美国JPSS-1气象卫星的首个有效载荷即将准备安装

美国JPSS-1气象卫星的首个有效载荷即将准备安装
美国JPSS-1气象卫星的首个有效载荷即将准备安装

环境卫星有效载荷——红外相机

环境卫星有效载荷——红外相机 红外相机将来自地球表面环境地物的红外反射及辐射信号,经光学系统会聚镜成像到线列探测器上,完成光电信号的转换。探测器输出的电信号进行数字处理形成数字信号,并进行均匀性校正,形成近红外、短波红外、中波红外和长波红外四个红外通道4个通道的红外图像数据。 红外相机有近红外、短波红外、中波红外和长波红外四个红外通道,波段跨越0.75μm~12.5μm,光学口径200mm。红外相机的光路结构如图3.3-4所示,由主光学系统、后光学系统及其光学薄膜元件组成。环境目标信号经双面旋转扫描反射镜反射,进入同轴光学系统,以准平行光出射。分色片D1反射中长波红外波段,透射近红外短波红外波段,分色片D2反射近红外波段,透射短波红外波段。由各通道透镜组将信号会聚成像于各自对应的探测器组件上。各探测器焦平面组件均由探测器线列镶嵌以滤光片构成,以响应各光谱波段的信号,并形成4个光谱通道。中红外、长波红外两个线列探测器集成到同一个焦平面上,由一台斯特林制冷机进行制冷,制冷温度95K。 红外相机主要包括1台红外相机光机扫描头部、1台红外相机信息处理箱和1台斯特林制冷机控制箱。 选择同轴两反的卡塞格林系统作为主光学系统。系统的主镜为抛物面,副镜为双曲面,校正了系统的球差。主镜筒采用材料为殷钢,主镜采用石英材料。望远镜筒与副镜支架为一体化设计,这样加强了主镜与副镜的配合精度。副镜支架的肋板设计成倾斜面。在望远镜系统中,机械保证主镜和副镜安装后的同心度。红外相机成像方式选择多元并扫式。探测器采用多元器件,不同于推扫式的是多元探测器成像不是在穿轨方向而是在沿轨方向同时成像,其优点是在大的刈副宽度下可以有效地提高系统的探测灵敏度。 考虑到滤光片与探测器组合的分光方式在结构上比较紧凑,光学效率高,因此采用分色片先把近红外、短波红外波段与中红外、长波红外波段分离开,再通过各自的后光学系统会聚到滤光片-探测器组件上,形成红外相机所需要的4个探测波段。红外相机4个波段均采用自制的线列探测器,并采用校正黑体来代替冷空间,利用相机底板上参考黑体和侧壁上校正黑体两点,同时实现星上辐射基准和相机在轨的辐射校正。根据卫星系统要求,主要利用红外相机所获得的红外谱段的辐射信息探测陆面、水体和大气的热状况。红外相机具体技术技术性能和指标如下表所示。 项目指标 星下点像元分辨率150m(B1、B2、B3) ; 300m (B4), 刈宽(km)720 扫描视场角± 29° 谱段(μm)0.75~ 1.10 1.55~ 1.75 3.50 ~3.90 10.5 ~12.5 MTF0.280.270.260.25辐射分辨率(Ne△ρ或0.5%0.5%≤ ≤

气象卫星.

