全桥型IGBT脉冲激光电源原理分析

合集下载

IGBT工作原理

IGBT工作原理

IGBT工作原理IGBT(Insulated Gate Bipolar Transistor)是一种重要的功率半导体器件,广泛应用于高压、高频率和高电流的电力电子系统中。

本文将详细介绍IGBT的工作原理,包括结构、工作过程和特性。

一、结构IGBT由P型衬底、N+型外延区、N型沟道区、P型沟道区和N+型漏极组成。

其中,P型衬底和N+型外延区形成PN结,N型沟道区和P型沟道区形成PNP结,N+型漏极是电流输出端。

二、工作过程1. 关态:当控制端施加正向电压时,PN结正向偏置,PNP结反向偏置。

此时,P型沟道区的空穴和N型沟道区的电子被吸引到PNP结的N型区域,形成导电通道。

电流从漏极流向源极,IGBT处于导通状态。

2. 开态:当控制端施加负向电压时,PN结反向偏置,PNP结正向偏置。

此时,导电通道被截断,电流无法通过,IGBT处于截止状态。

3. 开关过程:IGBT从关态到开态的过程称为开启过程,从开态到关态的过程称为关断过程。

在开启过程中,控制端施加正向电压,PN结逐渐正向偏置,导电通道逐渐形成,电流逐渐增大。

在关断过程中,控制端施加负向电压,PN结逐渐反向偏置,导电通道逐渐截断,电流逐渐减小。

三、特性1. 高电压能力:IGBT具有较高的耐压能力,可以承受较高的电压。

这使得IGBT在高压应用中具有优势,如电力变换器、电力传输系统等。

2. 高频特性:IGBT具有较高的开关速度和频率响应,适合于高频率应用。

这使得IGBT在交流电动机驱动、变频器等领域得到广泛应用。

3. 低开启压降:IGBT的开启压降较小,能够减少功率损耗。

这使得IGBT在低功率应用中具有优势,如电源、逆变器等。

4. 温度特性:IGBT的工作温度范围较广,能够在较高的温度下正常工作。

这使得IGBT在高温环境下的电力电子系统中具有优势。

总结:IGBT是一种重要的功率半导体器件,具有高电压能力、高频特性、低开启压降和良好的温度特性。

它的工作原理基于PN结和PNP结的正向和反向偏置,通过控制端的电压来实现导通和截断。

还搞不懂IGBT?一文详细解读IGBT结构和工作原理,几分钟搞定IGBT

还搞不懂IGBT?一文详细解读IGBT结构和工作原理,几分钟搞定IGBT

还搞不懂IGBT?一文详细解读IGBT结构和工作原理,几分钟搞定IGBT大家好,我是李工,希望大家多多支持我。

(愉快的周末过去了)看到有人给我留言,说希望讲一下IGBT(绝缘栅双极型晶体管),今天就讲一下IGBT,那位留言的朋友记得按时来看。

在实际应用中最流行和最常见的电子元器件是双极结型晶体管BJT 和 MOS管。

在之前的文章中我已经对BJT的工作原理和MOS管的工作原理以及结构应用有进行详细地说明,如果忘记了可以点击标题直接跳转。

mos管工作原理详解BJT工作原理详解IGBT实物图+电路符号图虽然说BJT 和MOS 管是最流行和最常见的元器件,但是在非常高电流的应用中有限制,这个时候 IGBT 就派上用场了。

你可以把 IGBT 看作 BJT 和 MOS 管的融合体,IGBT具有 BJT 的输入特性和 MOS 管的输出特性。

与BJT 或MOS管相比,绝缘栅双极型晶体管IGBT 的优势在于它提供了比标准双极型晶体管更大的功率增益,以及更高的工作电压和更低的 MOS 管输入损耗。

这篇文章将较为详细地讲解IGBT 内部构造,工作原理等基础知识。

希望能够让大家更了解 IGBT,也请大家多多指教。

什么是IGBT?IGBT 是绝缘栅双极晶体管的简称,是一种三端半导体开关器件,可用于多种电子设备中的高效快速开关。

IGBT 主要用于放大器,用于通过脉冲宽度调制 (PWM) 切换/处理复杂的波形。

就像我上面说的 IGBT 是 BJT 和 MOS管的融合,IGBT 的符号也代表相同。

你可以看到输入侧代表具有栅极端子的MOS管,输出侧代表具有集电极和发射极的 BJT。

集电极和发射极是导通端子,栅极是控制开关操作的控制端子。

IGBT的电路符号与等效电路图IGBT内部结构IGBT 有三个端子(集电极、发射极和栅极)都附有金属层。

然而,栅极端子上的金属材料具有二氧化硅层。

IGBT结构是一个四层半导体器件。

四层器件是通过组合PNP 和NPN 晶体管来实现的,它们构成了 PNPN 排列。

全桥型IGBT脉冲激光电源原理分析

全桥型IGBT脉冲激光电源原理分析

全桥型IGBT脉冲激光电源原理分析高功率Nd:YAG固体激光器与气体或其他激光器(如化学激光器,自由电子激光器等)相较,固体激光器具有结构紧凑、牢固耐用等长处,其运行方式多样,可在脉冲、持续、调Q及锁模下运行。

