电磁波的基础知识点-完整版

无线电基础知识

1.2 选择题 1,属于特高频(UHF)的频带范围是(D )。 A、400~2000MHz B、300~2000MHz C、400~3000MHz D、300~3000MHz 2,IMP缩写代表(B ) A、放大增益 B、互调产物 C、网间协议 D、互调截获点 3,10W功率可由dBm表示为(D )。 A、10dBm B、20dBm C、30dBm D、40dBm 4,频率在(A )以下,在空中传播(不用人工波导)的电磁波叫无线电波。 A、3000GHz B、3000MHz C、300MHz D、300GHz 5,频率范围在30-300MHz的无线电波称为(A)。 A、米波 B、分米波 C、厘米波 D、毫米波 6,无线电监测中,常用一些单位有dBuv、dBm等,dBm是(C )单位。 A、电压 B、带宽 C、功率 D、增益 7,目前中国移动的GSM系统采用的是以下哪种方式(B )。 A、FDMA B、TDMA C、CDMA D、SDMA 8,PHS个人移动系统信道带宽为(A)。 A、288kHz B、200kHz C、25kHz D、30kHz 9,CDMA移动系统信道带宽为(A)。 A、1.23MHz B、1.5MHz C、1.75MHz D、1.85MHz 10,0dBW=(C)dBm. A、0 B、3 C、30 11,比2.5W主波信号低50dB的杂波信号功率是(B)μW。 A、2.5 B、25 C、250 12,频谱分析仪中的RBW称为(B)。 A、射频带宽 B、分辨率带宽 C、视频带宽 13,根据GB12046—89规定,必要带宽为1.5MHz的符号标识为(A )。 A、1M50 B、15M0 C、150M 14,发射频谱中90%能量所占频带宽度叫做(A )。 A、必要带宽 B、占用带宽 C、工作带宽 15,一发射机发射功率为10W,天线增益10dB,馈线损耗5dB,则有效辐射功率为(B)。 A、25dBW B、15dBW C、5dBW 16,电视伴音载频比图像载频(A)。 A、高 B、低 C、相等 17,在微波段中表述频段,字母代码S和C对应的频段是(C)。 A、1—2GHz和4/6GHz B、18—40GHz和8/12GHz C、2.5GHz和4/6GHz D、 4.8GHz和4/8GHz 18,联通CDMA下行与移动GSM上行频段之间只有(A )MHz保护带。 A、5 B、10 C、15 19,从广义来讲,产生莫尔斯码的调制方法是(A): A、ASK B、FSK C、PSK D、DAM 20,无线电频谱可以依据(A,B,C,D)来进行频率的复用。

1 电磁波基础知识

1 电磁波基础知识 1.1电磁场基本定义 交变电磁场的性质 在某空间内,任何电荷由于它本身的存在,受有一种与电荷成比例的力,则这空间内所存在的物质,也就是给电荷以作用力的物质称为电场。如果电场的存在是由于电荷的存在,则这种电场是符合库仑定律的,称为库仑电场。静止电荷周围所存在的电场,则称为静电场,它是库仑电场的一种特殊情形。运动电荷受到作用力的空间称为有磁场存在的空间。而且将这种了称为磁力。 此外,一个变动的磁场产生一个电场,此电场不但存在于变动磁场的范围里,并且还存在于邻近的范围里。同样,一个变动的电场在发生变动的范围和变动附近的范围里产生一磁场。 可见,不仅电荷可以产生电场,变化的磁场也能产生电场,不仅传导电流可以产生磁场,变化的电场(位移电流)也能产生磁场。 电磁波的性质 在空间的一定范围里无论是电或磁的情况有了一个扰动,那么这个扰动就不能被限制在该范围之内。在该范围里变动的场也在它附近的范围里产生场,这些场又在更外围的空间产生场,于是能量便被传播开来。当这种现象连续进行时,即有一含有电磁能量的波向外传播电磁波。 电磁发射:从源向外发射电磁能的现象。 电磁环境:存在于给定场所(空间)的所有电磁现象(包括全部时间和全部频谱)的总和。 电磁兼容:设备或系统在其中电磁环境中能正常工作且不对该环境中任何事务构成不能承受的电磁骚扰的能力。 电磁干扰:电磁骚扰引起的设备、传输通道或系统性能的下降。 近场和远场: 我们知道,静电场、静磁场等静态场中是没有近场和远场之分,有场源就有场。静电荷周围的静电场,是随着与场源距离的增大而成平方反比的关系衰减的;而恒定电流产生的静磁场,则随着与场源距离的增大而成立方反比的关系衰减。当电磁场由静态场过渡到时变场时,电荷、电流周围依然存在电磁场,称为感应场或近场;此外,还出现一种新的电磁场成分,称为辐射场或远场,它是脱离电荷、电流并以电磁波的形式向外传播的电磁场。它一旦从电荷、电流等场源辐射出去,就按自身的规律运动,与场源后来的状态没有关系。感应场或近场是随着与场源距离的增大而成平方反比关系衰减的,而辐射场或远场仅与距离成反比关系衰减。 由于近场离场源较近,其场强要比远场大得多。随着离天线距离的增加,电场强度和磁场强度迅速减少。所以,近场的空间不均匀度较大,是一个复杂的非均匀场。场中包括储存的能量和辐射的能量,有驻波也有行波,等相位面很不规则,电磁波极化不易确定,场强变化梯度大等。 无论场源是电场源还是磁场源,当离场源距离大于λ/2π以后就变成了远场,这里λ为波长。这时电场和磁场方向垂直并且都和传播方向垂直成为平面电磁波。电场和磁场的比值为固定值,即波阻抗为120π,等于377欧姆。 由于远场距离场源远,场强一般较弱。由于电场和磁场随场源的距离成反比衰减,所以比近场的衰减慢的多,因此空间变化梯度小,比较均匀。 总之,近场的电场和磁场之间存在π/2的相位差,由它们构成的平均坡印亭矢量为零,大部分能量在电场和磁场之间,以及场和源之间交换而不辐射,很小一部分能量向外辐射,并在λ/2π距离以