气象卫星 1960年4月美国发射了第一颗气象卫星泰罗斯 -1(Tiros-1)。随后,前苏联也相继发射了自己的气象 卫星。从此,气象学的发展进入了一个新的时代,气象 卫星的研究和应用蓬勃发展。目前,在轨道上运行的大 多数气象卫星是由美国和俄罗斯发射的,其中很大一部 分为极地轨道卫星,简称极轨卫星。 1966年美国发射第一颗业务气象卫星艾萨(ESSA) 是极轨卫星,主要提供可见光云图。 1970年、1978年 美国又相继发射诺阿(NOAA)和泰罗斯-N系列业务气象 卫星。这些卫星都属于极轨气象卫星。极轨气象卫星的飞行高度一般在800-1500公里左右。由于卫星的飞行高度低,因此卫星照片分辨率高,图像清晰。极轨气象卫星环绕地球的南、北极附近运转,一颗星从南向北,另一颗星从北向南运行。由于地球自转,每条轨道穿越赤道的经度是各不相同的。地面接收站每天两次在固定时间里接收某一轨道的卫星云图,几条轨道的图像拼接成区域云图,成为预报员制作预报的重要参考资料。 1974年,美国成功地研制了第一颗静止业务环境监测卫星(GOES)。静止业务环境监测卫星在赤道的某一经度、约36000公里高度上,它环绕地球一周约需24小时,几乎与地球自转同步。从地球上看好像卫星是相对静止的,故又称为地球静止卫星。二十世纪70年代后期,日本和欧盟也相继发展了自己的系列静止气象卫星。 目前,日本GMS系列静止气象卫星、 俄罗斯的GOMES卫星、欧盟 METEOSAT-3 卫 星、印度的INSAT以及美国的两颗静止卫星 (GOES-E和GOES-W)共6颗卫星组成地球静 止气象卫星监测网。它们分别位于全球赤道 东经140 度、东经76 度、西经75度、东 经74度、西经75度、西经135度上空。这 些卫星位于赤道上空约36000公里高,每半 小时向地球发送一次图片。另外,还有三颗 极轨卫星(2颗美国NOAA卫星,1颗俄罗斯 METEO卫星),这些卫星每天实时监视大气天气系统的运动和变化。 中国也先后成功地发射了6颗气象卫星(3颗风云-1和3颗风云-2)。依靠这些卫星,中国建立了自己的卫星天气预报和监测系统。风云-1是一种极地轨道气象卫星。星上装有若干个高分辨率扫描辐射计。包括4个可见频道和1个红外频道。风云-2是一种静止气象卫星。星上装有多频道扫描辐射计。包括1个可见波段、1个红外波段和1个水汽波段。载荷包括S频段传输和云图预报转发器,UFH/S频段数据采集转发器和空间环境监测设备。 气象卫星资料弥补了占地球表面积71%的海洋上、高原及沙漠上人烟稀少地区常规气象探测资料的不足。它具有视野开阔、观测范围广、观测时次多等优点。人们通过卫星,能比过去提前二三天发现台风,并能准确地测定它的位置、强度,从而确定它的移向、移速和发展变化。因此,卫星云图成为监视台风和预报台风移动路径的十分有效的工具,特别是台风定位已经离不开卫星云图。卫星资料应用还发展到农业、森林火灾、洪水灾情、环境监测等领域。

国内外高分卫星参数

高分一号1 高分一号卫星是中国高分辨率对地观测系统的首 发星,突破了高空间分辨率、多光谱与 宽覆盖相结合的光学遥感等关键技术,设计寿命5 至8 年。高分辨率对地观测系统工程是 《国家中长期科学和技术发展规划纲要(2006~2020 年)》确定的16 个重大专项之一,由国 防科工局、总装备部牵头实施。 “高分一号”是我国高分辨率对地观测卫星系统重大专项(简称“高分专项”)的第一颗 卫星。“高分专项”于2010 年 5 月全面启动,计划到2020 年建成我国自主的陆地、大气和 海洋观测系统。尽管该“专项”主要是民用卫星,但外国专家认为,由于分辨率较高,也具

备相当价值的军事用途,识别飞机、坦克已经不成问题。 GF-1 卫星搭载了两台2m 分辨率全色/8m 分辨率多光谱相机,四台16m 分辨率多光谱相 机。卫星工程突破了高空间分辨率、多光谱与高时间分辨率结合的光学遥感技术,多载荷图 像拼接融合技术,高精度高稳定度姿态控制技术,5 年至8 年寿命高可靠卫星技术,高分辨率数据处理与应用等关键技术,对于推动我国卫星工程水平的提升,提高我国高分辨率数据自给率,具有重大战略意义。 “高分一号”的全色分辨率是2 米,多光谱分辨率为8 米。它的特点是增加了高分辨率 “高分一号”的多光谱相机,该相机的性能在国内投入运行的对地观测卫星中最强。此外,