原理图下面咱们将要介绍的激光电源为工作于重复脉冲方式的固体激光器提供电能。

该激光器采用氙灯作泵浦光源,在惰性气体灯中,氙气的总转换效率最高。

激光器用于激光打标,工作频率每秒60次。

电源系统采用IGBT管全桥逆变方式,工作频率为20kHz,控制电路采用PWM方式。

图1原理框图图1示出电源原理框图,整个电路可分为主电路(电力变换电路)和控制电路两大部份。

来自电网的380V交流电压经整流滤波后取得约520V左右的直流电压,加到桥式逆变器上。

逆变器主功率开关采用三菱公司的CT60型IGBT管。

PWM 电路产生一对相位互差180°的脉冲电压控制逆变桥的四个功率管,将直流电压变换为高频方波电压,再经高频高压整流桥取得高压直流(约1400V),向储能电容Co充电。

电容Co上电压充到预定值(1000V)后,控制电路发出信号,将放电晶闸管触发导通,Co上电压快速向负载氙灯释放,激光器正常工作。

预燃触发电路针对负载氙灯特性而设,该型激光器要求先通入近两万伏的高压脉冲,将其内部击穿,再维持较低的持续电流(约100~200mA),激光器才能在电容Co的断续放电状态下正常工作。

因此,电源的工作步骤应是:开机——预燃触发——电容放电。

工作原理及仿真波形图2示出电源主电路,V1—V4组成桥式逆变器,两头并联RCD吸收支路,L 为限流电感,Co为储能电容,Lo用于限制Co对负载氙灯的放电电流,保护氙灯。

主电路图此处将限流电感L放在变压器原边。

这除能实现功率管的零电压开通外,例如在V1,V4关断后,由于L的续流作用,D2,D3导通,则V2,V3可实现零电压开通;还可分担变压器原边绕组上的压降,减少变压器匝数,进而减小变压器磁心。

IGBT的工作原理和作用以及IGBT管的检测方法

IGBT的工作原理和作用以及IGBT管的检测方法

IGBT的工作原理和作用以及IGBT管的检测方法IGBT的工作原理和作用IGBT就是一个开关,非通即断,如何控制他的通还是断,就是靠的是栅源极的电压,当栅源极加+12V(大于6V,一般取12V到15V)时IGBT 导通,栅源极不加电压或者是加负压时,IGBT关断,加负压就是为了可靠关断。

IGBT没有放大电压的功能,导通时可以看做导线,断开时当做开路。

IGBT有三个端子,分别是G,D,S,在G和S两端加上电压后,内部的电子发生转移(半导体材料的特点,这也是为什么用半导体材料做电力电子开关的原因),本来是正离子和负离子一一对应,半导体材料呈中性,但是加上电压后,电子在电压的作用下,累积到一边,形成了一层导电沟道,因为电子是可以导电的,变成了导体。

如果撤掉加在GS两端的电压,这层导电的沟道就消失了,就不可以导电了,变成了绝缘体。

IGBT的工作原理和作用电路分析IGBT的等效电路如图1所示。

由图1可知,若在IGBT 的栅极和发射极之间加上驱动正电压,则MOSFET导通,这样PNP晶体管的集电极与基极之间成低阻状态而使得晶体管导通;若IGBT的栅极和发射极之间电压为0V,则MOSFET截止,切断PNP晶体管基极电流的供给,使得晶体管截止。

图1 IGBT的等效电路由此可知,IGBT的安全可靠与否主要由以下因素决定:--IGBT栅极与发射极之间的电压;--IGBT集电极与发射极之间的电压;--流过IGBT集电极-发射极的电流;--IGBT的结温。

如果IGBT栅极与发射极之间的电压,即驱动电压过低,则IGBT不能稳定正常地工作,如果过高超过栅极-发射极之间的耐压则IGBT可能永久性损坏;同样,如果加在IGBT集电极与发射极允许的电压超过集电极-发射极之间的耐压,流过IGBT集电极-发射极的电流超过集电极-发射极允许的最大电流,IGBT的结温超过其结温的允许值,IGBT都可能会永久性损坏。

绝缘栅极双极型晶体管(IGBT)IGBT管的好坏检测IGBT管的好坏可用指针万用表的Rxlk挡来检测,或用数字万用表的二极管挡来测量PN结正向压降进行判断。

igbt的固态高压脉冲电源的设计原理

igbt的固态高压脉冲电源的设计原理

IGBT的固态高压脉冲电源的设计原理由于脉冲电源有断续供电的特性,在很多领域都获得了广泛的应用,其中高压脉冲电源是系统的核心组成部分。

为了获取高重复频率、陡前沿高压脉冲电源,文中提出了一种基于IGBT的高压脉冲电源,系统主要由高压直流充电电源和脉冲形成电路两部分组成,由DSP作为主控制芯片,控制IGBT的触发和实现软开关技术,并用仿真软件PSIM对高压脉冲电源进行仿真分析,验证了设计思想的正确性。

由于脉冲电源有断续供电的特性,在很多领域都获得了广泛的应用。

比如说高能量物理、粒子加速器、金属材料的加工处理、食品的杀菌消毒、环境的除尘除菌等方面,都需要这样一种脉冲能量--可靠、高能量、脉宽和频率可调、双极性、平顶的电压波形。