电磁场与电磁波学习心得

电磁场与电磁波学习心得 在开始学习“电磁场与电磁波”之前,当我听到其学科名称的时候就产生了一种高深莫测的感觉,觉得电磁场应该是比较难的。但是出于对知识的渴望我怀着一颗求知的心投入了这个“新奇的”知识海洋。 当接触了“电磁场与电磁波”并开始学习的时候这种所谓的惧怕感还是依旧存在。每当读到某个科学家经过了反复的实验从而发现了一个著名的定理或是公式的时候我都非常向往,无疑这些名人事迹提高了我的学习兴趣。但是每当看到一个个繁杂的公式与难于理解的论证的时候,这都让我感到这门课程的难度之高。然而每当专心下来仔细思考,一点一点的从基础公式去推演论证的时候,我又能感受到其在科学与生活方面的独特魅力。 纵观电磁波发展史,人们很早就接触到电和磁的现象,并知道磁棒有南北两极。在18世纪,发现电荷有两种:正电荷和负电荷。不论是电荷还是磁极都是同性相斥,异性相吸,作用力的方向在电荷之间或磁极之间的连接线上,力的大小和它们之间的距离的平方成反比。但长期以来,人们只是发现了电和磁的现象,并没有发现电和磁之间的联系。后来奥斯特、安培、法拉第等人的研究又使人类又电磁波的认识进步了一个阶梯,19世纪中叶伟大的理论物理学家麦克斯韦总结了前人关于电磁学的研究成果,建立了完整的电磁场理论。这使得人们对电磁波的有了相对成熟的认识。 可以说电磁场理论是工科电类专业的一门重要的技术基础课。它在物理电磁学的基础上,进一步研究了宏观电磁现象的基本规律和分析方法,是深入理解和分析工程实际中电磁问题所必须掌握的基本知识。它的地位我觉得就像英语中的语法,用来分析句子和文章的成分结构,没有它我们只能死记硬背一些公式与结论,而利用了电磁理论就能很容易的分析一些实质性的问题从而有更加深刻的体会。很多实际工程问题只有通过电磁场才能揭示其本质。对电磁场的学习使我认识很多物理现象的本质。电磁场由相互依存的电磁和磁场的总和构成的一种物理场。电场随时间变化时产生磁场,磁场随时间变化时又产生电场,两者互为因果,形成电磁场。电磁波是电磁场的一种运动形态。电与磁可说是一体两面,电流会产生磁场,变动的磁场则会产生电流。变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播形成了电磁波,电磁的变动就如同微风轻拂水面产生水波一般,因此被称为电磁波,也常称为电波。电磁场与电磁波在实际生产、生活、医学、军事等领域有着广泛的应用,具有不可替代的作用。如果没有发现电磁波,现在的社会生活将是无法想象的。

电磁场与电磁波基础知识总结

第一章 一、矢量代数 A ?B =AB cos θ A B ?= AB e AB sin θ A ?(B ?C ) = B ?(C ?A ) = C ?(A ?B ) ()()()C A C C A B C B A ?-?=?? 二、三种正交坐标系 1. 直角坐标系 矢量线元x y z =++l e e e d x y z 矢量面元=++S e e e x y z d dxdy dzdx dxdy 体积元d V = dx dy dz 单位矢量的关系?=e e e x y z ?=e e e y z x ?=e e e z x y 2. 圆柱形坐标系 矢量线元=++l e e e z d d d dz ρ?ρρ?l 矢量面元=+e e z dS d dz d d ρρ?ρρ? 体积元dz d d dV ?ρρ= 单位矢量的关系?=??=e e e e e =e e e e z z z ρ??ρ ρ? 3. 球坐标系 矢量线元d l = e r d r + e θ r d θ + e ? r sin θ d ? 矢量面元d S = e r r 2sin θ d θ d ? 体积元 ?θθd d r r dV sin 2= 单位矢量的关系?=??=e e e e e =e e e e r r r θ? θ??θ 三、矢量场的散度和旋度 1. 通量与散度 =?? A S S d Φ 0 lim ?→?=??=??A S A A S v d div v 2. 环流量与旋度 =??A l l d Γ max n rot =lim ?→???A l A e l S d S 3. 计算公式 ????= ++????A y x z A A A x y z 11()z A A A z ?ρρρρρ?????= ++????A 22111()(s i n )s i n s i n ????= ++????A r A r A A r r r r ? θ θθθθ? x y z ? ????= ???e e e A x y z x y z A A A 1z z z A A A ρ?ρ?ρρ?ρ? ?? ??= ???e e e A

电磁场与电磁波学科发展历程

电磁场与电磁波学科发展历程 一.早期的电磁学研究 早期的电磁学研究比较零散,下面按照时间顺序将主要事件列出如下: 1650年,德国物理学家格里凯在对静电研究的基础上,制造了第一台摩擦起电机。1720年,格雷研究了电的传导现象,发现了导体与绝缘体的区别,同时也发现了静电感应现象。1733年,杜菲经过实验区分出两种电荷,称为松脂电和玻璃电,即现在的负电和正电。他还总结出静电相互作用的基本特征,同性排斥,异性相吸。1745年,荷兰莱顿大学的穆欣布罗克和德国的克莱斯特发明了一种能存储电荷的装置-莱顿瓶,它和起电机一样,意义重大,为电的实验研究提供了基本的实验工具。1752年,美国科学家富兰克林对放电现象进行了研究,他冒着生命危险进行了著名的风筝实验,发明了避雷针。 1777年,法国物理学家库仑通过研究毛发和金属丝的扭转弹性而发明了扭秤。1785-1786年,他用这种扭秤测量了电荷之间的作用力,并且从牛顿的万有引力规律得到启发,用类比的方法得到了电荷相互作用力与距离的平反成反比的规律,后来被称为库仑定律在早期的电磁学研究中,还值得提到的一个科学家是大家都已经在中学物理课本中学过的欧姆定律的创立者-欧姆。欧姆,1787年3月16日生于德国埃尔兰根城,父亲是锁匠。父亲自学了数学和物理方面的知识,并教给少年时期的欧姆,唤起了欧姆对科学的兴趣。16岁时他进入埃尔兰根大学研究数学、物理与哲学,由于经济困难,中途缀学,到1813年才完成博士学业。欧姆是一个很有天才和科学抱负的人,他长期担任中学教师,由于缺少资料和仪器,给他的研究工作带来不少困难,但他在孤独与困难的环境中始终坚持不懈地进行科学研究,自己动手制作仪器。欧姆对导线中的电流进行了研究。他从傅立叶发现的热传导规律受到启发,导热杆中两点间的热流正比于这两点间的温度差。因而欧姆认为,电流现象与此相似,猜想导线中两点之间的电流也许正比于它们之间的某种驱动力,即现在所称的电动势,并且花了很大的精力在这方面进行研究。开始他用伏打电堆作电源,但是因为电流不稳定,效果不好。后来他接受别人的建议改用温差电池作电源,从而保证了电流的稳定性。但是如何测量电流的大小,这在当时还是一个没有解

