现代 分析 技术在薄膜材料研究中的应用

现代 分析 技术在薄膜材料研究中的应用
现代 分析 技术在薄膜材料研究中的应用

现代分析技术在薄膜材料研究中的应

使用离子探针显微分析可进行如下分析:①同位素分析;②轻元素

高灵敏度分析;③极薄表面(约10~1000Å)的分析;④在给定适当条件后,可作包括纵向的三维分析。

使用离子探针作薄膜组分的定性或定量分析时,为消除样品表面污染和吸

附的影响,应加大一次离子束进行刻蚀,然后再缩小离子束斑直径进行分析。

在作纵向分析时,应考虑纵向分辨率、浓度测定、灵敏度和三维观察等各因素,必须严格控制测量条件。

离子探针显微分析仪探测离子扫描像的能力较高,所以当某些元素分布采

用EPMA的特征X射线像所得衬度不好或难以探测时,采用离子探针显微分析法可获得满意的结果。

2.3X射线光电子能谱分析

X射线光电子能谱分析(XPS,X-rayPhotoelectronSpectroscopy)是利用X

射线源产生很强的X射线轰击样品,从样品中激发出电子,并将其引入能量分

析器,探测经过能量分析的电子,作出X射线对能量的分布图――X射线光电

子能谱。它可以用于区分非金属原子的化学状态和金属的氧化状态,所以又叫做"化学分析光电子能谱法(ESCA,ElectronSpectroscopyforChemicalAnalysis)。

利用XPS可以进行除氢以外全部元素的定性、定量和化学状态分析,其探

测深度依赖于电子平均自由程,对于金属及其氧化物,探测深度为

5~25Å。XPS的绝对灵敏度很高,是一种超微量分析技术,分析时所需样

品很少,一般10的-8次方克左右即可,因此XPS是薄膜材料最有效的分析手

段之一。

2.4俄歇电子能谱分析

俄歇电子能谱分析(AES,AugerElectronSpectroscopy)是利用入射电子束使原子内层能级电离,产生无辐射俄歇跃迁,俄歇电子逃逸到真空中,用电子能谱仪在真空中对其进行探测的一种分析方法。在薄膜材料化学成份的分析方面,俄歇电子能谱是应用最为广泛的分析方法,它能对表面5~20Å范围

内的化学成份进行灵敏的分析,分析速度快,能分析从Li~U的所有元素,不仅能定量分析,而且能提供化学结合状态的情况。进行薄膜材料的纵向成份分析时,可用氩或其它惰性气体的离子对试样待分析部分进行溅射刻蚀,同时进行俄歇电子能谱分析,从而得到薄膜材料沿纵向的元素成份分布。

2.5二次离子质谱分析

二次离子质谱分析(SIMS,偏光显微镜,SecondaryIonMassSpectrometry)是利用高能离子和固体相互作用,引起基质原子和分子以中性的和带电的两种状态发射出来,通过高灵敏的质谱技术对此产生的带电粒子(即二次离子)进行检测,从而进行元素的分析。

二次离子质谱分析是一种高灵敏的元素分析技术。在某些应用范围,AES

和XPS的检测灵敏度不能满足测定要求,而SIMS具有较高的检测灵敏度,使之成为检测痕量元素的理想方法,其检测下限为百亿分之几的数量级,对痕量组分可以进行深度浓度剖析,其深度分辨率小于50Å,可在微观上(μm级)观察表面的横向特征。由于SIMS是一个质谱仪,因此在所有薄膜材料分析中,只有它既能分析全元素又能鉴别元素的同位素,也能分析化合物和确定化合物的分子结构。此外,所有与真空兼容的固体物质都可用SIMS分析。

(1)表面分析

因为SIMS的信息深度很小,在静态SIMS以及良好的真空(10的-8次方Pa)条件下可分析最表层的原子层。在表面分析中,可用它来识别表面物质和研究表面动力学过程,例如识别表面污染物、表面组成及表面化学结构。

(2)深度剖面分析

这或许是SIMS的最重要的应用。用离子束连续轰击样品,使表面"一层接一层"地被剥离,剥离的同时检测一种或多种元素与轰击时间成函数关系的二次

离子流。在恒定的刻蚀速度下,轰击时间与深度成正比。然后把测得的离子电流同轰击时间的函数关系转换为浓度同深度的关系,这就是深度剖面分析法。此方法可用来研究扩散过程和确定扩散系数、薄膜材料的夹层结构和掺杂及污染,还可用于研究同位素的浓度梯度等。

(3)微区分析、面分析和三维分析

微区分析就是对预先选定的直径为几个微米的区域进行分析,这可用小直径(<1µm)的一次离子束来完成。元素的面分布就是确定元素在样品表面上的分布状态。常用的方法有两种,即离子显微镜和扫描微探针法。离子成象是将二次离子束通过质谱仪的离子光学系统得到的表面离子光学像。扫描微探针是用类似于电子探针的方法,将质谱调到某一质量数,用细离子束对样品扫描,得到表面的元素分布图。用它来研究晶界沉淀、冶金和单晶的一些效应、扩散(横断面的XY特征)、薄膜材料的相特征及表面杂质的分布。将元素的面分布和深度分析相结合,就能得到元素分布的三维信息,此信息对研究多元合金膜非常有用。

在薄膜材料研究中,应用SIMS定量分析是困难的,因为SIMS谱线复杂,造成识谱困难;而且由于离子轰击会使样品表面受到损害,因而属于破坏性分析;这是SIMS目前存在的主要问题。但SIMS在定性分析方面是非常成功的,因此在薄膜材料研究中越来越受到重视。

2.6核反应分析法

核反应分析法(NRA,NuclearReactionAnalysis)的基础是入射粒子与靶原子发生核反应,用它来分析样品表层的微量元素及测定表面某种杂质或薄膜中离子渗透到基体的离子浓度及沿深度方向的分布。利用NRA技术对薄膜材料进行分析有如下特点:①定量分析精度高,误差小;②分析灵敏度可达10的-12次方克;③可以准确、快速、非破坏性分析样品。

2.7背散射能谱技术

入射离子与靶材中的原子核弹性碰撞而发生大角度(>90°)散射的现象,称为背散射。背散射能谱分析(RBS,RutherfordBackscatteringSpectrometry)的

主要目的是测定背散射粒子的能谱,并分析能谱信息。背散射能谱提供了元素

种类信息、元素沿深度分布信息和元素浓度信息,可进行定性、定量分析和离

子纵向分布分析等。

其它如辉光放电光发射谱仪(GDOES,GlowDischargeOpticalEmissionSpectroscopy)、正电子湮没谱(PAS,PositronAnnihilationSpectroscopy)、低能光子辐射(LEPI,LowEnergyPhotonIrradiation)、红外谱(IR,InfraredSpectroscopy)、核反应共振(RNR,ResonanceoftheNuclearReaction)、高分辨电子能量损失谱(HREELS,HighResolutionElectronEnergyLossSpectroscopy)等表面分析技术也越来越多的应用于薄膜材料的分析中。

3薄膜材料的组织形貌分析

薄膜材料的组织形貌分析主要是观察薄膜材料的微观组织形貌,包括表面

形貌、薄膜层间形貌、与基体结合界面和断口形貌及金相组织。观察的目的是

了解薄膜材料的组织形态、界面的组织结构(如是否脱碳等)、缺陷、晶粒尺寸等。并通过进一步的分析,研究薄膜材料的生长机理、力学性能和物理性能。

薄膜材料的微观组织和形貌观察最简单的方法是用金相显微镜观察薄膜材

料的表面形貌和金相组织,完整直观地了解薄膜的形貌特征,但由于金相显微

镜受放大倍数的限制,只能用来测量较厚膜层的厚度和观察表面组织的概貌、

大尺寸的晶粒和较大的缺陷。因此薄膜材料的组织形貌分析大多采用电子显微

分析技术。

3.1电子显微分析

"场发射"扫描电子显微镜(SEM,ScanningElectronMicroscope)是利用细聚焦的电子束在样品表面逐点扫描,通过同步收集从样品表面所激发出的各种电

子(主要为二次电子、背散射电子)信号来调制成像。扫描电镜二次电子像的分

辨率可达一至几个纳米,放大倍数从几倍到五十万倍。扫描电镜的优点是景深大,薄膜材料表面有较大的凸凹不平时也能得到清晰的图像,用于观察薄膜材

料的表面形貌和断口形貌非常方便,是薄膜材料微观组织形貌观察的重要手段。以CVD金刚石膜为例,对于分析金刚石膜的表面和横截面形貌,如金刚石颗粒

大小、晶体小刻面(如{111}、{100})择优取向、"菜花"状金刚石聚集体、金刚石生长螺线、金刚石刻面上显微孔隙、颗粒之间的空隙、表面粗糙度、膜断面的柱状晶生长方向及大小、膜厚度等观察,采用扫描电镜分析是最直接有效的方法。