无论将此高功率脉冲电源用于何种用途,高压脉冲电源均是其设计的核心部分。

传统的高功率脉冲电源一般采用工频变压器升压,然后采用磁压缩开关或者旋转火花隙来获取高压脉冲,因而大都比较笨重,且获得的脉冲频率范围有限,其重复频率难以调节,脉冲波形易变化,可靠性较低,控制较困难,成本较高。

文中采用固态电器--IGBT来获取高压脉冲波形。

将IGBT 作为获取高压脉冲的电子开关,利用IGBT构成LCC串并联谐振变换器作为高压脉冲电源的充电电源,同时利用IGBT构成全桥组成脉冲形成电路,输出双极性高压脉冲波形。

文中给出了系统结构、系统各个部分功能说明,通过仿真电力电子仿真软件PSIM对LCC充电过程和脉冲形成电路进行仿真分析。

1 高压脉冲电源系统结构1.1 高压脉冲电源的拓扑结构高压脉冲电源常用的主电路拓扑可以归纳为两类:电容充放电式和高压直流开关电源加脉冲生成的两级式两种。

电容充放电式是通过长时间充电、瞬间放电,即通过控制充放电的时间比例,达到能量压缩、输出高压大功率脉冲的目的。

优点是可以输出的脉冲功率和电压等级较高,脉冲上升沿较陡;但是,输出脉冲的精度难以控制,而且重复频率低,因而应用范围比较有限,主要应用在核电磁物理研究、烟气除尘、污水处理、液体杀菌等场合。

IGBT基本原理ppt课件

IGBT基本原理ppt课件

因强制换流关断使控制电路非常复杂, 限制了它的应用。
GTO、 GTR
它们都是自关断器件,开关速度比 SCR 高, 控制电路也得到了简化。 目前的 GTO 和 GTR 的水平分别达 到了 6000V /6000A、1000V / 400A。 但是, GTO 的开关速度还是较低,GTR 存在二次击穿和不易并 联问题。 另外, 它们共同存在驱动电流大、功耗损失大的问题。
;.
3
1.IGBT定义
IGBT,绝缘栅双极晶体管(Insolated Gat Bipolar Transistor,IGBT),它是由BJT(双极性三极管)和
MOSFET(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件。
电力半导体器分类 不可控器件:不能用控制信号来控制其通断,因此不需要驱动电路,此类器件只有整流作用,包括普通功
绝缘栅型场效应管(IGFET):栅极-源极,栅极-漏极之间采用SiO2绝缘层隔离,因此而得名。又因栅极为金属 铝,所以又称为金属氧化物半导体场效应管,也就是MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)
;.
5
1.IGBT 简化等效电路
制 换 流 关 断 控 制 电 路 简 抗高、控制功
使 控 制 电 路 化 。 但 它 们 率小、驱动电
非常复杂
共 同 存 在 驱 路简单 , 但是
动电流大、 导通电阻大,
功耗损失
不耐高压
;.
7
历史产品比较 产品
特点
SCR
功率容量大, 目前的水平已达到7000V / 8000A。但缺点是开关速度低, 关断不可控、
率二极管、快恢复二极管和、肖特基二极管。 半控型器件:控制导通不能控制关断。它包括普通晶闸管及其派生的特殊器件,如逆导晶闸管等。 全控型器件:控制其导通、关断,又称为自关断器件。例:双极型功率晶体管、功率场效应晶体管、

脉冲激光电源的原理

脉冲激光电源的原理

脉冲激光电源的原理脉冲激光电源是专门为脉冲Nd:Y AG激光器设计的电源。

采用开关电源,内部是由单片机控制的,是真正的数控电源。

通过触模式操作面板选择激光输出功率、频率和脉宽等参数,用户通过键盘对激光脉冲波形和参数进行编程,使焊接参数与焊接要求相匹配,以达到最佳的焊接效果,因而可以满足几乎所有金属的焊接需要,是多功能激光焊接机的理想配置,具有误操作和超温自动保护功能等功能。

一种用于镜片透射比测试仪的带驱动电源的脉冲氙灯,包括脉冲氙灯和驱动电源两部分,其特点在于:①所述的脉冲氙灯采用高纯石英玻璃管作管壁材料,灯的封接结构采用紧凑型钼箔封接工艺,灯的阴极和阳极均为铈钨电极;②所述的驱动电源的变压器是推挽式变压器。

所述的驱动电源的储能电容正极的电压负反馈线接一比较器的负向输入端,一标准电压的正极接比较放大器的正向输入端,该比较器输出端接调整电路的控制端。

本实用新型具有零爆炸、发光效率高、实用寿命长、电源稳定、操作方便、价格低廉的特点。

1、一种用于镜片透射比测试仪的带驱动电源的脉冲氙灯,包括脉冲氙灯和驱动电源两部分,所述的脉冲氙灯(9)灯管(91)的两端分别为阴极(92)和阳极(93);所述的驱动电源的构成是:继电器KM分别接电源的正极和负极,电源的正极接继电器KM的常开开关KM1的一端,该开关的另一端接到调整电路(3)的一端,该调整电路(3)的另一端接变压器(5)的初级,该变压器(5)的次级接到桥式整流电路(6),桥式整流电路(6)的输出端接储能电容(7),该储能电容(7)的负极接地,正极分两路,一路是一接调整电路(3)负反馈线,另一路通过取样电路(8)接到触发电路(10)的一端,该触发电路(10)的另一端接到脉冲氙灯(9)的触发丝上,该脉冲氙灯(9)的阳极(93)接储能电容(7)的正极,阴极(92)接到储能电容(7)的负极,该储能电容(7)的正极还通过电阻(4)、继电器KM的常闭触点KM2接地,其特征在于:①所述的脉冲氙灯(9)的灯管(91)采用高纯石英玻璃管,灯的封接结构采用紧凑型钼箔封接工艺,灯的阴极(92)和阳极(93)均为铈钨电极;②所述的驱动电源的变压器(5)是推挽式变压器。