无线电波的传播特性修订版

无线电波的传播特性 Document number:PBGCG-0857-BTDO-0089-PTT1998

无线电波的传播特性 无线电通信就是不用导线,而利用电磁波振荡在空中传递信号,天线就是波源。电磁波中的电磁场随着时间而变化,从而把辐射的能量传播至远方。 在莫尔斯和贝尔先后发明了有线电报和电话之后,很多科学家对电磁现象大量研究。直到1831年,在英国,法拉弟首先发现了电磁感应现象,并且预言:电与磁的传播是和光一样的一种波。 英国科学家麦克斯韦从1850年就开始对法拉弟提出的课题展开研究。他总结了前人的研究成果,用数学方法对法拉弟的电磁场思想做了严格的论证,并在1864年做出“电与磁的交替转化过程,是一种波的传播形式,是一种光波”的论断,他称这种波为电磁波。 在麦克斯韦首先提出电磁理论后,又过了24年,才由德国伟大的物理学家赫兹通过实验证实了麦氏理论的正确。赫兹设计了一个能够接收电火花的装置,结构极简单。把一根导线弯成圆形,使两端之间仅留一微小的间隙,称它为“共振子”。“共振子”为什么也有火花发生呢赫兹认为,这一定是电振荡以电磁波形式通过空间传播过去的。赫兹于1888年公布了自己的实验结果,证实了电磁波的存在。 赫兹的实验成果震惊了世界,许多科学家继续开展对电磁波的研究。1890年,法国物理学家布朗利发现,将金属粉末即紧缩成块,但是它的电阻减小了,使电流容易通过。这种装有金属粉未的玻璃管被称为“布朗利管”,又称“粉末检波器”,它接收电磁波的灵敏度比赫兹的“共振子”要高得多。 1894年,20岁的意大利青年马可尼从杂志上读到悼念赫兹的文章和他生前的感人事迹,受到极大启发:“如果利用赫兹发现的电磁波,不需要导线也可以实现远距离通信了”。马可尼为自己的大胆设想所激动下宏愿,决心开拓无线电通信事业,把赫兹的研究成果付诸实际应用。在家人的支持下,马可尼就在自己家中进行实验,他用赫兹的火花放电器作发射机,用布朗利的金属粉未检波器作接收机经过一个多月的努力,终于完成了电磁波的发送和接收实验,并在实

人教版九年级物理第二十章信息的传递基础知识点

第二十章 信息的传递 知识网络构建 ()()()81876310 m/s γX c c f c f λλ??→??→???????????=?????=??电话的发明:年,贝尔构造:话筒(声音变化的电流),听筒电话 (变化的电流声音)电话交换机通信方式:模拟通信和数字通信产生:电流的迅速变化会在空间里激起电磁波不需要介质光波也是电磁波,真空中波速:电磁波传播波速、波长、频率之同的关系:家族:射线、射线、紫外线、可见光、红外线、微波、信无线电波息的传递 50 km ?????????????????????? ???? ? ????? ??????????? 无线电广播信号的发射与接收广播、电视和移动通信电视信号的发射与接收移动电话(工作原理、基地台) 微波透信:每隔左右需建设一个中继站驭星通信:用通信卫星做微波通信的中继站信息之路光纤通信:以激光为信息载体在光导纤维里传播网络通信:利用因特网实现资源共享和信息传递 知识能力解读 (一)信息 通俗地讲,信息是各种事物发出的有意义的消息。消息中包含的内容越多,信息量越大。语言、符号、图像是人类特有的三种信息。 在人类历史上,信息和信息的传播经历了五次巨大的变革:(1)语言的诞生;(2)文字的诞生;(3)印刷术的诞生;(4)电磁波的应用;(5)计算机技术的应用。每一次变革都推动了生产力的巨大发展,促进了人类文明的进步。 (二)电话 1.电话的组成: 话筒、听筒、电源。如图所示。

2.电话的基本原理:话筒中膜片振动产生变化的电流,使听筒中膜片振动。 3.话筒和听筒的组成 (1)话筒的组成:话筒由金属盒、炭粒、振动膜片组成。 (2)听筒的组成:听筒由电磁铁和膜片组成。 4.电话的工作原理 说话引起话筒金属盒内的炭粒忽松忽紧一电路中电阻忽大忽小一电路中电流忽小忽大一听筒内电磁铁的磁性忽弱忽强一膜片受到的磁力忽小忽大一引起膜片振动而发声。 (三)程控电话交换机 程控电话交换机是一种由计算机控制的自动电话交换机,利用其程序存储控制功能,为用户提供丰富的服务项目。用户只要在当地营业厅登记,并在电话机上进行正确操作,就可方便地使用各种新服务项目。程控交换机的速度快、容量大、使用灵活、可靠性高,可以提供多方通话。 图示 信号与声音 的关系 信号电流的 形式 优缺点应用 模拟信号 与声音的变 化情况相仿 连续的 信号易丢失、 失真 现在常常通 过模、数转 换,将它转换 成数字信号, 方便用计算 机处理 数字信号 用两个数据 的组合表示 声音的变化 离散的 抗干扰能力 强,易加工处 理 通信的发展 趋势 (五)电磁波的产生 如果在空间某处产生了一个随时间变化的电场,这个电场就会在空间产生磁场,如果这个磁场也是随时间变化的,那么它又会在空间产生新的电场……如图所示,这个变化的电场和磁场不局限于空间某个区域,而是由近及远地传播开去。电磁场的这种传播就形成了电磁波,即导体中电流的迅速变化会在空间激起电磁波。 (六)电磁波的传播 电磁波的传播是不需要介质的,在真空中的传播速度等于光速(3×108 m/s)。