扫描电子显微镜的样品制备非常简便,对于导电材料来说,除要求尺寸不得超过仪器的规定范围外,只要用导电胶将其粘贴在铜或铝制的样品座上,放入样品室即可进行分析。对于导电性差或绝缘的样品,则需要喷镀导电层。

透射电镜(TEM,TransmissionElectronMicroscope)是利用高聚焦的单色电子束轰击样品,通过一系列电磁透镜将穿过样品的电子信号放大来成像的电子光学仪器。透射电镜放大倍数可达几十万倍,分辨率一般在0.2~0.3nm,非常

适合于研究和观察薄膜材料的微细组织形貌。例如,采用横截面(Crosssection)样品的透射电镜观察(明场像或暗场相),可以得到清晰的生长方向上金刚石晶体的亚结构及缺陷类型、膜厚度、界面反应产物(或物相)、膜/基界面等微观结构的图像。若配用选区电子衍射(SADP)可以得知不同物相(尤其是界面物相)的晶体结构、组织结构和相互的位向关系。而通过平面样品的TEM观察,可以很清晰地显示金刚石晶粒的大小、晶粒内的亚结构及缺陷类型、晶粒间界的微结构信息。

透射电子显微镜要求样品对电子束"透明",电子束穿透固体样品的能力,主要取决于加速电压(或电子能量)和样品物质原子序数。一般来说,加速电压越高,样品原子序数越低,电子束可以穿透的样品厚度就越大。对于50~100kV 的电子束,样品厚度控制在1000~2000Å为宜。因为制备如此薄的样品非常困难,薄膜极易从基体上剥落,所以样品的制备需要丰富的经验和技巧。

3.2原子力显微镜分析

1982年由G.Binnig等人研制成功了世界上第一台扫描隧道显微镜(STM,

计量器具使用及维护,ScanningTunnelingMicroscope),使人类第一次能观察到物质表面单个原子的排列状况和与表面电子行为有关的物理、化学性质。在此基础上,各国科学家又先后发明了一系列新型显微镜,如原子力显微镜、摩擦力显微镜、静电力显微镜等。

原子力显微镜(AFM,AtomicForceMicroscope)是根据极细的悬臂下针尖接

近样品表面时检测样品与针尖之间的作用力(原子力)以观察表面形态的装置。

利用扫描器将样品在三维方向上高精度扫描,悬臂跟踪样品表面细微的表面形态,利用计算机控制与处理,就可得到纳米以下的分辨率、百万倍以上倍率的

样品表面凹凸像。与扫描电镜相比,原子力显微镜的优点是可以在大气中高倍

率地观察薄膜材料的表面形貌。所以说AFM的出现为分析和研究薄膜材料表面

结构提供了最先进的手段,极大地推动了薄膜材料的发展。用AFM不仅可以获

得高质量的表面结构信息,而且可以研究固体界面的相互作用。

4薄膜材料的晶体结构分析

物相(简称相)是具有某种晶体结构并能用某化学式表征其化学成份(或有一定的成份范围)的固体物质。物相分析包括化学物相分析和物理物相分析两大类,前者是用化学分析的手段(包括某些物理仪器的微区元素分析)测定物相的元素

组成和含量,以求得物相的化学式,因此它仅与物相的元素组成相关,而与物

相的晶体结构无关;物理物相分析包括形态分析和晶体结构分析两方面。结构分析又有多种方法,但以各种衍射分析最为重要,由于它们以晶体衍射现象为基础,所以衍射相分析既可获得物相的晶体结构,又能获得物相的化学式,因此

衍射分析是最直接、应用最广泛的物理相分析方法。

衍射分析方法包括X射线衍射、电子衍射和中子衍射三种,其中X射线衍

射使用最广,是一种比较经典、古老的技术。近20年来,由于高功率、高精度、高稳定性和高灵敏度X射线衍射仪的出现,特别是计算机应用于衍射仪的控制

和数据处理以后,在X射线衍射分析方面有了许多新进展,如定性分析中的计

算机检索、无卡相分析、定量分析中的泽温(Zevin)法等新方法;物相结构分析

中多晶衍射花样指标化的计算机方法、多晶衍射数据全结构分析的里特韦尔德(Rietveld)方法等。由于电子衍射和透射电子显微镜结合使用,特别是选区衍

射技术的广泛应用,电子衍射物相分析也出现了新的局面,特别是单晶电子衍

射花样的物相定性分析有了很大的发展。中子衍射虽然目前只能在少数单位进

行实验,但对于结构分析中确定轻元素原子的坐标位置、磁结构的测定和某些

固溶体的研究具有特殊意义,因此应用也逐渐增多。

4.1X射线衍射分析

物质结构分析最常用的方法是X射线衍射分析(XRD,X-RayDiffraction),它是基于X射线在晶体中的衍射现象遵守布拉格(Bragg)定律进行分析的。在分析已知化学组成物质的晶体结构时,可由X射线衍射峰的θ值,求出晶面间距,对照ASTM卡片,分析出被测物质的晶体结构。用X射线衍射分析薄膜材料的晶体结构时,应考虑薄膜厚度对分析结果的影响,当基体材料与薄膜材料中有相

同的化学成份,并且薄膜的厚度在1~2μm以下时,应注意排除基体背底衍射峰的干扰。物理气相沉积的薄膜,其化学组成往往偏离物质的化学计量,有时还

会产生择优取向,导致X射线衍射峰位偏移及各衍射峰的峰强度发生变化,这

是在分析中需要注意的问题。

4.2电子衍射分析

由于电子束穿透样品的厚度很小,因此电子衍射(ED,ElectronDiffraction)是一种薄膜分析的有效手段,它是极薄(厚度为几十或几百埃数量级)表面物相分析的有效方法,而其他衍射法是无法比拟的。使用透射,特别是选区电子衍射分析,有如下特点:

(1)灵敏度很高,就连一个小到几百甚至几十埃的微晶也能给出清晰的电子衍射花样,因此它的检测限很低,特别适用于:①试样量很少,如基体和薄膜表面的氧化和污染分析;②待测物相在样品中含量很低,如晶界的微量沉淀、第二相在晶粒内的早期预沉淀等的分析;③待测物相的尺寸非常小,如结晶开始生成的微晶的分析等。

(2)选区和微区电子衍射一般都给出单晶电子衍射花样,当出现未知新结构时,有时可能比X射线多晶衍射花样易于分析。另一方面,还可以得到有关晶

体取向关系的信息,如晶体生长的择优取向、析出相与基体的取向关系等。

(3)电子衍射物相分析可以与电子显微镜衍射相观察同时进行,还能得到有关物相的大小、形态及分布等,如果电子显微镜附带有能谱仪,还能给出分析

区域的化学成份。

4.3中子衍射分析

随着核反应技术的进步,中子衍射技术(ND,NeutronDiffraction)的应用也日益广泛,在物相分析和磁结构测定方面尤为成功。但由于辐射源的限制以及衍射实验装置庞大、实验周期长等缺点,不能象X射线和电子衍射那样使用方便和广泛。中子衍射具有一些其他两种衍射不具备的特点,因此在下列几方面有独特优势:

(1)在晶体结构分析中,中子衍射是测定轻元素原子位置较好的方法。因为元素的X射线散射振幅和原子序数成正比,所以X射线在研究含氢化合物或者重元素的氧化物、碳化物时不可能得到的大量信息,采用而中子衍射的结构分析(包括多晶试样和单晶试样)就较容易解决。

(2)在薄膜材料和基体材料中,由于一些元素的X射线散射振幅相差很小而难以分辨,而中子衍射则很容易将其分开,还能识别同一元素的各种同位素。

(3)磁结构测定是中子衍射对固体研究的最大贡献之一。由于中子辐射与具有磁矩的原子的相互作用产生附加的磁散射,使中子衍射成为测定晶体磁结构唯一的衍射方法。涉及到的对象有过渡金属及其合金、稀土金属及其合金以及含有磁矩原子的氧化物、硫化物和卤化物等。

5结语

以上介绍了几种现代测试技术在薄膜材料成份、组织形貌和晶体结构研究中的应用情况,但没有包括薄膜材料的机械性能、结合力和应力的测定。从各种现代分析技术在薄膜材料分析中的应用特点可以看出,薄膜材料的分析已不再是单一技术的使用,而应该是多种分析测试技术的综合运用。这是由于每一种分析技术都具有其特长,同时也存在局限性。因此,要系统研究薄膜材料表面或界面的结构、物理和化学特性就必须了解分析测试技术(特别是现代分析技术)的特点,灵活运用多种分析测试手段,从而获取最直接、最全面的信息。薄膜材料分析作为表面工程的重要组成部分,相信随着现代分析技术的发展和测试手段的不断完善,随着研究人员综合知识水平的不断提高以及多学科知识的综合利用,必将得到更深入的发展。