IGBT基本原理ppt课件

IGBT基本原理ppt课件

在电力电子电路中,IGBT经常会直接承受较高的负载电压,所以选择IGBT首先就要考虑IGBT的电压等级也就是IGBT正
向阻断电压的能力。
目前市场上IGBT的电压等级主要分为600V、1200V、1700V、3300V、4500V、6500V等,不同的电压等级表
示IGBT可以阻断多少正向电压,超过相应的电压等级器件的漏电流会开始大量增加,短时间内器件也许不会损坏,但长
产品。
;.
20
四 IGBT 小结
定义: COMSFET与BJT复合的全控型 A 电压驱动大功率开关器件;
结构、原理:
PNPN四层结构; 用MOSFET控制BJT;
C
;.
背景: 80年代发展至今,IGBT拥有输入 B 阻抗大、驱动功率小、 开关损耗低以及工作频率高等优 点
电气特性: D 静态特性与开关特性
绝缘栅型场效应管(IGFET):栅极-源极,栅极-漏极之间采用SiO2绝缘层隔离,因此而得名。又因栅极为金属 铝,所以又称为金属氧化物半导体场效应管,也就是MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)
;.
5
1.IGBT 简化等效电路
IGBT
目前, IGBT器件已从第1代发展到了第4代,它的工作频率可达到 200KH z。它的功率容量从小功率 (80-300A/500-1200V ) 的单管发展到超大功率 (1000-1200A/2500-4500 V) 的模块, 形成了系列化 产品,产品覆盖面非常大。
;.
8
二 IGBT发展历史 回顾IGBT的发展历程,其主要从三方面发展演变
制 换 流 关 断 控 制 电 路 简 抗高、控制功

通俗易懂讲解IGBT的工作原理和作用

通俗易懂讲解IGBT的工作原理和作用

通俗易懂讲解IGBT的工作原理和作用IGBT(Insulated Gate Bipolar Transistor)即绝缘栅双极晶体管,是一种常用的功率半导体器件,具有高电压、高电流和高开关速度的特点。

它广泛应用于交流调速、电源逆变、电机驱动等领域,具有重要的作用。

本文将通俗易懂地介绍IGBT的工作原理和作用。

一、IGBT的工作原理IGBT是由N沟道型MOS(Metal Oxide Semiconductor)场效应晶体管与PNP型双极晶体管组成。

它结合了MOSFET和双极晶体管的优点,在导通时具有较低的导通压降,而在关断时具有较高的击穿电压。

其工作原理如下:1. 导通状态:在IGBT导通状态下,当控制电压Ugs大于门极阈值电压Uth时,N沟道型MOSFET处于导通状态,形成通道,电流可以从集电极到源极流动。

由于N沟道型MOSFET的导通电阻较小,因此导通时的压降很小。

2. 关断状态:当控制电压Ugs小于门极阈值电压Uth时,N沟道型MOSFET无通道,不导电,IGBT进入关断状态。

此时,通过控制电压Uce(集电-发射极电压)可以实现IGBT的关断。

由于PNP型双极晶体管的存在,即使在较高的Uce下,IGBT也能承受较高的电压。

IGBT的工作原理可以用一个自锁开关的例子来解释。

N沟道型MOSFET相当于自锁开关的门锁,控制门锁的状态可以实现导通和关断;PNP型双极晶体管相当于自锁开关的钥匙,即使是在关断状态下,只要插入钥匙(提供较高的Uce),开关仍然可以打开。

二、IGBT的作用IGBT作为一种高性能的功率开关器件,其作用主要体现在以下几个方面:1. 电流调节:IGBT能够调节高电压和高电流,广泛应用于交流调速和电源逆变等领域。

在交流调速中,IGBT可以根据输入信号的变化,控制电机的转速和输出功率。

2. 电源逆变:IGBT可实现DC/AC逆变,将直流电源转换为交流信号,用于交流电源转换、逆变焊机等领域。

IGBT原理介绍

IGBT原理介绍

且得到越来越广泛的应用。

本文主要介绍了IGBT的结构特性、工作原理和驱动电路,同时简要概括了IGBT模块的选择方法和保护措施等,最后对IGBT的实际典型应用进行了分析介绍,通过对IGBT的学习,来探讨IGBT 在当代电力电子领域的广泛应用和发展前景。