电磁场与电磁波发展史教学总结

电磁场与电磁波发展 史

电磁场与电磁波发展史 这学期,我们学习了《电磁场与电磁波》这门课程,课程虽已结束,但在学习过程中获得的知识却会让我们每个人受益终身。每一门学科都有一个发展完善的过程,我将用自己查阅到的资料与自己的理解简单介绍一下电磁场与电磁波的发展史。 电磁学是研究电磁现象的规律的学科,其中,在电磁学里,电磁场(elect- -romagnetic field)是一种由带电物体产生的一种物理场;电磁波(electromagnetic wave)(又称电磁辐射)是由同相振荡且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场构成的平面,有效的传递能量和动量。关于电磁现象的观察记录,可以追溯到公元前6世纪希腊学者泰勒斯(Thales),他观察到用布摩擦过的琥珀能吸引轻微物体,英文中“电”的语源就来自希腊文“琥珀”一词。在我国,最早是在公元前4到3世纪战国时期《韩非子》中关于司南(一种用天然磁石做成的指向工具)和《吕氏春秋》中有关“慈石召铁”的记载。由此可见,电磁现象很早就已经被发现。然而真正对电磁现象的系统研究则要等到十六世纪以后,并且静电学的研究要晚于静磁学,这是由于难以找到一个能产生稳定静电场的方法,这种情况一直持续到1660年摩擦起电机被发明出来。十八世纪以前,人们一直采用这类摩擦起电机来产生研究静电场,代表人物如本杰明·富兰克林。人们在这一时期主要了解到了静电力的同性相斥、异性相吸的特性、静电感应现象以及电荷守恒原理。后来,人们曾将静电力与在当时已享有盛誉的万有引力定律做类比,发现彼此在理论和实验上都有很多相似之处,包括实验观测到带电球壳内部的球体

经典电磁场理论发展简史..

电磁场理论发展史 ——著名实验和相关科学家 纲要: 一、定性研究 1、吉尔伯特的研究 2、富兰克林 二、定量研究 1、反平方定律的提出 2、电流磁效应的发现 3、电磁感应定律及楞次定律 4、麦克斯韦方程 5、电磁波的发现 三、小结 一、定性研究 1、吉尔伯特的研究 他发现不仅摩擦过的琥珀有吸引轻小物体的性质,而且一系列其他物体如金刚石、水晶、硫磺、明矾等也有这种性质,他把这种性质称为电性,他是第一个用“电力”、“电吸引”、“磁极”等术语的人。吉尔伯特把电现象和磁现象进行比较,发现它们具有以下几个截然不同的性质: 1.磁性是磁体本身具有的,而电性是需要用摩擦的方法产生; 2.磁性有两种——吸引和排斥,而电性仅仅有吸引(吉尔伯特不知道有排斥); 3.磁石只对可以磁化的物质才有力的作用,而带电体可以吸引任何轻小物体; 4.磁体之间的作用不受中间的纸片、亚麻布等物体的影响,而带电体之间的作用要受到中间这些物质的影响。当带电体浸在水中,电力的作用可以消失,而磁体的磁力在水中不会消失; 5.磁力是一种定向力,而电力是一种移动力。

2、富兰克林的研究 富兰克林(公元1706一1790)原来是费城的印刷商,他通过书本和科学上的来往获得了丰富知识,他利用莱顿瓶做出的第一项重要工作,是根据莱顿瓶内外两种电荷的相消性,在杜菲的“玻璃电”和“树脂电”的基础上提出正电和负电的概念。 富兰克林所做的第二项重要工作是统一了天电和地电。 二、定量研究 1、反平方定律的提出 1750年前后,彼得堡科学院院士埃皮努斯在实验中发现;当发生相互作用的电荷之间的距离缩短时,两者之间的吸引力和排斥力便增加。1766年富兰克林写信给他在德国的一位朋友普利斯特利(公元1733一1804),介绍了他在实验中发现在金属杯中的软木球完全不受金属杯电性的影响的现象。他请普利斯特利给予验证。 英国科学家卡文迪许在1772年做了一个电学实验,他用一个金属球壳使之带电,发现电荷全部分布在球壳的外表面,球腔中任何一点都没有电的作用。 法国物理学家库仑(公元1736—1806),起先致力于扭转和摩擦方面的研究。由于发表了有关扭力的论文,于1781年当选为国家科学院院士。他从事研究毛发和金属丝的扭转弹性。1784年法国科学院发出船用罗盘最优结构的悬奖征文,库仑转而研究电力和磁力问题。 1785年库仑自制了一台精巧的扭秤,作了电的斥力实验,建立了著名的库仑定律:两电荷之间的作用力与其距离的平方成反比,和两者所带电量的乘积成正比。 公式:F=k*(q1*q2)/r^2 2、电流磁效应的发现 丹麦物理学家奥斯特(公元1777—1851)首次发现电流磁效应,揭开了电和磁两种现象的内在联系,从此开始了电磁学的真正研究。 1820年4月在一次关于电和磁的讲课快结束时,他抱着试试看的心情做了实验,在一根根细的铂丝导线的下面放一个用玻璃罩罩着的小磁针,用伽伐尼电池将铂丝通电,他发现磁针偏转,这现象虽然未引起听讲人的注意,却使他非常激