特别声明:

1:资料来源于互联网,版权归属原作者

2:资料内容属于网络意见,与本账号立场无关3:如有侵权,请告知,立即删除。

材料现代分析方法试题及答案1

《现代材料分析方法》期末试卷1 一、单项选择题(每题 2 分,共10 分) 1.成分和价键分析手段包括【b 】 (a)WDS、能谱仪(EDS)和XRD (b)WDS、EDS 和XPS (c)TEM、WDS 和XPS (d)XRD、FTIR 和Raman 2.分子结构分析手段包括【 a 】 (a)拉曼光谱(Raman)、核磁共振(NMR)和傅立叶变换红外光谱(FTIR)(b)NMR、FTIR 和WDS (c)SEM、TEM 和STEM(扫描透射电镜)(d)XRD、FTIR 和Raman 3.表面形貌分析的手段包括【 d 】 (a)X 射线衍射(XRD)和扫描电镜(SEM)(b) SEM 和透射电镜(TEM) (c) 波谱仪(WDS)和X 射线光电子谱仪(XPS)(d) 扫描隧道显微镜(STM)和 SEM 4.透射电镜的两种主要功能:【b 】 (a)表面形貌和晶体结构(b)内部组织和晶体结构 (c)表面形貌和成分价键(d)内部组织和成分价键 5.下列谱图所代表的化合物中含有的基团包括:【 c 】 (a)–C-H、–OH 和–NH2 (b) –C-H、和–NH2, (c) –C-H、和-C=C- (d) –C-H、和CO 二、判断题(正确的打√,错误的打×,每题2 分,共10 分) 1.透射电镜图像的衬度与样品成分无关。(×)2.扫描电镜的二次电子像的分辨率比背散射电子像更高。(√)3.透镜的数值孔径与折射率有关。(√)

4.放大倍数是判断显微镜性能的根本指标。(×)5.在样品台转动的工作模式下,X射线衍射仪探头转动的角速度是样品转动角 速度的二倍。(√) 三、简答题(每题5 分,共25 分) 1. 扫描电镜的分辨率和哪些因素有关?为什么? 和所用的信号种类和束斑尺寸有关,因为不同信号的扩展效应不同,例如二次电子产生的区域比背散射电子小。束斑尺寸越小,产生信号的区域也小,分辨率就高。 2.原子力显微镜的利用的是哪两种力,又是如何探测形貌的? 范德华力和毛细力。 以上两种力可以作用在探针上,致使悬臂偏转,当针尖在样品上方扫描时,探测器可实时地检测悬臂的状态,并将其对应的表面形貌像显示纪录下来。 3.在核磁共振谱图中出现多重峰的原因是什么? 多重峰的出现是由于分子中相邻氢核自旋互相偶合造成的。在外磁场中,氢核有两种取向,与外磁场同向的起增强外场的作用,与外磁场反向的起减弱外场的作用。根据自选偶合的组合不同,核磁共振谱图中出现多重峰的数目也有不同,满足“n+1”规律 4.什么是化学位移,在哪些分析手段中利用了化学位移? 同种原子处于不同化学环境而引起的电子结合能的变化,在谱线上造成的位移称为化学位移。在XPS、俄歇电子能谱、核磁共振等分析手段中均利用化学位移。 5。拉曼光谱的峰位是由什么因素决定的, 试述拉曼散射的过程。 拉曼光谱的峰位是由分子基态和激发态的能级差决定的。在拉曼散射中,若光子把一部分能量给样品分子,使一部分处于基态的分子跃迁到激发态,则散射光能量减少,在垂直方向测量到的散射光中,可以检测到频率为(ν0 - Δν)的谱线,称为斯托克斯线。相反,若光子从样品激发态分子中获得能量,样品分子从激发态回到基态,则在大于入射光频率处可测得频率为(ν0 + Δν)的散射光线,称为反斯托克斯线 四、问答题(10 分) 说明阿贝成像原理及其在透射电镜中的具体应用方式。 答:阿贝成像原理(5 分):平行入射波受到有周期性特征物体的散射作用在物镜的后焦面上形成衍射谱,各级衍射波通过干涉重新在像平面上形成反映物的特征的像。在透射电镜中的具体应用方式(5 分)。利用阿贝成像原理,样品对电子束起散射作用,在物镜的后焦面上可以获得晶体的衍射谱,在物镜的像面上形成反映样品特征的形貌像。当中间镜的物面取在物镜后焦面时, 则将衍射谱放大,则在荧光屏上得到一幅电子衍射花样;当中间镜物面取在物镜的像面上时,则将图像进一步放大,这就是电子显微镜中的成像操作。 五、计算题(10 分) 用Cu KαX 射线(λ=0.15405nm)的作为入射光时,某种氧化铝的样品的XRD 图谱如下,谱线上标注的是2θ的角度值,根据谱图和PDF 卡片判断该氧化铝的类型,并写出XRD 物相分析的一般步骤。 答:确定氧化铝的类型(5 分) 根据布拉格方程2dsinθ=nλ,d=λ/(2sinθ) 对三强峰进行计算:0.2090nm,0.1604nm,0.2588nm,与卡片10-0173 α-Al2O3 符合,进一步比对其他衍射峰的结果可以确定是α-Al2O3。 XRD 物相分析的一般步骤。(5 分) 测定衍射线的峰位及相对强度I/I1: 再根据2dsinθ=nλ求出对应的面间距 d 值。 (1) 以试样衍射谱中三强线面间距d 值为依据查Hanawalt 索引。

薄膜材料与薄膜技术复习资料22084

1.为了研究真空和实际使用方便,根据各压强范围内不同的物理特点,把真空划分为 粗真空,低真空,高真空,超高真空四个区域。 2.在高真空真空条件下,分子的平均自由程可以与容器尺寸相比拟。 3.列举三种气体传输泵旋转式机械真空泵,油扩散泵和复合分子泵。 4.真空计种类很多,通常按测量原理可分为绝对真空计和相对真空计。 5.气体的吸附现象可分为物理吸附和化学吸附。 6.化学气相反应沉积的反应器的设计类型可分为常压式,低压式,热壁 式和冷壁式。 7.电镀方法只适用于在导电的基片上沉积金属和合金,薄膜材料在电解液中是以 正离子的形式存在。制备有序单分子膜的方法是LB技术。 8.不加任何电场,直接通过化学反应而实现薄膜沉积的方法叫化学镀。 9.物理气相沉积过程的三个阶段:从材料源中发射出粒子,粒子运输到基片和粒子 在基片上凝聚、成核、长大、成膜。 10.溅射过程中所选择的工作区域是异常辉光放电,基板常处于负辉光区,阴极 和基板之间的距离至少应是克鲁克斯暗区宽度的3-4倍。 11.磁控溅射具有两大特点是可以在较低压强下得到较高的沉积率和可以在较低 基片温度下获得高质量薄膜。 12.在离子镀成膜过程中,同时存在吸附和脱附作用,只有当前者超 过后者时,才能发生薄膜的沉积。 13.薄膜的形成过程一般分为:凝结过程、核形成与生长过程、岛形成与 结合生长过程。 14.原子聚集理论中最小稳定核的结合能是以原子对结合能为最小单位不连续变化 的。 15.薄膜成核生长阶段的高聚集来源于:高的沉积温度、气相原子的高的动能、 气相入射的角度增加。这些结论假设凝聚系数为常数,基片具有原子级别的平滑度。 16.薄膜生长的三种模式有岛状、层状、层状-岛状。 17.在薄膜中存在的四种典型的缺陷为:点缺陷、位错、晶界和 层错。 18.列举四种薄膜组分分析的方法:X射线衍射法、电子衍射法、扫描电子 显微镜分析法和俄歇电子能谱法。 19.红外吸收是由引起偶极矩变化的分子振动产生的,而拉曼散射则是由引起极化率 变化的分子振动产生的。由于作用的方式不同,对于具有对称中心的分子振动,红外吸收不敏感,拉曼散射敏感;相反,对于具有反对称中心的分子振动,红外吸收敏感而拉曼散射不敏感。对于对称性高的分子振动,拉曼散射敏感。 20.拉曼光谱和红外吸收光谱是测量薄膜样品中分子振动的振动谱,前者 是散射光谱,而后者是吸收光谱。 21.表征溅射特性的主要参数有溅射阈值、溅射产额、溅射粒子的速度和能 量等。 什么叫真空?写出真空区域的划分及对应的真空度。 真空,一种不存在任何物质的空间状态,是一种物理现象。粗真空 105~102Pa 粘滞流,分子间碰撞为主低真空 102~10-1 Pa 过渡流高真空 102~10-1 Pa分子流,气体分子与器壁碰撞为主超高真空 10-5~10-8 Pa气体在固体表面吸附滞留为主极高真空 10-8 Pa 以下