关键词:IGBT;绝缘栅双极晶体管;MOSFET;驱动电路;电力电子驱动器件目录摘要 (I)1 前言 (1)2 IGBT的发展历程 (1)3 IGBT的结构特点和工作原理 (2)4 IGBT的驱动电路和保护 (4)4.1 IGBT对驱动电路的要求 (4)4.2 IGBT实用的驱动电路 (5)4.3 IGBT的保护措施 (8)5 IGBT的工作特性 (11)6 IGBT模块的选择和测试 (12)7 IGBT的应用实例 (15)7.1断路器永磁机构控制器的驱动电路 (15)7.2 变频调速系统 (16)7.3大功率商用电磁炉 (17)8 结论 (17)参考文献 (18)1 前言近年来,新型功率开关器件IGBT已逐渐被人们所认识,IGBT是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 与以前的各种电力电子器件相比,IGBI、具有以下特点:高输入阻抗,可采用通用低成本的驱动线路;高速开关特性;导通状态低损耗。

IGBT兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。

GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。

IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低,是一种适合于中、大功率应用的电力电子器件,IGBT在综合性能方面占有明显优势,非常适合应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。

本文主要通过对IGBT的结构特性和工作原理的学习,来探讨IGBT在当代电力电子领域的典型实际应用和发展前景。

简单易懂的IGBT工作原理分析

简单易懂的IGBT工作原理分析

简单易懂的IGBT工作原理分析IGBT是Insulated Gate Bipolar Transistor简称,叫绝缘栅双极型晶体管,主要由双极型三极管及绝缘扇形场效应管组合的半导体器件。

对于IGBT工作原理许多人还相对模糊,IGBT属于非通即断式开关。

IGBT具有MOSFET及GTR两者的高输阻抗低通压降的优点。

IGBT模块内部结构图别看IGBT读起来很高大上的感觉,其实它就是一个不是连通就是阻断的开关。

而控制着它的开关功能就是栅源极电压。

栅源极电压是如何控制的呢?当栅源极电压加上12V时,则会导通IGBT,而当栅源极电压为0或者加的是负压时,则断开IGBT,需注意的是,如果加的是负压,则此时的关断为可靠关断。

IGBT本身并不会放大电压。

那么为何IGBT 能够通过加压方式导通与关断呢?IGBT工作特性IGBT本身有三个端口,其中G\S两端加压后,身为半导体的IGBT 能够将内部的电子转移,让原本中性的半导体变为具备导电功能,转移的电子具有导电功能。

而当电压被撤离之后,因加压后由电子形成的导电沟道则会消失,此时就有会变成绝缘体。

IGBT等效电路图如果用简要的电路图做分析的话,那么如上图,当IGBT的栅极及发射极加上正电压,那么兼容MOSFET的IIGBT就会导通,当IGBT 导通后,晶体管两极(集电极、基极)会形成低阻状态,此时晶体管可导通;当IGBT的两极无电压,则MOSFET就会停止导通,晶体管得不到电流供给则晶体管随之停止导通。

IGBT并不是加入电压后即可正常工作,当加在IGBT上的电压过低,IGBT不仅无法正常工作,还可能导致功能的不稳定。

而如果电压高于两极之间的耐压值,IGBT则会损坏且不可修复。

本文由今日头条作者|舒晓原创,喜欢的请点赞收藏~谢谢支持!。

脉冲激光电源电路原理图

脉冲激光电源电路原理图

脉冲激光电源电路原理图脉冲激光电源的原理方框图如图1所示。

它由触发电路、主变换器电路和高压充放电电路等三大部分组成。

其电路原理图如图2所示。

图1 脉冲激光电源的原理方框图图2 脉冲激光电源电路原理图3 电路的工作原理3.1 触发电路的工作原理从图2可以看出,触发电路部分主要是由触发指示电路和触发电路组成,具体由IC1的LBI和LBO端,V1、LED、VD1以及K1和K2来完成,当变换器通过变压器T1、二极管VD2和VD3向电容器充电时,取样电路(由R10、R9、W1、W2、W3、R1组成)将其充电电压值反馈给IC1的LBI与VFB端,一旦电压充到所需的电压值时(大约为1kV左右),这时LBI 端的电压值将大于1.3V,LBO端就会变为高电平,V1导通,LED变亮,指示出电压已充到可以触发的状态。

另外取样电路将反馈信号还送入IC1的VFB端,若反馈信号的电压值≥1.3V时,即刻关断变换器,使高压维持到所需的值上,触发器件由高耐压、大电流的汽车级的晶闸管BT151/800R来担任。

3.2 主变换器的工作原理主变换器电路主要是由IC1(MAX641/642/643)、变压器T1以及V2等元器件组成的单端反激式升压电路。

其电路的核心部分为MAX641/642/643,所以这部分电路的工作原理分析以及MAX641/642/643的技术参数及其应用请查阅文献[1]。

这里只给出高频自耦升压变压器的技术资料,以供同行们在制作时参考。

铁芯选用4kBEE型铁氧体,骨架选用与铁芯对应配套的EE19型立式骨架,其技术参数如图3所示。

图3 T1变压器的技术参数3.3 充放电电路的工作原理充放电电路主要是由电容C7∥C10、C8∥C11、C9∥C12、C13、R14、升压变压器T2等组成。

当电容C7∥C10、C8∥C11、C9∥C12被充到所设定的高压值时,电容C13中的电压也同时被充到所要求的电压值(300V左右),这时闭合K1或K2,晶闸管V3被触发导通,电容C13中所储存的能量通过变压器T2的初级绕组放电,使次级绕组感应出约10kV左右的高压,将激光器中的气体电离。