无线电波传播模型与覆盖预测

无线电波传播模型 与 覆盖预测 河北全通通信有限责任公司 工程部网络服务组 二0 0二年四月二十日

第一节无线传播理论 1.1 无线传播基本原理 在规划和建设一个移动通信网时,从频段的确定、频率分配、无线电波的覆盖范围、计算通信概率及系统间的电磁干扰,直到最终确定无线设备的参数,都必须依靠对电波传播特性的研究、了解和据此进行的场强预测。它是进行系统工程设计与研究频谱有效利用、电磁兼容性等课题所必须了解和掌握的基本理论。 众所周知,无线电波可通过多种方式从发射天线传播到接收天线:直达波或自由空间波、地波或表面波、对流层反射波、电离层波。如图1-1所示。就电波传播而言,发射机同接收机间最简单的方式是自由空间传播。自由空间指该区域是各向同性(沿各个轴特性一样)且同类(均匀结构)。自由空间波的其他名字有直达波或视距波。如图1-1(a),直达波沿直线传播,所以可用于卫星和外部空间通信。另外,这个定义也可用于陆上视距传播(两个微波塔之间),见图1-1(b)。 第二种方式是地波或表面波。地波传播可看作是三种情况的综合,即直达波、反射波和表面波。表面波沿地球表面传播。从发射天线发出的一些能量直接到达接收机;有些能量经从地球表面反射后到达接收机;有些通过表面波到达接收机。表面波在地表面上传播,由于地面不是理想的,有些能量被地面吸收。当能量进入地面,它建立地面电流。这三种的表面波见图1-1(c)。第三种方式即对流层反射波产生于对流层,对流层是异类介质,由于天气情况而随时间变化。它的反射系数随高度增加而减少。这种缓慢变化的反射系数使电波弯曲。如图1-1(d)所示。对流层方式应用于波长小于10米(即频率大于30MHz)的无线通信中。第四种方式是经电离层反射传播。当电波波长小于1米(频率大于300MHz)时,电离层是反射体。从电离层反射的电波可能有一个或多个跳跃,见图1-1(e)。这种传播用于长距离通信。除了反射,由于折射率的不均匀,电离层可产生电波散射。另外,电离层中的流星也能散射电波。同对流层一样,电离层也具有连续波动的特性,在这种波动上是随机的快速波动。蜂窝系统的无线传播利用了第二种电波传播方式。这一点将在后文中论述。 在设计蜂窝系统时研究传播有两个原因。第一,它对于计算覆盖不同小区的场强提供必要的工具。因为在大多数情况下覆盖区域从几百米到几十公里,地波传播可以在这种情况下应用。第二,它可计算邻信道和同信道干扰。 预测场强有两种方法。第一种纯理论方法,适用于分离的物体,如山和其他固体物体。但这种预测忽略了地球的不规则性。第二种基于在各种环境的测量,包括不规则地形及人为障碍,尤其是在移动通信中普遍存在的较高的频率和较低的移动天线。第三种方法是结合上述两种方法的改进模型,基于测量和使用折射定律考虑山和其他障碍物的影响。在蜂窝系统中,至少有两种传播模型,第一种是FCC建议的模型。第二种设计模型由Okumura提供,覆盖边

无线基础知识与基本概念-知识点汇总

一.基础知识与基本概念 1. 第一代移动通信系统的主要特点是利用模拟传输方式实现话音业务;系统无线信道的随机变参特征使无线电波受多径快衰落和阴影慢衰落的影响 2. 第二代蜂窝移动通信系统以数字传输方式实现话音和低速数据业务。 3. 第三代蜂窝移动通信系统以更高速的数据业务和更好的频谱利用率为目标,采用宽带CDMA为主流技术,目前已形成两类三种空中接口标准,即WCDMA - FDD(简称WCDMA)、WCDMA - TDD(简称TD-SCDMA)和CDMA2000。 它的主要特点是:(可能多选题) 1) 新型的调制技术,包括多载波调制和可变速率调制技术; 2) 高效的信道编译码技术,除了沿用第二代的卷积码外,还对高速数据采用了Turbo 纠错编码技术; 3) Rake接收多径分集技术以提高接收灵敏度和实现软切换; 4) 软件无线电技术易于多模工作; 5) 智能天线技术有利于提高载干比; 6) 多用户检测技术以消除和降低多址干扰; 7) 可与固定网中的电路交换和分组交换网很好地相适应,满足各类用户对话音及高、中、低速率数据业务的需求。 4. “双工”两种方式:当收信和发信采用一对频率资源时,称为“频分双工”(FDD);而当收信和发信采用相同频率仅以时间分隔时称为“时分双工”(TDD)。 5. “多址”(Multi Access)技术:是指在多信道共用系统中,终端用户选择通信对象的传输方式,在蜂窝移动通信系统中,用户可以通过选择“频道”、“时隙”或“PN码”等多种方式进行选址,它们分别对应地被称为“频分(Frequency Division)多址”、“时分(Time Division)多址”和“码分(Code Division)多址”,简称FDMA、 TDMA和CDMA. 6. 发信功率及其单位换算: 1 dBW = 30dBm 7. 无线接收机的灵敏度是接收弱信号能力的量度,通常用μv、dBμv、dBmW表示; 电压电平(μv和dBμv)或功率电平(dBm) 8. 三阶互调干扰的特点(可能多选题): 1) 将发信频谱扩大了三倍; 2) 三阶互调产物以三倍(dB)数增加; 3) 互调产物对接收系统的影响应按被干扰系统的多址方式决定; 9. 香农定律:香农(shannon)信道容量公式可以用来论证信噪比,信道带宽和信道容量之间的关系,即: a) P?C=Blog2? 1+r???

