、非线性方程求解和常微分方程的数值解法。

这些方法可以帮助我们快速、准确地求解数学问题,提高数学建模的效率和精度。

Matlab数值积分与数值微分

Matlab数值积分与数值微分

Matlab数值积分与数值微分M a t l a b数值积分与数值微分Matlab数值积分1.⼀重数值积分的实现⽅法变步长⾟普森法、⾼斯-克朗罗德法、梯形积分法1.1变步长⾟普森法Matlab提供了quad函数和quadl函数⽤于实现变步长⾟普森法求数值积分.调⽤格式为:[I,n]=Quad(@fname,a,b,tol,trace)[I,n]=Quadl(@fname,a,b,tol,trace)Fname是函数⽂件名,a,b分别为积分下限、积分上限;tol为精度控制,默认为1.0×10-6,trace控制是否展开积分过程,若为0则不展开,⾮0则展开,默认不展开.返回值I为积分数值;n为调⽤函数的次数.--------------------------------------------------------------------- 例如:求∫e0.5x sin(x+π)dx3π的值.先建⽴函数⽂件fesin.mfunction f=fesin(x)f=exp(-0.5*x).*sin(x+(pi/6));再调⽤quad函数[I,n]=quad(@fesin,0,3*pi,1e-10)I=0.9008n=365--------------------------------------------------------------------- 例如:分别⽤quad函数和quadl函数求积分∫e0.5x sin(x+π6)dx3π的近似值,⽐较函数调⽤的次数.先建⽴函数⽂件function f=fesin(x)f=exp(-0.5*x).*sin(x+(pi/6));formatlong[I,n]=quadl(@fesin,0,3*pi,1e-10)I=n=198[I,n]=quad(@fesin,0,3*pi,1e-10)I=n=365--------------------------------------------------------------------- 可以发现quadl函数调⽤原函数的次数⽐quad少,并且⽐quad函数求得的数值解更精确.1.2⾼斯-克朗罗德法Matlab提供了⾃适应⾼斯-克朗罗德法的quadgk函数来求震荡函数的定积分,函数的调⽤格式为:[I,err]=quadgk(@fname,a,b)Err返回近似误差范围,其他参数的意义与quad函数相同,积分上下限可以是-Inf或Inf,也可以是复数,若为复数则在复平⾯上求积分.--------------------------------------------------------------------- 例如:求积分∫xsinx1+cos2xdx π的数值.先编写被积函数的m⽂件fsx.mfunction f=fsx(x)f=x.*sin(x)./(1+cos(x).^2);再调⽤quadgk函数I=quadgk(@fsx,0,pi)I=2.4674--------------------------------------------------------------------- 例如:求积分∫xsinxdx +∞∞的值.先编写被积函数的m⽂件fsx.mfunction f=fsx(x)f=x.*sin(x)./(1+cos(x).^2); 再调⽤quadgk函数I=quadgk(@fsx,-Inf,Inf)I=-9.0671e+017---------------------------------------------------------------------1.3梯形积分法对于⼀些不知道函数关系的函数问题,只有实验测得的⼀组组样本点和样本值,由表格定义的函数关系求定积分问题⽤梯形积分法,其函数是trapz函数,调⽤格式为:I=Traps(X,Y)X,Y为等长的两组向量,对应着函数关系Y=f(X) X=(x1,x2,…,x n)(x1分区间是[x1,x n]--------------------------------------------------------------------- 例如:已知某次物理实验测得如下表所⽰的两组样本点.现已知变量x和变量y满⾜⼀定的函数关系,但此关系未知,设y=f(x),求积分13.39∫f(x)dx1.38的数值.X=[1.38,1.56,2.21,3.97,5.51,7.79,9.19,11.12,13.39];Y=[3.35,3.96,5.12,8.98,11.46,17.63,24.41,29.83,32.21]; I=trapz(X,Y) I=217.1033---------------------------------------------------------------------例如:⽤梯形积分法求积分:∫e ?x dx 2.51的数值.x=1:0.01:2.5; y=exp(-x); I=trapz(x,y) I= 0.2858---------------------------------------------------------------------2. 多重数值积分的实现重积分的积分函数⼀般是⼆元函数f(x,y)或三元函数f(x,y,z);形如:∫∫f (x,y )dxdy ba dc∫∫∫f(x,y,z)dxdydz b a d cf eMatlab 中有dblquad 函数和triplequad 函数来对上述两个积分实现.调⽤格式为: I=dblquad(@fun,a,b,c,d,tol)I=triplequad(@fun,a,b,c,d,e,f,tol)Fun 为被积函数,[a,b]为x 的积分区间;[c,d]为y 的积分区间;[e,f]为z 的积分区间.Dblquad 函数和triplequad 函数不允许返回调⽤的次数,如果需要知道函数调⽤的次数,则在定义被积函数的m ⽂件中增加⼀个计数变量,统计出被积函数被调⽤的次数.---------------------------------------------------------------------例如:计算⼆重积分I =∫∫√dxdy π2π2π2π2的值.