材料现代分析方法练习题及答案

8. 什么是弱束暗场像?与中心暗场像有何不同?试用Ewald图解说明。 答:弱束暗场像是通过入射束倾斜,使偏离布拉格条件较远的一个衍射束通过物镜光阑,透射束和其他衍射束都被挡掉,利用透过物镜光阑的强度较弱的衍射束成像。 与中心暗场像不同的是,中心暗场像是在双光束的条件下用的成像条件成像,即除直射束外只有一个强的衍射束,而弱束暗场像是在双光阑条件下的g/3g的成像条件成像,采用很大的偏离参量s。中心暗场像的成像衍射束严格满足布拉格条件,衍射强度较强,而弱束暗场像利用偏离布拉格条件较远的衍射束成像,衍射束强度很弱。采用弱束暗场像,完整区域的衍射束强度极弱,而在缺陷附近的极小区域内发生较强的反射,形成高分辨率的缺陷图像。图:PPT透射电子显微技术1页 10. 透射电子显微成像中,层错、反相畴界、畴界、孪晶界、晶界等衍衬像有何异同?用什么办法及根据什么特征才能将它们区分开来? 答:由于层错区域衍射波振幅一般与无层错区域衍射波振幅不同,则层错区和与相邻区域形成了不同的衬度,相应地出现均匀的亮线和暗线,由于层错两侧的区域晶体结构和位相相同,故所有亮线和暗线的衬度分别相同。层错衍衬像表现为平行于层错面迹线的明暗相间的等间距条纹。 孪晶界和晶界两侧的晶体由于位向不同,或者还由于点阵类型不同,一边的晶体处于双光束条件时,另一边的衍射条件不可能是完全相同的,也可能是处于无强衍射的情况,就相当于出现等厚条纹,所以他们的衍衬像都是间距不等的明暗相间的条纹,不同的是孪晶界是一条直线,而晶界不是直线。 反相畴界的衍衬像是曲折的带状条纹将晶粒分隔成许多形状不规则的小区域。 层错条纹平行线直线间距相等 反相畴界非平行线非直线间距不等 孪晶界条纹平行线直线间距不等 晶界条纹平行线非直线间距不等 11.什么是透射电子显微像中的质厚衬度、衍射衬度和相位衬度。形成衍射衬度像和相位衬度像时,物镜在聚焦方面有何不同?为什么? 答:质厚衬度:入射电子透过非晶样品时,由于样品不同微区间存在原子序数或厚度的差异,导致透过不同区域落在像平面上的电子数不同,对应各个区域的图像的明暗不同,形成的衬度。 衍射衬度:由于样品中的不同晶体或同一晶体中不同部位的位向差异导致产生衍射程度不同而形成各区域图像亮度的差异,形成的衬度。 相位衬度:电子束透过样品,试样中原子核和核外电子产生的库伦场导致电子波的相位发生变化,样品中不同微区对相位变化作用不同,把相应的相位的变化情况转变为相衬度,称为相位衬度。 物镜聚焦方面的不同:透射电子束和至少一个衍射束同时通过物镜光阑成像时,透射束和衍射束相互干涉形成反应晶体点阵周期的条纹成像或点阵像或结构物象,这种相位衬度图像的形成是透射束和衍射束相干的结果,而衍射衬度成像只用透射束或者衍射束成像。

薄膜材料与技术

薄膜技术在能源材料中的应用——薄膜太 阳能电池 一概述 能源和环境是二十一世纪面临的两个重大问题,据专家估算,以现在的能源消耗速度,可开采的石油资源将在几十年后耗尽,煤炭资源也只能供应人类使用约200年。太阳能电池作为可再生无污染能源,能很好地同时解决能源和环境两大难题,具有很广阔的发展前景。照射到地球上的太阳能非常巨大,大约40 min照射到地球上的太阳能就足以满足全球人类一年的能量需求。因此,制备低成本高光电转换效率的太阳能电池不仅具有广阔的前景,而且也是时代所需。 太阳能电池行业是21世纪的朝阳行业,发展前景十分广阔。在电池行业中,最没有污染、市场空间最大的应该是太阳能电池,太阳能电池的研究与开发越来越受到世界各国的广泛重视。 太阳能电池种类繁多,主要有硅太阳能电池、聚光太阳能电池、无机化合物薄膜太阳能电池、有机薄膜太阳能电池、纳米晶薄膜太阳能电池和叠层太阳能电池等几大类[1]。 二薄膜太阳能电池。 1、薄膜硅太阳能电池 薄膜硅太阳能电池(硅膜厚约50μm)的出现,相对晶体硅太阳能电池,所用的硅材料大幅度减少,很大程度上降低了晶体硅太阳能电池的成本。薄膜硅太阳能电池主要有非晶硅(a—Si)、微晶硅(μc—Si)和多晶硅(p-Si)薄膜太阳能电池,前两者有光致衰退效应,其中μc—Si薄膜太阳能电池光致衰退效应相对较弱但μc-Si薄膜沉积速率低(仅1.2 nm/s) ,光致衰退效应致使其性能不稳定,发展受到一定的限制,而后者则无光致衰退效应问题,因此是硅系太阳能电池

的发展方向[1]。 太阳能电池是制约太阳能发电产业发展的瓶颈技术之一。目前主要的研究工作集中在新材料、新工艺、新设计等方面,其目的是为了提高电池转换效率和降低电池制造成本。制造太阳能电池的材料主要有单晶硅、多晶硅、非晶硅以及其他新型化合物半导体材料,其中非晶硅属直接转换型半导体,光吸收率大,易于制成厚度0.5微米以下、面积l平方米以上的薄膜,并且容易与其他 原子结合制成对近红外高吸收的非晶硅锗集层光电池,这是目前的主攻方向之一;另一种是非晶硅和多晶硅混合薄膜材料,它转换率高、用材省,是新世纪最有前途的薄膜电池之一。 2、无机化合物薄膜太阳能电池 选用的无机化合物主要有CdTe,CdS,GaAs,CulnSe2(CIS)等,其中CdTe的禁带宽度为1.45 eV(最佳产生光伏响应的禁带宽度为1.5 eV),是一个理想的半导体材料,截止2004年,CdTe电池光电转化效率最高为16.5%;CdS的禁带宽度约为2.42 eV,是一种良好的太阳能电池窗口层材料,可与CdTe、SnS和CIS等形成异质结太阳能电池;GaAs的禁带宽度为1.43 eV,光吸收系数很高,GaAs单结太阳电池的理论光电转化效率为27%,目前GaA/Ge单结太阳电池最高光电转换效率超过20%,生产水平的光电转换效率已经达到19~20%,其与GalnP组成的双节、三节和多节太阳能电池有很大的发展前景;CIS薄膜太阳能电池实验室最高光电转化效率已达19.5%,在聚光条件下(14个太阳光强),光电转化效率达到21.5%,组件产品的光电转化效率已经超过13%;CIS 薄膜用Ga部分取代In,就形成Culn1-x Ga x Se2 (简称CIGS)四元化合物,其薄膜的禁带宽度在1.04~1.7 eV范围内可调,这为太阳能电池最佳禁带宽度的优化提供了机会,同时开发了两种新的材料,用Ga完全取代In形成CuGaSe2,用S完全取代Se形成CulnS2,以备In、Se资源不足时可以采用。但是,Cd和As是有毒元素,In和Se是稀有元素,严重地制约着无机化合物薄膜太阳能电池的大规模生

材料现代分析方法北京工业大学

材料现代分析方法北京工业大学 篇一:13103105-材料现代分析方法 《材料现代分析方法》课程教学大纲 一、课程基本信息 课程编号:13103105 课程类别:专业核心课程 适应专业:材料物理 总学时:54学时 总学分:3 课程简介: 本课程介绍材料微观形貌、结构及成分的分析与表面分析技术主要方法及基本技术,简单介绍光谱分析方法。包括晶体X射线衍射、电子显微分析、X射线光电子谱仪、原子光谱、分子光谱等分析方法及基本技术。 授课教材:《材料分析测试方法》,黄新民解挺编,国防工业出版社,20XX年。 参考书目: [1]《现代物理测试技术》,梁志德、王福编,冶金工业出版社,20XX 年。 [2]《X射线衍射分析原理与应用》,刘粤惠、刘平安编,化学工业出