电磁场与电磁波学习感悟

浅谈麦克斯韦方程组与电磁学感悟 概述 麦克斯韦方程组是英国物理学家麦克斯韦在19世纪建立的描述电场与磁场的四个基本方程。方程组的微分形式,通常称为麦克斯韦方程。在麦克斯韦方程组中,电场和磁场已经成为一个不可分割的整体。该方程组系统而完整地概括了电磁场的基本规律,并预言了电磁波的存在。 历史背景与提出过程 1845年,关于电磁现象的三个最基本的实验定律:库仑定律(1785年),安培—毕奥—萨伐尔定律(1820年),法拉第定律(1831-1845年)已被总结出来,法拉第的“电力线”和“磁力线”概念已发展成“电磁场概念”。 法拉第用直观、形象、自然的语言表述的物理观念发表之后,由于没有严密的数学论证,仅有少数理论物理学家对它表示欢迎,而大多数都认为缺乏理论的严谨性。麦克斯韦非常钦佩法拉第的思想,把法拉第天才的观念用清晰准确的数学形式表示出来,使之更具有深刻性和普遍性。 麦克斯韦与法拉第不同,他是一位极优秀的数学家,具有很高的数学天赋,早年的兴趣主要在纯数学方面,他是英国著名数学家霍普金斯(W,H“妙ins)的研究生,在这位数学家的指导下,不到三年就基本上掌握了当时所有先进的数学方法,成为一名有为的青年数学家,并且,麦克斯韦在他的直接影响下,很注重数学的应用,这一点对日后完成电磁场理论无疑是很关键的。 麦克斯韦本着为法拉第观念提供数学方法的思想,认真分析了法拉第的场和力线,同时考察了诺伊曼(F.E.Neumann,1795一1595)和韦伯(w.E.Weber,1804一1891)所发展起来的超距作用的电磁理论,发现“其假设中所包含着的机制上的困难”决定从“另一方面寻找对事实的解释”。他继承了法拉第的场观念和近距作用J思想,于1855年发表了其电磁学的第一篇重要论文一一《论法拉第的力线》。采用几何观点,类比流体力学理论,对法拉第的场作了精确的数学处理,将这一物理观念表示为清晰的几何图象,对电磁感应作了定量表述,导出了电流周围磁力线与磁力的关系,建立了描述电流和磁力线的一些物理量之间定量关系的微分方程,可以说这是把法拉第的物理成功地翻译成了数学,用数学方程描述法拉第力线。虽然还没有解决物理现象的

【科普】电磁波的基础知识

科普】电磁波的基础知识 ,radar )是指“发射电雷达(radio diction and ranging 磁波信号并接收在其作用范围内的被观测 物体(目标)的回 波的装置”。电磁波能量从雷达硬件输出到天线,再从天线辐

射出去,而后从一个或多个物体返回的回波通过先前辐射能量的天线接收,最后传输回雷达的硬件设备。在雷达术语中最为关键的一词为——电磁波。那么,电磁波是什么呢?早在1865 年James Clerk Maxwell 提出了电磁基本方程(麦克斯韦方程)预测了电磁波的存在,并指出电磁波是由波动的电场和磁场构成,传播速度可通过自由空间的基本电磁属性来计算。我们常见的可见光就是电磁波的一种,其波长范围为380-780nm 。通常情况下温度高于绝对零度的物质或粒子都有电磁辐射,温度越高辐射量越大,但大多不能被肉眼观察到。 后来,Hertiz 证明了不可见的电磁波的存在,我们称之为无 线电波。现在,我们知道了电磁波有一个连续的波谱,包括通常“雷达”术语是指利用无线电波的系统。电磁场包含电场与磁场两个方面,分别用电场强度E 或电位移D 及磁通密度 无线电波、红外线、可见光、紫外线、射线、Y射线。 B (或磁场强度H)表示其特性;E和H在空间上都是正弦 变化的。在相位上,电场和磁场相互垂直,并且都垂直于传 播方向。每秒通过某特定位置的波峰的个数成为频率(f), 可用每秒的周期数来量度(赫兹Hz)。在雷达系统中,频率通常指载波的频率。两个相邻波峰之间的距离成为波长 波长与频率的关系:入=c/f=2 n /入=2n f/c。瞬时的能量通量密 度(w/m2 )为|S|=E X H,S为波印亭矢量。我们常说的真空 中的光速,也就是电磁波的真空速度c=299792458m/s ,利用光速人们定义了米这个长度单位。光速的近似值为 3T0A8m/s,除少数特殊情况外,工程上一般使用近似值。 电与磁可说是一体两面,电流会产生磁场,变动的磁场则会产生电流。变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播形成了电磁波,电磁的变动

无线电传输基本知识2

无线影音传输基本知识 前言 一提到无线传输,面前满是迷惑的眼睛。唉!苦也!去那什么科技书店看看有什么好玩的无线电小玩艺的书吧!很有趣的,越深入越有趣,真的不骗你,会迷倒一片的…... 下面我们复习一下常识。 一、电波是什么?电波是怎么传输的? 把它想象成由近及远或由远及近的波浪也行。 二、无线电波的频率、波长、速度 速度(υ)= 波长(λ)* 频率(?) 单位: 速度(υ)—m/s (米/秒) 波长(λ)—m (米) 频率(?)—Hz (赫兹) 光速(c)=3 X 108 m/s ? = c * λ 频率划分例子频率波长 市电: 50Hz 6000Km FM收音机100MHz 3m 手机GSM 900MHz 333mm 我们1.2G 1.2GHz 250mm 市话通 1.8GHz 167mm 我们2.4G 2.4GHz 125mm C波段卫星 4.0GHz 75mm Ku波段卫星12.0GHz 25mm 可见红光430GHz 0.7um 注:1GHz=1000MHz, 1MHz=1000kHz, 1KHz=1000Hz 1m=1000mm, 1mm=1000um(微米), 1um=1000nm(纳米) 当波长短到一定程度(微波段),无线电波就可像光线一样进行聚焦,定向传输. 三、无线电波的功率 衡量无线电波功率的常用单位:uW、mW、W、kW、dBm、dBW; 衡量无线电波电平的常用单位:dBuV、dBmV; 这些单位之间的换算关系如下: 1、功率单位之间的换算: 1kW=1000W 1W =1000mW 1mW=1000uW 1uW=1000nW dBm=10*log(Px/1mW) Px的单位为:mW dBW=10*log(Px/1W) Px的单位为:W 常用数据对照表: mW dBm 10 5 7