IGBT工作原理

IGBT工作原理

IGBT工作原理概述:IGBT(Insulated Gate Bipolar Transistor)是一种高性能功率半导体器件,结合了MOSFET和双极晶体管的优点。

它具有低开关损耗、高开关速度和高电压能力等特点,广泛应用于电力电子领域。

本文将详细介绍IGBT的工作原理。

一、IGBT结构:IGBT由PNPN结构的双极晶体管和MOSFET的栅极结构组成。

它的主要部份包括N+型衬底、N型漂移区、P型区、N型区、P+型区、金属栅极和漏极等。

其中,P型区和N型区构成为了双极晶体管部份,N型漂移区和金属栅极构成为了MOSFET部份。

二、IGBT工作原理:1. 关断状态:当IGBT处于关断状态时,栅极与源极之间的电压低于阈值电压,栅极-源极结处于反向偏置状态,形成一个大的反向偏置电容。

此时,双极晶体管的集电结正向偏置,处于关断状态,没有导通电流。

2. 开通状态:当栅极与源极之间的电压高于阈值电压时,栅极-源极结反转,栅极处于正向偏置状态。

栅极电压的变化会导致栅极-漂移区结的电场分布发生变化,从而控制漂移区中的电荷分布。

当栅极电压增加时,漂移区中的电荷被吸引到栅极附近,形成一个导电通道,使得双极晶体管处于导通状态。

3. 导通状态:在IGBT导通状态下,双极晶体管的集电结正向偏置,漂移区中的电荷被栅极吸引,形成导电通道。

此时,漂移区的电阻很低,电流可以通过IGBT流过。

同时,由于MOSFET结构的存在,栅极控制电流的增加或者减少可以迅速改变漂移区的电荷分布,实现快速开关。

4. 关断过程:当栅极电压降低至阈值以下,栅极-源极结反向偏置,导致漂移区的电荷重新分布。

电荷的重新分布过程需要一定的时间,称为关断过程。

在关断过程中,IGBT的导通能力逐渐减弱,电流逐渐减小,直至彻底关闭。

三、IGBT特点:1. 高电压能力:IGBT具有高耐压能力,可承受较高的电压。

2. 低开关损耗:IGBT的开关损耗较低,能够实现高效率的功率转换。

IGBT的工作原理和工作特性

IGBT的工作原理和工作特性

IGBT的工作原理和工作特性IGBT 得工作原理与工作特性IGBT得开关作用就是通过加正向栅极电压形成沟道,给PNP晶体管提供基极电流,使IGBT导通。

反之,加反向门极电压消除沟道,流过反向基极电流,使IGBT关断。

IGBT得驱动方法与MOSFET基本相同,只需控制输入极N一沟道MOSFET,所以具有高输入阻抗特性。

当MOSFET得沟道形成后,从P+基极注入到 N一层得空穴(少子), 对N一层进行电导调制,减小N一层得电阻,使IGBT在高电压时,也具有低得通态电压。

IGBT得工作特性包括静态与动态两类:1.静态特性IGBT得静态特性主要有伏安特性、转移特性与开关特性。

IGBT得伏安特性就是指以栅源电压Ugs为参变量时,漏极电流与栅极电压之间得关系曲线。

输出漏极电流比受栅源电压Ugs得控制, Ugs越高, Id越大。

它与GTR得输出特性相似.也可分为饱与区1、放大区2与击穿特性3部分。

在截止状态下得IGBT,正向电压由J2结承担,反向电压由J1结承担。

如果无 N+缓冲区,则正反向阻断电压可以做到同样水平,加入N+缓冲区后,反向关断电压只能达到几十伏水平,因此限制了IGBT得某些应用范围。

IGBT得转移特性就是指输出漏极电流Id与栅源电压Ugs之间得关系曲线、它与MOSFET得转移特性相同,当栅源电压小于开启电压Ugs(th)时, IGBT处于关断状态。