版社,20XX年。 [3]《X射线衍射技术及设备》,丘利、胡玉和编,冶金工业出版社,20XX年。 [4]《材料现代分析方法》,左演声、陈文哲、梁伟编,北京工业大学出版社,20XX年。 [5]《材料分析测试技术》,周玉、武高辉编,哈尔滨工业大学出版社,2000年。 [6]《材料结构表征及应用》,吴刚编,化学工业出版社,20XX年。 [7]《材料结构分析基础》,余鲲编,科学出版社,20XX年。 二、课程教育目标 通过学习,了解X射线衍射仪及电子显微镜的结构,掌握X-射线衍射及电子显微镜的基本原理和操作方法,了解试样制备的基本要求及方法,了解材料成分的分析与表面分析技术的主要方法及基本技术,了解光谱分析方法,能够利用上述相关仪器进行材料的物相组成、显微结构、表面分析研究。学会运用以上技术的基本方法,对材料进行测试、计算和分析,得到有关微观组织结构、形貌及成分等方面的信息。 三、教学内容与要求 第一章X射线的物理基础 教学重点:X射线的产生及其与物质作用原理 教学难点:X射线的吸收和衰减、激发限 教学时数:2学时

材料现代测试技术

材料现代测试技术 学院:材料科学与工程学院专业班级:材料科学02班 姓名:吴明玉 学号:20103412

SnO 基纳米晶气敏材料微观结构的表征 2 一.摘要 随着现代物理科学技术的迅速发展,现代分析测试技术的不断更新和进步为人们对材料结构和性能的深入研究提供了可能,从而促进人们对气敏材料机理有了更为客观的认识。本文主要以X衍射分析仪(XRD),X射线光电子能谱(XPS),扫描电镜(SEM),高分辨电子显微镜(HRTEM)等现代材料测试技术为基础,设计出了可行的气敏材料微观结构表征方案。 关键词:XRD XPS SEM HRTEM 二.引言 材料是人类社会赖以生存和发展的物质基础,材料的发展关系到国民经济发展,国防建设和人民生活水平的提高。半导体SnO2气敏材料在防止火灾爆炸事故的发生、大气环境的检测以及工业生产有毒有害气体的检测等领域的发挥了巨大作用。但是,目前开发的半导体气敏材料仍存在着灵敏度不高、交叉敏感严重、长期使用敏感材料易中毒失效稳定性差、重复性不好等缺点。针对上述问题,研究者们做了大量工作。气敏材料的研究热点主要集中在改进、优化成膜工艺和对现有材料进行掺杂、改性、表面修饰等处理,以提高气体传感器的气敏性能,降低工作温度,提高选择性稳定性等性能。掺杂不仅可以提高元件的电导率,还可以提高稳定性和选择性,金属掺杂是最为常见的掺杂方式,掺杂物的电子效应可以起到催化活性中心的作用,降低被测气体化学吸附的活化能,有效提高气敏元件的灵敏度和缩短响应时间。 成分,结构,加工和性能是材料科学与工程的四个基本要素,成分和结构从根本上决定了材料的性能,对材料的成分和结构进行精确表征是实现材料性能控制的前提。材料的分析包括表面和内部组织形貌,晶体的相结构,化学成分和价键结构,相应地,材料分析方法有形貌分析,物相分析,成分与价键分析和分子结构分析。为了对SnO 掺杂金属离子复合材料的性能进行研究,本文设计出了 2 微观结构表征方案,为微观结构研究做好了铺垫。 三.正文 3.1材料的制备及表征方法 纳米材料,并对其分别进行Cd,Ni等金属的掺杂。通采用水热法制备SnO 2 过X衍射分析仪(XRD),X射线光电子能谱(XPS)等,得到薄膜的晶体结构以及表面的化学组成,原子价态,表面能态分布信息;通过扫描电镜(SEM)等得到材料的表面微观形貌信息;通过高分辨电子显微镜(HRTEM)得到材料的晶体取向, 3.2表征方案 3.2.1X衍射分析仪(XRD)

材料现代分析技术

填空题(每空1分) 1.当X 射线管电压超过临界电压就可以产生 连续谱X 射线和 特征谱 X 射线。 2. 点阵常数测定过程中需要确定峰位,确定峰位的常用方法有峰顶法 、 切线法 、半高宽法, 和抛物线拟合法 。 3. 经过厚度为H 的物质后,X 射线的强度为 H H m e I I ρμ-=0 。 4. X 射线扫描仪中的常规测量中的实验参数包括狭缝宽度、扫描速度和 时间常数 。 5. 磁透镜的物距L 1,相距L 2和焦距f 三者之间的关系为 。 6. 透射电镜样品制备各方法主要有复型法、和薄膜法,其中复型样品制备中塑料-碳二的复型优于碳一的复型是由于 其制备过程不损坏金相试样表面,重复性好,供观察的第二级复型一碳膜导电导热性好,在电子束照射下较为稳定 。 7. 差热分析曲线总的峰高表示 试样和 参比物 之间的最大温差,即从封顶到该峰所在基线碱的垂直距离。 8. 第一类应力导致X 射线衍射线位移,第二类应力导致X 射线衍射线线形变化,第三类应力导 致X 射线衍射线 强度降低 。 9. 红外光谱法定量分析的具体方法主要有 标准法 、吸光度比法 和 补偿法 共同组成。 10.单晶体电子衍射花样是规则的衍射斑点组成。 11. 大量实验证明,X 射线具有波动性和微粒性 的双重性,即波粒二象性。 12. 布拉格方程式衍射分析中最基本的公式,其应用主要集中在 结构分析 和X 射线谱分析两个方面。 13.由于X 射线的发展,相继产生了X 射线透射学、X 射线衍射学 和 X 射线光谱学 等三个学科。 14.提高透镜分辨率的本领 波长 , 介质 和 孔径半角 。 15. 电磁透镜的几何像差包括 球差和 像散,而电子束波长的稳定性决定的像差为色差 。 16. 透射电镜主要有电子光学系统、电源控制系统和 真空系统构成。 17. 非弹性散射机制主要有 单电子激发 、 等离子激发 、和 声子激发 。 18. 透射电镜的主要性能指标分辨率、 放大倍数 、和 加速电压 。 19. 热分析测试过程中,粉体试样中粉体 粒度 与粉体 堆积密度 对热分析结果影响较大。 20. 用来进行晶体结构分析的X 射线学分支是 X 射线衍射学 。 21. M 层电子回迁到K 层后,多余的能量放出的特征X 射线称 K β。 22. X 射线衍射中,只有晶面间距大于 波长的一半的晶面才能产生衍射。 23.布拉格方程解决了X 射线衍射方向问题,即满足布拉格方程的晶面将参与衍射,但能否产 生衍射花样还取决于 衍射强度 。 24. 电子对X 射线散射分为两种情况, 一种是受原子核束缚较紧的电子,X 射线作用后,该 电子发生振动,向空间辐射与入射波频率相同的电磁波,由于波长、频率相同,会发生相干散 射 和 另一种X 射线作用在束缚电子上,产生康普顿效应---非相干散射,产生背底。 25. X 射线线扫描仪中的扫描方式主要有 光栅扫描 和 角光栅扫描。 26. 根据量子力学计算,L 壳层的能级实际上是由 3 个子能级构成,M 壳层的能级由 5 个能级 构成,N 层由 7 个子能级构成。 27.劳厄方程是确定 X 射线衍射方向的基本方程,常用与晶体 取向测定和晶体对称性的研究。 28. 影响多晶体衍射强度的其他因数主要有 多重因数P 、 吸收因子A(θ) 和 温度因子e-2M 。 29. X 射线定量分析的方法有 外标法 和 内标法 两大类。 30.有一体心立方晶体的晶格常数是0.286nm ,用铁靶K α(λK α=0.194nm )照射该晶体能产生 四 条衍射线。 31. 电子显微分析方法以材料 微区形貌 、 晶体结构 和 化学组成 为基本目的。 三.名词解释 1. 非相干散射:当χ射线经束缚力不大的电子或自由电子散射后,可以得到波长比入射χ射线长的χ射线,且波长随散射方向不同而改变,这种散射现象称为非相干散射。 2. 结构消光:当阵点不是一个单原子,而是一个原子集团时基元内原子散射波间相互干涉也可能会导致消光,此外布拉菲点阵通过套构后形成的复式点阵,出现了布拉菲点阵本身没有的消光规律,称2 1111L L f +=