高中物理电磁波知识点总结

高中物理电磁波知识点总结 麦克斯韦电磁场理论知识点的核心思想是:变化的磁场可以激发涡旋电场,变化的电场可以激发涡旋磁场;电场和磁场不是彼此孤立的,它们相互联系、相互激发组成一个统一的电磁场.麦克斯韦进一 步将电场和磁场的所有规律综合起来,建立了完整的电磁场理论体系.这个电磁场理论体系的核心就是麦克斯韦方程组, 麦克斯韦方程组是由四个微分方程构成,: (1)描述了电场的性质.在一般情况下,电场可以是库仑电场也可以是变化磁场激发的感应电场,而感应电场是涡旋场,它的电位移线 是闭合的,对封闭曲面的通量无贡献, (2)描述了磁场的性质.磁场可以由传导电流激发,也可以由变化电场的位移电流所激发,它们的磁场都是涡旋场,磁感应线都是闭合线,对封闭曲面的通量无贡献. (3)描述了变化的磁场激发电场的规律。 (4)描述了变化的电场激发磁场的规律, 麦克斯韦方程都是用微积分表述的,具体推导的话要用到微积分,高中没学很难理解,我给你把涉及到的方程写出来,并做个解释,你要是还不明白的话也不用着急,等上了大学学了微积分就都能看懂了: 1、安培环路定理,就是磁场强度沿任意回路的环量等于环路所包围电流的代数和. 2、法拉第电磁感应定律,即电磁场互相转化,电场强度的弦度等于磁感应强度对时间的负偏导. 3、磁通连续性定理,即磁力线永远是闭合的,磁场没有标量的源,麦克斯韦表述是:对磁感应强度求散度为零. 4、高斯定理,穿过任意闭合面的电位移通量,等于该闭合面内部的总电荷量.麦克斯韦:电位移的散度等于电荷密度,

1.振荡电流和振荡电路 大小和方向都做周期性变化的电流叫振荡电流,能产生振荡电流的电路叫振荡电路,LC电路是最简单的振荡电路。 2.电磁振荡及周期、频率 (1)电磁振荡的产生 (2)振荡原理:利用电容器的充放电和线圈的自感作用产生振荡 电流,形成电场能与磁场能的相互转化。 (3)振荡过程:电容器放电时,电容器所带电量和电场能均减少,直到零,电路中电流和磁场均增大,直到最大值。 给电容器反向充电时,情况相反,电容器正反方向充放电一次,便完成一次振荡的全过程。 (4)振荡周期和频率:电磁振荡完成一次周期性变化所用时间叫 电磁振荡的周期,一秒内完成电磁振荡的次数叫电磁振荡的频率。 对于LC振荡电路, (5)电磁场:变化的电场在周围空间产生磁场,变化磁场在周围 空间产生电场,变化的电场和磁场成为一个完整的整体,就是电磁场。 3.电磁波 (1)电磁波:电磁场由近及远的传播形成电磁波 (2)电磁波在空间传播不需要介质,电磁波是横波,电磁波传递 电磁场的能量。 (3)电磁波的波速、波长和频率的关系, 4.电磁波的发射,传播和接收 (1)发射

电磁场与电磁波-知识点总结

已经将文本间距加为 24磅 第18章:电磁场与电磁波 、知识网络 LC 回路中电磁振荡过程中电荷、电场。 电路电流与磁场的变化规律、电场能与磁场能相互变化。 分类:阻尼振动和无阻尼振动。 <振荡周期:T 2 JLC 。改变L 或C 就可以改变T 。 、重、难点知识归纳 1 ?振荡电流和振荡电路 (1) 大小和方向都随时间做周期性变化的电流叫振荡电流。能够产生振荡电流的电路 叫振荡电路。自由感线圈和电容器组成的电路, 是一种简单的振荡电路, 简称LC 回路。 在振荡电路里产生振荡电流的过程中,电容器极板上的电荷,通过线圈的电流以及跟电 荷和电流相联系的电场和磁场都发生周期性变化的现象叫电磁振荡。 (2) LC 电路的振荡过程:在LC 电路中会产生振荡电流,电容器放电和充电,电路中的 电流强度从小变大,再从大变小,振荡电流的变化符合正弦规律.当电容器上的带电量 变小时,电路中的电流变大,当电容器上带电量变大时,电路中的电流变小 ⑶LC 电路中能量的转化 : a 电磁振荡的过程是能量转化和守恒的过程?电流变大时,电场能转化为磁场能, 麦克斯 韦电磁 场理论 {变化的电场产生磁场 变化的磁场产生电场 特点:为横波,在真空中的速度为 3.0 x 108m/s r 目的:传递信息 发射J 调制:调幅和调频 发射电路:振荡器、调制器和开放电路。 电磁波遇到导体会在导体中激起同频率感应电流 电谐振 从接收到的电磁波中“检”出需要的信号。 原理 选台 检波 I 接收电路:接收天线、调谐电路和检波电路 应用:电视、雷达。 场与电磁波

电流变小时,磁场能转化为电场能。 b、电容器充电结束时,电容器的极板上的电量最多,电场能最大,磁场能最小;电容器放电结束时,电容器的极板上的电量为零,电场能最小,磁场能最大. c、理想的LC回路中电场能E电和磁场能E磁在转化过程中的总和不变。回路中电流越大时,L中的磁场能越大。极板上电荷量越大时,C中电场能越大(板间场强越大、两板间电压越高、磁通量变化率越大) 。 (4) LC电路的周期公式及其应用LC回路的固有周期和固有频率,与电容器带电量、极板间电压及电路中电流都无关,只取决于线圈的自感系数L及电容器的电容C。 周期的决定式:T 2x, LC 1 频率的决定式:f ——1一 2n'LC 2、电磁场 麦克斯韦电磁理论:变化的磁场能够在周围空间产生电场(这个电场叫感应电场或涡旋场,与由电荷激发的电场不同,它的电场线是闭合的,它在空间的存在与空间有无导体无关),变化的电场能在周围空间产生磁场。 a、均匀变化的磁场产生稳定的电场,均匀变化的电场产生稳定的磁场; b、不均匀变化的磁场产生变化的电场,不均匀变化的电场产生变化的磁场。 c、振荡的(即周期性变化的)磁场产生同频率的振荡电场,振荡的电场产生同频率的振荡磁 场。 d、变化的电场和变化的磁场总是相互联系着、形成一个不可分离的统一体,称为电磁场。 电场和磁场只是这个统一的电磁场的两种具体表现。 3、电磁波: (1)变化的电场和变化的磁场不断地互相转 化,并且由近及远地传播出去。这种变化的电磁场在空间以一定的速度传播的过程叫做电磁波。 (2)电磁波是横波。E与B的方向彼此垂直,而且都跟波的传播方向垂直,因此电磁波是横 波。电磁波的传播不需要靠别的物质作介质,在真空中也能传播。在真空中的波速为c=3.0 x 108m/s。振荡电路发射电磁波的过程,同时也是向外辐射能量的过程. (3)电磁波三个特征量的关系:v=入f