在IGBT导通后得大部分漏极电流范围内, Id与Ugs呈线性关系。

最高栅源电压受最大漏极电流限制,其最佳值一般取为15V 左右。

IGBT得开关特性就是指漏极电流与漏源电压之间得关系。

IGBT 处于导通态时,由于它得PNP晶体管为宽基区晶体管,所以其B值极低。

尽管等效电路为达林顿结构,但流过MOSFET得电流成为IGBT总电流得主要部分。

此时,通态电压Uds(on)可用下式表示Uds(on)=Uj1+Udr+ IdRoh ( 2—14 )式中Uj1—- JI结得正向电压,其值为0。

IGBT原理及保护技术

IGBT原理及保护技术

IGBT原理及保护技术IGBT原理及保护技术电压时,也具有低的通态电压。

IGBT 的⼯作特性包括静态和动态两类:1 .静态特性 IGBT 的静态特性主要有伏安特性、转移特性和开关特性。

IGBT 的伏安特性是指以栅源电压Ugs 为参变量时,漏极电流与栅极电压之间的关系曲线。

输出漏极电流⽐受栅源电压Ugs的控制,Ugs越⾼,Id 越⼤。

它与GTR 的输出特性相似.也可分为饱和区1、放⼤区2和击穿特性三部分。

在截⽌状态下的IGBT ,正向电压由 J2 结承担,反向电压由J1 结承担。

如果⽆N+ 缓冲区,则正反向阻断电压可以做到同样⽔平,加⼊N+ 缓冲区后,反向关断电压只能达到⼏⼗伏⽔平,因此限制了IGBT 的某些应⽤范围。

IGBT 的转移特性是指输出漏极电流Id与栅源电压Ugs 之间的关系曲线。

它与MOSFET 的转移特性相同,当栅源电压⼩于开启电压 Ugs(th) 时,IGBT 处于关断状态。

在 IGBT 导通后的⼤部分漏极电流范围内,Id与Ugs呈线性关系。

最⾼栅源电压受最⼤漏极电流限制,其最佳值⼀般取为15V 左右。

IGBT 的开关特性是指漏极电流与漏源电压之间的关系。

IGBT处于导通态时,由于它的 PNP 晶体管为宽基区晶体管,所以其B值极低。

尽管等效电路为达林顿结构,但流过 MOSFET 的电流成为IGBT 总电流的主要部分。

此时,通态电压Uds(on) 可⽤下式表⽰Uds(on) = Uj1+ Udr+IdRoh式中 Uj1 —— JI 结的正向电压;Udr ——扩展电阻Rdr上的压降;Roh ——沟道电阻。

通态电流 Ids 可⽤下式表⽰:Ids=(1+Bpnp)Imos式中 Imos ——流过 MOSFET 的电流。

由于 N+ 区存在电导调制效应,所以 IGBT 的通态压降⼩,耐压1000V 的IGBT 通态压降为2 ~3V 。

IGBT 处于断态时,只有很⼩的泄漏电流存在。

2 .动态特性IGBT 在开通过程中,⼤部分时间是作为MOSFET 来运⾏的,只是在漏源电压Uds下降过程后期,PNP晶体管由放⼤区⾄饱和,⼜增加了⼀段延迟时间。

激光电源工作原理(精)

激光电源工作原理(精)

激光电源的工作原理
2、脉冲激光电源的工作原理 工作原理:三相交流电经整流、滤波后变成直 流,对储能电容充电,经控制电路控制通过大
功率开关器件IGBT放电,并经过大功率、精密电
感滤波成为恒流电源,控制氙灯放电。
激光电源的工作原理
各部分电路原理如下: (1)充电电路 由整流滤波电路组成,为储能单元的大容
量电容提供充电电源。采用LC恒流源充电方式。
具有可靠性高和恒流特性好的特点。
激光电源的工作原理
(2)储能单元 由电解电容通过串、并联组成,总容量约 4800uF左右,可在2ms脉冲宽度内输出20焦
的能量。
激光电源的工作原理
(3)放电电路 将储能电源中的电能可控地加在氙灯上,
一般采用大功率IGBT器件进行放电开关控制。
激光电源的工作原理
课程:《激光设备控制技术》 院系:电子工程系 主讲人:张才华
激光电源的工作原理
教学目标: 1、了解脉冲激光电源的组成结构; 2、了解脉冲激光电源的工作原理。
激光电源的工作原理
1、脉冲激光电源的组成
脉冲激光电源主要由主电流 板、显示板、中控板、软启动板 通过工业现场总线连接,完成电 源的各项功能。控制原理框图如
下图所示:
激光电源的工作原理
水泵控制 激光控制 触摸显示屏 中控电路板 显示电路板 频率控制缓升缓降源自软启动电路电流控制板
能量控制板
图1 脉冲激光电源控制原理框图
激光电源的工作原理
2、脉冲激光电源工作原理
三相输入
整流滤波器
储能及放电电路
氙灯
检测及保护电路
控制电路
触发/预燃电路
图2 脉冲激光电源主电路工作原理框图
作业: 1、脉冲激光电源主要由哪些部分构成? 2、脉冲激光电源的工作原理与过程是什么?