材料现代分析方法

《材料现代分析方法》课程教学大纲 一、课程基本信息 课程编号:13103105 课程类别:专业核心课程 适应专业:材料物理 总学时:54学时 总学分: 3 课程简介: 本课程介绍材料微观形貌、结构及成分的分析与表面分析技术主要方法及基本技术,简单介绍光谱分析方法。包括晶体X射线衍射、电子显微分析、X射线光电子谱仪、原子光谱、分子光谱等分析方法及基本技术。 授课教材:《材料分析测试方法》,黄新民解挺编,国防工业出版社,2005年。 参考书目: [1]《现代物理测试技术》,梁志德、王福编,冶金工业出版社,2003年。 [2]《X射线衍射分析原理与应用》,刘粤惠、刘平安编,化学工业出版社,2003年。 [3]《X射线衍射技术及设备》,丘利、胡玉和编,冶金工业出版社,2001年。 [4]《材料现代分析方法》,左演声、陈文哲、梁伟编,北京工业大学出版社,2001年。 [5]《材料分析测试技术》,周玉、武高辉编,哈尔滨工业大学出版社,2000年。 [6]《材料结构表征及应用》,吴刚编,化学工业出版社,2001年。 [7]《材料结构分析基础》,余鲲编,科学出版社,2001年。 二、课程教育目标 通过学习,了解X射线衍射仪及电子显微镜的结构,掌握X-射线衍射及电子显微镜的基本原理和操作方法,了解试样制备的基本要求及方法,了解材料成分的分析与表面分析技术的主要方法及基本技术,了解光谱分析方法,能够利用上述相关仪器进行材料的物相组成、显微结构、表面分析研究。学会运用以上技术的基本方法,对材料进行测试、计算和分析,得到有关微观组织结构、形貌及成分等方面的信息。 三、教学内容与要求 第一章X射线的物理基础 教学重点:X射线的产生及其与物质作用原理 教学难点:X射线的吸收和衰减、激发限 教学时数:2学时 教学内容:X射线的性质,X射线的产生,X射线谱,X射线与物质的相互作用,X射线的衰减规律,吸收限的应用

薄膜材料与技术小论文

科技大学 薄膜材料与技术小论文 题目:太阳能电池中的薄膜材料 课程名称:薄膜材料与技术 学院:材料科学与工程学院 班级: 学生: 学生学号: 评分: 日期:

摘要 薄膜材料在提高太阳能电池的转换效率方面有着很大的作用。随着薄膜材料种类和制备工艺的发展,现在已经有很多种基于不同薄膜材料和工艺的太阳能电池,包括硅基薄膜太阳能电池、化合物半导体薄膜太阳能电池、染料敏化太阳能电池等等。 关键词 太阳能电池薄膜材料染料敏化应用 一、太阳能电池简介 太阳能在地球上分布非常广泛,储量巨大、稳定、持久、清洁无污染。太阳每秒向外太空辐射的能量约为3.8x1020兆瓦,而每年投射到地面上的太阳能约为1.05x1018千瓦时,相当于1.3x1015吨标准煤。按照目前太阳质量的消耗速率计,太阳部的热核反应足以维持6x1010年,因此,可以说太阳能是取之不尽,用之不竭的。[1] 太阳能电池是将太阳能转换为电能的一种装置,是太阳能光伏发电的基础,是利用光生伏打效应将光能转变为电能的器件。[2]目前,太阳能电池的种类很多,按照晶体结构可分为单晶、多晶、非晶及纳米晶系太阳能电池;按照结型分为PN结、MS结、MIS结太阳能电池;按照材料种类可分为晶硅太阳能电池、硅基薄膜太阳能电池、化合物半导体薄膜太阳能电池和光电化学太阳能电池等。二、薄膜材料在太阳能电池中的应用 多元化合物薄膜太阳能电池(即硅基薄膜太阳能电池)是第二代太阳能电池,

包括碲化铬(CdTe)、铜铟硒(CIS)、砷化镓(GaAs)、铜铟镓硒(CIGS)等。这类电池的转化效率较高,达到18-20%,其成本较单晶硅低,易于大规模生产。但是,它含有的镉元素有毒且会污染环境,铟和硒等又均属于稀有元素,原料来源受限。以有机化合物和纳米技术为基础的新型薄膜太阳能电池是第三代太阳能电池,包括染料敏化太阳能电池、有机聚合物太阳能电池等。这类太阳能电池具有工艺简单、成本较低、材料来源广泛、理论光电转换效率较高等优势,因此受到了广泛的关注,是太阳能电池的又一发展方向。但是,它仍然存在一些问题,如转换效率仍不够高、材料的长期耐久性问题、大面积工艺技术等。 2.1硅基薄膜太阳能电池 2.1.1多结叠层硅基薄膜太阳能电池 它是一种结构新颖的硅基薄膜太阳能电池,以纳米晶柱薄膜为核心技术。将不同光学带隙的纳米晶柱薄膜组成叠层薄膜电池,不但扩展了太谱响应的围,而且比a-Si:H(氢化非晶硅)和u c-Si:H有更高的光电转换效率。研究表明,由三个子电池硅构成的硅基薄膜太阳能电池采用陷光结构和最佳光学带隙匹配和厚度匹配,其效率可达到22.7%。更多结的叠层电池不但会增加生产成本,而且进一步提高光电转换效率将变得困难。[3]转换效率的制约因素主要来自于光生载流子的复合,包括膜层界面复合、掺杂层杂质电离复合、晶粒间界复合等。 膜层界面复合是指组合电池中共有十余层界面,存在着很高的界面态密度,它们对光生载流子起复合中心的作用。发生复合的光生载流子对光电转换没有贡献。因此,叠层越多,复合率越高;掺杂层杂质电离复合是指掺杂层是光激发的“死区”,此处光生载流子复合率很高;晶粒间界复合是指晶界原子相对无序排列,其悬挂键如果不被氢原子饱和,也将成为光生载流子的复合中心。

《材料现代分析测试方法》复习题

《近代材料测试方法》复习题 1.材料微观结构和成分分析可以分为哪几个层次?分别可以用什么方法分析? 答:化学成分分析、晶体结构分析和显微结构分析 化学成分分析——常规方法(平均成分):湿化学法、光谱分析法 ——先进方法(种类、浓度、价态、分布):X射线荧光光谱、电子探针、 光电子能谱、俄歇电子能谱 晶体结构分析:X射线衍射、电子衍射 显微结构分析:光学显微镜、透射电子显微镜、扫面电子显微镜、扫面隧道显微镜、原 子力显微镜、场离子显微镜 2.X射线与物质相互作用有哪些现象和规律?利用这些现象和规律可以进行哪些科学研究工作,有哪些实际应用? 答:除贯穿部分的光束外,射线能量损失在与物质作用过程之中,基本上可以归为两大类:一部 分可能变成次级或更高次的X射线,即所谓荧光X射线,同时,激发出光电子或俄歇电子。另一部分消耗在X射线的散射之中,包括相干散射和非相干散射。此外,它还能变成热量逸出。 (1)现象/现象:散射X射线(想干、非相干)、荧光X射线、透射X射线、俄歇效 应、光电子、热能 (2)①光电效应:当入射X射线光子能量等于某一阈值,可击出原子内层电子,产 生光电效应。

应用:光电效应产生光电子,是X射线光电子能谱分析的技术基础。光电效应 使原子产生空位后的退激发过程产生俄歇电子或X射线荧光辐射是 X射线激发俄歇能谱分析和X射线荧光分析方法的技术基础。 ②二次特征辐射(X射线荧光辐射):当高能X射线光子击出被照射物质原子的 内层电子后,较外层电子填其空位而产生了次生特征X射线(称二次特征辐射)。 应用:X射线被物质散射时,产生两种现象:相干散射和非相干散射。相干散射 是X射线衍射分析方法的基础。 3.电子与物质相互作用有哪些现象和规律?利用这些现象和规律可以进行哪些科学研究工作,有哪些实际应用? 答:当电子束入射到固体样品时,入射电子和样品物质将发生强烈的相互作用,发生弹性散射和非弹性散射。伴随着散射过程,相互作用的区域中将产生多种与样品性质有关的物理信息。 (1)现象/规律:二次电子、背散射电子、吸收电子、透射电子、俄歇电子、特征X射 线 (2)获得不同的显微图像或有关试样化学成分和电子结构的谱学信息 4.光电效应、荧光辐射、特征辐射、俄歇效应,荧光产率与俄歇电子产率。 特征X射线产生机理。 光电效应:当入射X射线光子能量等于某一阈值,可击出原子内层电子,产生光电效应。 荧光辐射:被打掉了内层电子的受激原子,将发生外层电子向内层跃迁的过程,同时辐射出波长严格一定的特征X射线。这种利用X射线激发而产生的特征辐射为二次特