电磁场与电磁波知识点

电磁场与电磁波知识点 (一) 矢量分析和场论基础 1、理解标量场与矢量场的概念; 场是描述物理量在空间区域的分布和变化规律的函数。 点积 cos A B AB 结果为标量 x x y y z z A e A e A e A ,x x y y z z B e B e B e B ++x x y y z z A B A B A B A B P4 1.2.4 叉积 sin n A B e AB 结果为矢量 x y z x y z x y z e e e A B A A A B B B P4 1.2.5 矢量A 在矢量B 的投影 B A e B B e B 2、理解矢量场的散度和旋度、标量场的梯度的概念,熟练掌握散度、旋度和梯度的计算公式和方法(直角坐标系)。 (,,)u u x y z 梯度:x y z u u u u x y z e e e , 结果为矢量 P12 1.3.7 物理意义:梯度的方向是标量u 随空间坐标变化最快的方向; 梯度的大小:表示标量u 的空间变化率的最大值。

方向导数: u 沿方向l 的方向导数 P11 x x y y z z l e l e l e l 大小 l 单位矢量 =l x y z l l e e e e l 方向导数 ()l u u e l 通量 S A dS 结果为标量 P16 1.4.5 通量的意义 判断闭合曲面内的通量源 P17 散度:单位空间体积中的通量源,有时也简称为通量密度, x x y y z z A e A e A e A y x z A A A x y z A P19 1.4.8 散度定理(高斯定理)的意义 高斯定理: () () V S dV d A A S , P19 1.4.12 环流(环量) = C A dl 结果为标量 P20 1.5.1 环量的意义 描述矢量场的漩涡源 P21 旋度:其数值为某点的环流量面密度的最大值,其方向为取得环量密度最大值时面积元的法线方向。 P21 x y z y y x x z z x y z x y z A A A A A A x y z y z z x x y A A A e e e A e e e P23 1.5.7 斯托克斯定理: () () S L d d A S A l P24 1.5.12

电磁场与电磁波的应用

电磁场与电磁波的应用 0 引言 电磁场与电磁波简介:电磁波是电磁场的一种运动形态。电与磁可说是一体两面,电流会产生磁场,变动的磁场则会产生电流。变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播形成了电磁波,电磁的变动就如同微风轻拂水面产生水波一般,因此被称为电磁波,也常称为电波。电磁场与电磁波在实际生产、生活、医学、军事等领域有着广泛的应用,具有不可替代的作用。如果没有发现电磁波,现在的社会生活将是无法想象的。所以,本文主要研究电磁场与电磁波在生活中的多项应用,其中,将主要研究电能的无线传输技术。 1 电磁场与电磁波理论的建立 在电磁学发展的早期,人们认识到带电体之间以及磁极之间存在作用力,而作为描述这种作用力的一种手段而引入的"场"的概念,并未普遍地被人们接受为一种客观的存在。现在人们已经认识清楚,电磁场是物质在一种形态,它可以和一切带电物质相互作用,产生出各种电磁现象。电磁场本身的运动服从波动的规律。这种以波动形式运动变化的电磁场称为电磁波。 库仑定律揭示了电荷间的静电作用力与它们之间的距离平方成反比。安培等人又发现电流元之间的作用力也符合平方反比关系,提出了安培环路定律。基于这与牛顿万有引力定律十分类似,泊松、高斯等人仿照引力理论,对电磁现象也引入了各种场矢量,如电场强度、电通量密度(电位移矢量)、磁场强度、磁通密度等,并将这些量表示为空间坐标的函数。但是当时对这些量仅是为了描述方便而提出的数学手段,实际上认为电荷之间或电流之间的物理作用是超距作用。直到法拉第,他认为场是真实的物理存在,电力或磁力是经过场中的力线逐步传递的,最终才作用到电荷或电流上。他在1831年发现了著名的电磁感应定律,并用磁力线的模型对定律成功地进行了阐述。1846年,法拉第还提出了光波是力线振动的设想。法拉第提出的电磁感应定律表明,磁场的变化要产生电场。这个电场与来源于库仑定律的电场不同,它可以推动电流在闭合导体回路中流动,即其环推动电流在闭合导体回路中流动,即其环路积分可以不为零,成为感应电动势。现代大量应用的电力设备和发电机、变压器等都与电磁感应作用有紧密联系。由于这个作用。时变场中的大块导体内将产生涡流及趋肤效应。电工中感应加热、表面淬火、电磁屏蔽等,都是这些现象的直接应用。继法拉第电磁感应定律之后,麦克斯韦提出了位移电流概念。电位移来源于电介质中的带电粒子在电场中受到电场力的作用。这些带电粒子虽然不能自由流动,但要发生原子尺度上的微小位移。麦克斯韦将这个名词推广到真空中的电场,并且认为:电位移随时间变化也要产生磁场,因而称一面积上电通量的时间变化率为位移电流,而电位移矢量D的时间导数为位移电流密度。它在安培环路定律中,除传导电流之外补充了位移电流的作用,从而总结出完整的电磁

相关文档
最新文档