IGBT工作原理

IGBT工作原理

IGBT工作原理一、概述IGBT(Insulated Gate Bipolar Transistor)是一种高压、高功率开关器件,广泛应用于电力电子领域。

它结合了MOSFET的高输入阻抗和Bipolar Transistor的低导通压降,具有高速开关能力和低开关损耗。

本文将详细介绍IGBT的工作原理。

二、IGBT结构IGBT由三个区域组成:N+型注入区(Emitter)、P型基区(Base)和N型漂移区(Collector)。

N+型注入区连接到正极,P型基区连接到控制极,N型漂移区连接到负极。

三、IGBT工作原理1. 关态(导通状态)当控制极施加正向电压时,P型基区与N型漂移区之间形成正向偏置,形成P-N结。

此时,P-N结处于正向偏置,P型基区的空穴和N型漂移区的电子注入P型基区。

由于P型基区很薄,基区的电子和空穴以复合的方式通过基区,进入N+型注入区。

这样,N+型注入区形成为了N型电子浓度较高的区域,也就是说,N+型注入区形成为了导电通道。

此时,IGBT处于导通状态,可以通过电流。

2. 断态(截止状态)当控制极施加负向电压时,P型基区与N型漂移区之间形成反向偏置,形成P-N结。

此时,P-N结处于反向偏置,P型基区与N型漂移区之间的耗尽区扩展。

耗尽区的宽度增加,导致P-N结处的电容增加。

由于耗尽区的存在,电流无法通过IGBT,因此处于截止状态。

3. 开关速度IGBT的开关速度取决于控制极的电压变化速度。

当控制极电压从正向变为负向时,P-N结的耗尽区会迅速消失,从而加快了IGBT的关断速度。

当控制极电压从负向变为正向时,P-N结的耗尽区会逐渐形成,从而减慢了IGBT的开启速度。

因此,IGBT的关断速度比开启速度快。

四、IGBT特点1. 高压能力:IGBT可以承受高电压,通常可达数千伏。

2. 高开关速度:IGBT的开关速度非常快,可以在纳秒级别内完成开关操作。

3. 低导通压降:IGBT的导通压降很低,可以减少功率损耗。

IGBT原理分析及关键参数(个人收集)

IGBT原理分析及关键参数(个人收集)

大功率IGBT器件应用中的常见问题解决方法1 引言80年代问世的绝缘栅双极性晶体管igbt是一种新型的电力电子器件,它综合了gtr和mosfet 的优点,控制方便、开关速度快、工作频率高、安全工作区大。

随着电压、电流等级的不断提高,igbt成为了大功率开关电源、变频调速和有源滤波器等装置的理想功率开关器件,在电力电子装置中得到非常广泛的应用。

随着现代电力电子技术的高频大功率化的发展,开关器件在应用中潜在的问题越来越凸出,开关过程引起的电压、电流过冲,影响到了逆变器的工作效率和工作可靠性。

为解决以上问题,过电流保护、散热及减少线路电感等措施被积极采用,缓冲电路和软开关技术也得到了广泛的研究,取得了迅速的进展。

本文就针对这方面进行了综述。

2 igbt的应用领域2.1 在变频调速器中的应用【3】spwm变频调速系统的原理框图如图1所示。

主回路为以igbt为开关元件的电压源型spwm 逆变器的标准拓扑电路,电容由一个整流电路进行充电,控制回路产生的spwm信号经驱动电路对逆变器的输出波形进行控制;变频器向异步电动机输出相应频率、幅值和相序的三相交流电压,使之按一定的转速和旋转方向运转。

图1 变频调速系统原理框图2.2 在开关电源中的应用【5】图2为典型的ups系统框图。

它的基本结构是一套将交流电变为直流电的整流器和充电器以及把直流电再变为交流电的逆变器。

蓄电池在交流电正常供电时贮存能量且维持正常的充电电压,处于“浮充”状态。

一旦供电超出正常的范围或中断时,蓄电池立即对逆变器供电,以保证ups电源输出交流电压。

图2 ups系统框图ups逆变电源中的主要控制对象是逆变器,所使用的控制方法中用得最为广泛的是正弦脉宽调制(spwm)法。

2.3 在有源滤波器中的应用【6】图3 有源滤波系统原理图并联型有源滤波系统的原理图如图3所示。

主电路是以igbt为开关元件的逆变器,它向系统注入反向的谐波值,理论上可以完全滤除系统中存在的谐波。

IGBT开关电路原理和电路图

IGBT开关电路原理和电路图

IGBT开关电路原理和电路图在开关稳压电源中,开关电路是其核心部分,它是由功率开关管、二极管、电感器和电容器等组成的。

功率开关管可以是半导体功率三极管,也可以是MOSFET、SCR、IGBT、集成稳压器等。

本文以IGBT 为例说明其在开关电源中的应用。

根据功率开关管在输入和输出之间的位置,基本开关电路可分为串联开关电路、并联开关电路和串—并联开关电路等几种。

下面分别予以论述。

1.1 串联开关电路串联开关电路也叫降压开关电路或Buck 电路。

串联开关电路的原理图和等效电路图如图1-l(a)、(b)所示。

图1-1 串联开关电路的原理图和等效电路图由图1-l(a)可以看出,串联开关电路由功率开关管V1 (IGBT)、续流二极管V2、电感L和电容C组成,Vl受占空比为0的脉冲的控制,交替导通或关断,再经L和C组成的滤波器,在负载R上得到直流输出电压Uo,从而完成将脉动的直流输入电压Vcc变换成平滑直流输出电压Uo的功能。

采用图1-l(b)所示的等效电路图来分析串联开关电路的稳态工作过程。

功率开关管VI用一开关S来代替。

当开关S处于位置l(闭合)时,表示Vl处于导通状态;当开关 S处于位置 2(断开)时,表示Vl 处于关断状态。

开关管VI处于导通和关断状态时的等效电路如图1-2所示。

图1-2(a)为Vl处于导通状态时的等效电路。

输入电流ii=iL(iL为电感电流),iL流过电感L时,在电感器达到饱和之前,电流iL线性增加,负载R 流过电流I。

,R上的电压即输出电压Uo,其极性为上正下负。

当ii>I。

时,电容C处于充电状态,而二极管V2处于反偏置状态。

图1-2(b)为Vl处于关断状态时的等效电路。

由于开关管关断,ii=0,而电感中的电流 iL不会发生突变,电感I中的磁场将改变L两端的电压UL的极性,以维持电流 iL不变。

负载R上的电压U。

仍保持上正下负。

在iL <I。

时,电容C处于放电状态,以维持电流Io不变,即保持输出电压Uo (I。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档