现代材料分析方法试题及答案

1. X射线衍射的几何条件是d、θ、λ必须满足什么公式?写出数学表达式,并说明d、θ、λ的意义。(5分)答:. X射线衍射的几何条件是d、θ、λ必须满足布拉格公式。(1分)其数学表达式:2dsinθ=λ(1分)其中d是晶体的晶面间距。(1分)θ是布拉格角,即入射线与晶面间的交角。(1分)λ是入射X 射线的波长。(1分) 4. 二次电子是怎样产生的?其主要特点有哪些?二次电子像主要反映试样的什么特征?用什么衬度解释?该衬度的形成主要取决于什么因素?(6分) 答:二次电子是单电子激发过程中被入射电子轰击出的试样原子核外电子。(1分) 二次电子的主要特征如下: (1)二次电子的能量小于50eV,主要反映试样表面10nm层内的状态,成像分辨率高。(1分) (2)二次电子发射系数δ与入射束的能量有关,在入射束能量大于一定值后,随着入射束能量的增加,二次电子的发射系数减小。(1分) (3)二次电子发射系数δ和试样表面倾角θ有关:δ(θ)=δ0/cosθ(1分) (4)二次电子在试样上方的角分布,在电子束垂直试样表面入射时,服从余弦定律。(1分) 二此电子像主要反映试样表面的形貌特征,用形貌衬度来解释,形貌衬度的形成主要取决于试样表面相对于入射电子束的倾角。(1分) 2. 布拉格角和衍射角: 布拉格角:入射线与晶面间的交角,(1.5 分) 衍射角:入射线与衍射线的交角。(1.5 分) 3. 静电透镜和磁透镜: 静电透镜:产生旋转对称等电位面的电极装置即为静电透镜,(1.5 分) 磁透镜:产生旋转对称磁场的线圈装置称为磁透镜。(1.5 分) 4. 原子核对电子的弹性散射和非弹性散射: 弹性散射:电子散射后只改变方向而不损失能量,(1.5 分) 非弹性散射:电子散射后既改变方向也损失能量。(1.5 分) 二、填空(每空1 分,共20 分) 1. X 射线衍射方法有劳厄法、转晶法、粉晶法和衍射仪法。 2.扫描仪的工作方式有连续扫描和步进扫描两种。 3. 在X 射线衍射物相分析中,粉末衍射卡组是由粉末衍射标准联合 委员会编制,称为JCPDS 卡片,又称为PDF 卡片。 4. 电磁透镜的像差有球差、色差、轴上像散和畸变。 5.透射电子显微镜的结构分为光学成像系统、真空系统和电气系统。 1. X射线管中,焦点形状可分为点焦点和线焦点,适合于衍射仪工作的是线焦点。 2. 在X 射线物象分析中,定性分析用的卡片是由粉末衍射标准联合委员会编制,称为JCPDS 卡片,又称为PDF(或ASTM) 卡片。 3. X射线衍射方法有劳厄法、转晶法、粉晶法和衍射仪法。 4. 电磁透镜的像差有球差、色差、轴上像散和畸变。 5. 电子探针是一种显微分析和成分分析相结合的微区分析。 二、选择题(多选、每题4 分) 1. X射线是( A D ) A. 电磁波; B. 声波; C. 超声波; D. 波长为0.01~1000?。 2. 方程2dSinθ=λ叫( A D ) A. 布拉格方程; B. 劳厄方程; C. 其中θ称为衍射角; D. θ称为布拉格角。

薄膜材料研究中的现代分析技术

现代分析技术的应用 1 引言 表面工程是在传统表面技术的基础上,综合应用材料科学、冶金学、机械学、电子学、物理学、化学、摩擦学等学科的原理、方法及最新成就发展起来的一门新兴学科。表面工程通过研究材料表面与界面的特征、性能、改性过程和相应方法,利用各种物理、化学或机械的工艺过程改变基材表面状态、化学成分、组织结构或形成特殊的表面覆层,优化材料表面,以获得原基材表面所不具备的某些性能,达到特定使用条件对产品表面性能的要求,获得高装饰性、耐腐蚀、抗高温氧化、减摩、耐磨、抗疲劳性及光、电、磁等多种表面特殊功能。它最突出的技术特点是勿需整体改变材质而能获得原基材所不具备的某些特性,获得如超细晶粒、非晶态、超饱和固溶体、多重结构、多相弥散结构等薄膜材料。它的另一技术特点是选材广,具有极大的灵活性,通过不同的处理工艺,可在金属、有机、无机材料表面制备出单金属、合金、陶瓷、有机高分子材料、类金刚石、金刚石、非晶态等多种薄膜层。近年来,表面工程的研究得到迅速发展,不仅取得了丰硕的科研成果,而且随着在制造业中的应用日益广泛,也获得了良好的经济效益。 薄膜材料的性能主要由材料成分、显微组织、相结构和界面状态所决定,而其成分、显微组织、相结构和界面状态又与表面处理技术和工艺有关。因此,分析薄膜材料的成分、显微组织、相结构和界面状况,并研究其与薄膜的性能、处理工艺之间的关系,是提高工艺水平、保证薄膜层质量的重要途径。近年来,表面和界面的电子显微分析技术的长足发展,为研究薄膜材料的微观状态提供了众多的分析测试手段,本文简要地讨论几种表面分析技术的特点及其在薄膜材料成分、形貌和晶体结构研究中的应用,供薄膜材料研究工作者参考。 2 薄膜材料的成分分析 由于下述原因,在一般情况下很难采用化学分析的方法实现对薄膜材料成分的分析。①薄膜材料的质量很小,取样很困难;②化学分析法得到的结果是一个平均值,无法解释薄膜材料的成分、工艺和性能之间的相互关系。这是因为薄膜材料的成分往往是微区不均匀分布,所以必须选用微区成分分析方法对薄膜材料进行微区成分分析。 2.1 电子探针X射线显微分析 电子探针X射线显微分析(EPMA, Electron Probe Microanalyser)是目前比较理想的一种微区成分分析手段。 电子探针仪利用高能电子与固体物质相互作用的原理,通过能量足够高的一束细聚焦电子束轰击样品表面,在一个有限的深度和侧向扩展的微区体积内,激发产生特征X射线信号,它们的波长(或能量)和强度是表征该微区内所含元素及其浓度的重要信息,采用适当的谱仪和检测、计数系统可达到成分分析的目的。 电子探针X射线显微分析,可分析原子序数为4~92的元素。对于轻元素的分析,需要特殊条件和技术。对于原子序数大于10的元素来说,定量分析的相对精度大约为1%。它所分析的区域很小,一般可从1立方微米到几十立方微米,分析范围的大小可人为调节,被测元素的绝对感量可达10的-10次方克,这是其它分析方法难以实现的。电子探针分析有三种方式:①选定样品表面微区,作定点的全谱扫描,进行定量或半定量分析,包括对其所含元素浓度进行定量分析;②电子束可沿样品表面选定的直线轨迹作所含元素浓度的线扫描分析;③电子束在样品表面作面扫描,以特定元素的X射线信号调制阴极射线管荧光屏亮度,给出元素浓度

【免费下载】材料现代分析技术

材料现代分析技术实验指导书 上海工程技术大学材料工程学院 二OO六年二月

实验一利用X射线衍射技术进行物相定性分析 一、实验目的 1.了解X射线物相定性分析步骤。 2.掌握X射线物相定性分析方法。 二、实验要求 熟悉由一张粉末衍射谱线,获得相关数据,借助Pcpdfwin计算机软件,标定出谱线对应的物相类型。 通过本实验,利用计算机软件熟练进行PDF卡片检索工作。确定每个衍射峰的衍射角2θ和衍射强度I′,掌握X射线物相定性分析实验方法。 三、实验内容 1.根据已获得的待测样品的衍射谱线及相关数据,确定每个衍射峰的衍射角2θ和衍射强度I′,规定最强峰的强度为I′max=100,依次计算其它衍射峰的相对强度I=100(I′/ I′max)值;根据入射X线波长λ和各个2θ值,由布拉格方程计算出各个衍射峰对应的晶面间距d,并按d由大到小的顺序分别将d和I排成两列。 2.利用这一系列d和I数据进行PDF卡片检索,通过这些数据与标准卡片中数据对照,从而确定出待测物相的类别。 四、实验步骤 1.取一张已制备的衍射谱线,了解其相关衍射实验条件。 2.熟悉Pcpdfwin计算机软件的使用。 3.按衍射强度I由大到小的顺序分别将d和I排成两列。 4.借助Pcpdfwin软件,确定待测样品的物相类别。 五、实验报告要求 1.写出依据X射线衍射进行材料物相定性分析的基本步骤。 2.说明利用Pcpdfwin软件检索PDF卡片确定物相的过程。 3.列出所得物相的关键数据。(物相化学式及英文名称、卡片号、三强线、最大晶面间距、试验条件、晶体学数据、物理性质、d值序列等)4.物相分析包括X射线衍射实验和PDF卡片检索两部分内容,结合本实验简要叙述获得正确结果的实验要点、注意事项以及实验体会等。

材料现代分析方法练习题及答案(rd,ebsd,tem,sem,表面分析)