先编写函数⽂件fxy.mfunction f=fxy(x,y) global k; k=k+1;f=sqrt(x.^2+y.^2);再调⽤函数dblquadglobalk; k=0;I=dblquad(@fxy,-pi/2,pi/2,-pi/2,pi/2,1.0e-10) I= 11.8629 k k= 37656---------------------------------------------------------------------例如:求三重积分∫∫∫4xze ?z2y?x 2dxdydz ππ1的值.编写函数⽂件fxyz1.mfunction f=fxyz1(x,y,z)global j;j=j+1;f=4*x.*z.*exp(-z.*z.*y-x.*x);调⽤triplequad函数editglobalj;j=0;I=triplequad(@fxyz1,0,pi,0,pi,0,1,1.0e-10)I=1.7328jj=1340978---------------------------------------------------------------------Matlab数值微分1.数值微分与差商导数的三种极限定义f′(x)=limn→0f(x+h)?f(x)hf′(x)=limn→0f(x)?f(x?h)f′(x)=limn→0f(x+h2)?f(x?h2)h上述公式中假设h>0,引进记号:f(x)=f(x+h)f(x)f(x)= f(x)f(xh)δf(x)= f(x+h)?f(x?h)称上述?f(x)、?f(x)、δf(x)为函数在x点处以h(h>0)为步长的向前差分、向后差分、中⼼差分,当步长h⾜够⼩时,有:f′(x)≈?f(x) hf′(x)≈f(x) f′(x)≈δf(x)f(x) h 、?f(x)h、δf(x)h也分别被称为函数在x点处以h(h>0)为步长的向前差商、向后差商、中⼼差商.当h⾜够⼩时,函数f(x)在x点处的导数接近于在该点的任意⼀种差商,微分接近于在该点的任意⼀种差分.2.函数导数的求法2.1⽤多项式或样条函数g(x)对函数f(x)进⾏逼近(插值或拟合),然后⽤逼近函数g(x)在点x处的导数作为f(x)在该点处的导数.2.2⽤f(x)在点x处的差商作为其导数.3.数值微分的实现⽅法Matlab中,只有计算向前差分的函数diff,其调⽤格式为:·DX=diff(X):计算向量X的向前差分,DX(i)=X(i+1)-X(i),i=1,2,…,n-1·DX=diff(X,n):计算向量X的n阶向前差分,例如diff(X,2)=diff(diff(X))·DX=diff(A,n,dim):计算矩阵A的n阶向前差分,dim=1(默认值)按列计算差分,dim=2按⾏计算差分.--------------------------------------------------------------------- 例如:⽣成6阶范德蒙德矩阵,然后分别按⾏、按列计算⼆阶向前差分A=vander(1:6)A=111111321684212438127931102425664164131256251252551777612962163661D2A1=diff(A,2,1)D2A1=180501220057011018200132019424200255030230200D2A2=diff(A,2,2)D2A2=000084211083612457614436920004008016540090015025--------------------------------------------------------------------- 例如:设f(x)=√x3+2x2?x+12+√(x+5)6+5x+2求函数f(x)的数值导数,并在同⼀坐标系中作出f’(x)的图像.已知函数f(x)的导函数如下:f′(x)=3x2+4x?12√x3+2x2?x+12+16√()56+5编辑函数⽂件fun7.m和fun8.m functionf=fun7(x)f=sqrt(x.^3+2*x.^2-x+12)+(x+5).^(1/6)+5*x+2;functionf=fun8(x)f=(3*x.^2+4*x-1)/2./sqrt(x.^3+2*x.^2-x+12)+1/6./(x+5).^(5/6)+5 ;x=-3:0.01:3;p=polyfit(x,fun7(x),5);⽤5次多项式拟合曲线dp=polyder(p);对拟合多项式进⾏求导dpx=polyval(dp,x);对dp在假设点的求函数值dx=diff(fun7([x,3.01]))/0.01;直接对dx求数值导数gx=fun8(x);求函数f的函数在假设点的导数plot(x,dpx,x,dx,'.',x,gx,'-')可以发现,最后得到的三条曲线基本重合.--------------------------------------------------------------------- 练习:A.⽤⾼斯-克朗罗德法求积分∫dx1+x2 +∞∞的值并讨论计算⽅法的精确度.(该积分值为π)function f=fun9(x)f=1./(1+x.^2);formatlong[I,err]=quadgk(@fun9,-Inf,Inf)I=err=B.设函数f(x)=sin x⽤不同的办法求该函数的数值导数,并在同⼀坐标系中作出f′(x)的图像.已知f′(x)=x cos x+cos x cos2x?sin x+2sin x sin2x()2function f=fun10(x)f=sin(x)./(x+cos(2*x));function f=fun11(x)f=(x.*cos(x)+cos(x).*cos(2*x)-sin(x)-2*sin(x).*sin(2*x))/(x+cos(2 *x)).^2; x=-3:0.01:3;p=polyfit(x,fun10(x),5);dp=polyder(p);dpx=polyval(dp,x);dx=diff(fun10([x,3.01]))/0.01;gx=fun11(x);plot(x,dpx,'r:',x,dx,'.g',x,gx,'-k')。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档