【高考精品复习】第四篇 三角函数、解三角形 第7讲 正弦定理、余弦定理应用举例

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第7讲正弦定理、余弦定理应用举例

【高考会这样考】

考查利用正弦定理、余弦定理解决实际问题中的角度、方向、距离及测量问题.【复习指导】

1.本讲联系生活实例,体会建模过程,掌握运用正弦定理、余弦定理解决实际问题的基本方法.

2.加强解三角形及解三角形的实际应用,培养数学建模能力.

基础梳理

1.用正弦定理和余弦定理解三角形的常见题型

测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角

(1)仰角和俯角

在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)).

(2)方位角

指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图(2)).(3)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏东60°等.

(4)坡度:坡面与水平面所成的二面角的度数.

一个步骤

解三角形应用题的一般步骤:

(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.

(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型. (3)根据题意选择正弦定理或余弦定理求解.

(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等. 两种情形

解三角形应用题常有以下两种情形

(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.

(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.

双基自测

1.(人教A 版教材习题改编)如图,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( ).

A .50 2 m

B .50 3 m

C .25 2 m D.2522 m 解析 由正弦定理得

AB sin ∠ACB

=AC

sin B ,又∵B =30°

∴AB =AC ·sin ∠ACB

sin B

=50×22

12=502(m).

答案 A

2.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为( ). A .α>β B .α=β

C .α+β=90°

D .α+β=180° 解析 根据仰角与俯角的定义易知α=β.

答案 B

3.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( ). A .北偏东15° B .北偏西15° C .北偏东10° D .北偏西10°

解析 如图.

答案 B

4.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时( ). A .5海里 B .53海里 C .10海里

D .103海里

解析 如图所示,依题意有∠BAC =60°,∠BAD =75°,所以∠CAD =∠CDA =15°,从而CD =CA =10(海里),

在Rt △ABC 中,得AB =5(海里), 于是这艘船的速度是5

0.5=10(海里/时). 答案 C

5.海上有A ,B ,C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B ,C 间的距离是________海里.

解析 由正弦定理,知BC sin 60°=AB sin (180°-60°-75°).解得BC =56(海里).

答案 5 6

考向一测量距离问题

【例1】►如图所示,

为了测量河对岸A,B两点间的距离,在这岸定一基线CD,现已测出CD=a和∠ACD=60°,∠BCD=30°,∠BDC=105°,∠ADC=60°,试求AB的长.[审题视点] 在△BCD中,求出BC,在△ABC中,求出AB.

解在△ACD中,已知CD=a,∠ACD=60°,∠ADC=60°,所以AC=a.∵∠BCD=30°,∠BDC=105°∴∠CBD=45°

在△BCD中,由正弦定理可得BC=a sin 105°

sin 45°=

3+1

2a.

在△ABC中,已经求得AC和BC,又因为∠ACB=30°,所以利用余弦定理可以

求得A,B两点之间的距离为AB=AC2+BC2-2AC·BC·cos 30°=

2 2a.

(1)利用示意图把已知量和待求量尽量集中在有关的三角形中,建立一个解三角形的模型.(2)利用正、余弦定理解出所需要的边和角,求得该数学模型的解.

【训练1】如图,A,B,C,D都在同一个与水平面垂直的平面内,B、D为两岛上的两座灯塔的塔顶,测量船于水面A处测得B点和D点的仰角分别为75°,30°,于水面C处测得B点和D点的仰角均为60°,AC=0.1 km.试探究图中B、D间距离与另外哪两点间距离相等,然后求B,D的距离.

解在△ACD中,∠DAC=30°,∠ADC=60°-∠DAC=30°,所以CD=AC=

0.1 km.又∠BCD =180°-60°-60°=60°,故CB 是△CAD 底边AD 的中垂线,所以BD =BA . 又∵∠ABC =15° 在△ABC 中,

AB sin ∠BCA =AC

sin ∠ABC

所以AB =AC sin 60°sin 15°=32+6

20(km), 同理,BD =

32+6

20(km).

故B 、D 的距离为

32+6

20 km.

考向二 测量高度问题

【例2】►如图,山脚下有一小塔AB ,在塔底B 测得山顶C 的仰角为60°,在山顶C 测得塔顶A 的俯角为45°,已知塔高AB =20 m ,求山高CD .

[审题视点] 过点C 作CE ∥DB ,延长BA 交CE 于点E ,在△AEC 中建立关系. 解

如图,设CD =x m , 则AE =x -20 m ,

tan 60°=CD BD ,

∴BD =CD tan 60°=x 3=33x (m).

在△AEC 中,x -20=3

3x ,

解得x =10(3+3) m .故山高CD 为10(3+3) m.

相关文档
最新文档