8. 什么是弱束暗场像与中心暗场像有何不同试用Ewald图解说明。 答:弱束暗场像是通过入射束倾斜,使偏离布拉格条件较远的一个衍射束通过物镜光阑,透射束和其他衍射束都被挡掉,利用透过物镜光阑的强度较弱的衍射束成像。 与中心暗场像不同的是,中心暗场像是在双光束的条件下用的成像条件成像,即除直射束外只有一个强的衍射束,而弱束暗场像是在双光阑条件下的g/3g的成像条件成像,采用很大的偏离参量s。中心暗场像的成像衍射束严格满足布拉格条件,衍射强度较强,而弱束暗场像利用偏离布拉格条件较远的衍射束成像,衍射束强度很弱。采用弱束暗场像,完整区域的衍射束强度极弱,而在缺陷附近的极小区域内发生较强的反射,形成高分辨率的缺陷图像。图:PPT透射电子显微技术1页 10. 透射电子显微成像中,层错、反相畴界、畴界、孪晶界、晶界等衍衬像有何异同用什么办法及根据什么特征才能将它们区分开来 答:由于层错区域衍射波振幅一般与无层错区域衍射波振幅不同,则层错区和与相邻区域形成了不同的衬度,相应地出现均匀的亮线和暗线,由于层错两侧的区域晶体结构和位相相同,故所有亮线和暗线的衬度分别相同。层错衍衬像表现为平行于层错面迹线的明暗相间的等间距条纹。 孪晶界和晶界两侧的晶体由于位向不同,或者还由于点阵类型不同,一边的晶体处于双光束条件时,另一边的衍射条件不可能是完全相同的,也可能是处于无强衍射的情况,就相当于出现等厚条纹,所以他们的衍衬像都是间距不等的明暗相间的条纹,不同的是孪晶界是一条直线,而晶界不是直线。 反相畴界的衍衬像是曲折的带状条纹将晶粒分隔成许多形状不规则的小区域。 层错条纹平行线直线间距相等 反相畴界非平行线非直线间距不等 孪晶界条纹平行线直线间距不等 晶界条纹平行线非直线间距不等 11.什么是透射电子显微像中的质厚衬度、衍射衬度和相位衬度。形成衍射衬度像和相位衬度像时,物镜在聚焦方面有何不同为什么

光学薄膜技术第三章 薄膜制造技术

第三章薄膜制造技术 光学薄膜可以采用物理汽相沉积(PVD)和化学液相沉积(CLD)两种工艺来获得。CLD工艺简单,制造成本低,但膜层厚度不能精确控制,膜层强度差,较难获得多层膜,废水废气对环境造成污染,已很少使用。 PVD需要使用真空镀膜机,制造成本高,但膜层厚度能够精确控制,膜层强度好,目前已广泛使用。 PVD分为热蒸发、溅射、离子镀、及离子辅助镀等。 制作薄膜所必需的有关真空设备的基础知识 用物理方法制作薄膜,概括起来就是给制作薄膜的物质加上热能或动量,使它分解为原子、分子或少数几个原子、分子的集合体(从广义来说,就是使其蒸发),并使它们在其他位置重新结合或凝聚。 在这个过程中,如果大气与蒸发中的物质同时存在,那就会产生如下一些问题: ①蒸发物质的直线前进受妨碍而形成雾状微粒,难以制得均匀平整的薄膜; ②空气分子进入薄膜而形成杂质; ③空气中的活性分子与薄膜形成化合物; ④蒸发用的加热器及蒸发物质等与空气分子发生反应形成 化合物,从而不能进行正常的蒸发等等。 因此,必须把空气分子从制作薄膜的设备中排除出去,这个 过程称为抽气。空气压力低于一个大气压的状态称为真空, 而把产生真空的装置叫做真空泵,抽成真空的容器叫做真空 室,把包括真空泵和真空室在内的设备叫做真空设备。制作 薄膜最重要的装备是真空设备. 真空设备大致可分为两类:高真空设备和超高真空设备。二 者真空度不同,这两种真空设备的抽气系统基本上是相同 的,但所用的真空泵和真空阀不同,而且用于真空室和抽气 系统的材料也不同,下图是典型的高真空设备的原理图,制 作薄膜所用的高真空设备大多都属于这一类。 下图是超高真空设备的原理图,在原理上,它与高真空设备 没有什么不同,但是,为了稍稍改善抽气时空气的流动性, 超高真空设备不太使用管子,多数将超高真空用的真空泵直 接与真空室连接,一般还要装上辅助真空泵(如钛吸气泵) 来辅助超高真空泵。 3.1 高真空镀膜机 1.真空系统 现代的光学薄膜制备都是在真空下获得的。普通所说的 真空镀膜,基本都是在高真空中进行的。 先进行(1)然后进行(2)。因为所有的(超)高真空泵只有在真空室的压力降低到一定程度时才能进行工作,而且在高真空泵(如油扩散泵)中,要把空气之类的分子排出,就必须使排气口的气体压力降低到一定程度。 小型镀膜机的真空系统 低真空机械泵+高真空油扩散泵+低温冷阱

现代材料分析技术材料分析部分课后答案

材料分析测试技术部分课后答案 太原理工大学材料物理0901 除夕月 1-1 计算0.071nm(MoKα)和0.154nm(CuKα)的X-射线的振动频率和能量。 ν=c/λ=3*108/(0.071*10-9)=4.23*1018S-1 E=hν=6.63*10-34*4.23*1018=2.8*10-15 J ν=c/λ=3*108/(0. 154*10-9)=1.95*1018S-1 E=hν=6.63*10-34*2.8*1018=1.29*10-15 J 1-2 计算当管电压为50kV时,电子在与靶碰撞时的速度与动能以及所发射的连续谱的短波限和光子的最大动能. E=eV=1.602*10-19*50*103=8.01*10-15 J λ=1.24/50=0.0248 nm E=8.01*10-15 J(全部转化为光子的能量) V=(2eV/m)1/2=(2*8.01*10-15/9.1*10-31)1/2=1.32*108m/s 1-3分析下列荧光辐射产生的可能性,为什么? (1)用CuKαX射线激发CuKα荧光辐射; (2)用CuKβX射线激发CuKα荧光辐射;

(3)用CuKαX射线激发CuLα荧光辐射。 答:根据经典原子模型,原子内的电子分布在一系列量子化的壳层上,在稳定状态下,每个壳层有一定数量的电子,他们有一定的能量。最内层能量最低,向外能量依次增加。 根据能量关系,M、K层之间的能量差大于L、K成之间的能量差,K、L层之间的能量差大于M、L层能量差。由于释放的特征谱线的能量等于壳层间的能量差,所以K?的能量大于Ka 的能量,Ka能量大于La的能量。 因此在不考虑能量损失的情况下: CuKa能激发CuKa荧光辐射;(能量相同) CuK?能激发CuKa荧光辐射;(K?>Ka) CuKa能激发CuLa荧光辐射;(Ka>la) 1-4 以铅为吸收体,利用MoKα、RhKα、AgKαX射线画图,用图解法证明式(1-16)的正确性。(铅对于上述Ⅹ射线的质量吸收系数分别为122.8,84.13,66.14 cm2/g)。再由曲线求出铅对应于管电压为30 kv条件下所发出的最短波长时质量吸收系数。 解:查表得 以铅为吸收体即Z=82 Kαλ3 λ3Z3 μm Mo 0.714 0.364 200698 122.8 Rh 0.615 0.233 128469 84.13 Ag 0.567 0.182 100349 66.14 画以μm为纵坐标,以λ3Z3为横坐标曲线得K≈8.49×10-4,可见下图 铅发射最短波长λ0=1.24×103/V=0.0413nm λ3Z3=38.844×103 μm = 33 cm3/g 1-5. 计算空气对CrKα的质量吸收系数和线吸收系数(假设空气中只有质量分数80%的氮和质量分数20%的氧,空气的密度为1.29×10-3g/cm3)。 解:μm=0.8×27.7+0.2×40.1=22.16+8.02=30.18(cm2/g) μ=μm×ρ=30.18×1.29×10-3=3.89×10-2 cm-1 1-6. 为使CuKα线的强度衰减1/2,需要多厚的Ni滤波片?(Ni的密度为8.90g/cm3)。1-7. CuKα1和CuKα2的强度比在入射时为2:1,利用算得的Ni滤波片之后其比值会有什么变化? 解:设滤波片的厚度为t 根据公式I/ I0=e-Umρt;查表得铁对CuKα的μm=49.3(cm2/g),有:1/2=exp(-μmρt) 即t=-(ln0.5)/ μmρ=0.00158cm 根据公式:μm=Kλ3Z3,CuKα1和CuKα2的波长分别为:0.154051和0.154433nm ,所以μm=K

相关文档
最新文档