宽幅多光谱相机幅宽达到了800 公里,而法国发 射的SPOT6 卫星幅宽仅有60 公里。“高分一号”在具有类似空间分辨率的同时,可以在更短的时间内对一个地区重复拍照,其重复周 期只有4 天,而世界上同类卫星的重复周期大多 为10 余天。可以说,“高分一号”实现了高 空间分辨率和高时间分辨率的完美结合。 实际上,“高分专项”是一个非常庞大的遥感技术 项目,包含至少7 颗卫星和其他观测 平台,分别编号为“高分一号”到“高分七号”,它们都将在2020 年前发射并投入使用。“高分一号”为光学成像遥感卫星;“高分二号”也是光学遥感卫星,但全色和多光谱分辨率都提高一倍,分别达到了 1 米全色和 4 米多光谱;“高分三号”为1 米分辨率;“高分四号”为地球同步轨道上的光学卫星,全色分辨率为50 米;“高分五号”不仅装有高光谱相机,而且拥

卫星通信发展趋势分析

卫星通信发展趋势分析 据悉,“十三五”期间,我国将建起一个全天候、安全可靠、自主可控的全球卫星宽带通信系统。在服务于国家“一带一路”战略和海外发展战略的同时,面向国内外航空机载、海事船载和陆地移动业务客户,提供高通量卫星资源和卫星宽带通信服务。 本版邀请中国航天科技集团公司所属单位相关业务专家,谈一谈高通量卫星和卫星宽带通信的那些事儿。 高通量通信卫星也称高吞吐量通信卫星,是相对于使用相同频率资源的传统通信卫星而言的,主要技术特征包括多点波束、频率复用、高波束增益等。 目前,海洋通信、民航通信和火车通信这三个领域,被看作高通量通信卫星系统应用正在进军的蓝海市场。 在宽带卫星通信发展动向方面,高清化、融合化、IP化、星座化是其几个主要趋势。 啥叫“高通量”? HTS可提供比常规通信卫星高出数倍甚至数十倍的容量,传统通信卫星容量不到10吉比特每秒(Gbit/s),HTS容量可达几十吉比特每秒到上百吉比特每秒。 按轨道划分,HTS卫星分为地球同步静止轨道(GEO)和非静止轨道两种类型,当前在轨应用的HTS卫星以GEO居多。 截止到2015年,全球已有48颗HTS卫星发射并在轨运行,主要包括运行在GEO 轨道的Kasat、卫讯-1(Viasat-1)、亚塞特卫星-1A/1B(Yahsat-1A/1B)、回声星-17(Echostar-17)、哈里斯-2(Hyas-2)和国际移动卫星-5(In-marsat-5)星座。 按计划,2016年将陆续发射Viasat-2、Echostar-19等。在未来3年里,还将有33颗HTS载荷卫星发射,届时,全球高吞吐量通信卫星总容量将达到1400Gbit/s。非静止轨道高通量卫星构建的系统较少,以O3b卫星为典型代表。 频率是建设通信卫星的基本要素。对高通量通信卫星而言,频率是影响其吞吐量的重要因素。高通量通信卫星可以工作于Ku或Ka频段,但目前大多数的高通量通信卫星采用的是Ka频段。 鉴于高通量卫星通信经济性方面的优势,电信服务提供商能够提供与地面4G网络服务抗衡的包月服务资费。 有资料统计,目前一颗HTS卫星的总容量超过100Gbit/s,但卫星建造、火箭发射、发射保险的费用与传统卫星持平,每Gbit/s的投资已经降到400万美元~500

《气象数据元 卫星气象》编制说明

气象行业标准《气象数据元卫星气象》编制说明 一、工作简况 1. 任务来源 本标准由全国气象基本信息标准化技术委员会(SAC/TC 346)提出并归口。2019年4月22日由中国气象局下达国家气象信息中心(气法函[2019]25号),项目编号QX/T-2019-87。 2. 协作单位 无。 3. 主要起草人及所做工作 本标准主要起草人为国家卫星气象中心崔鹏、肖萌、贾中辉、亓永刚、张海真、高昂,其分工如下: 崔鹏,负责标准的起草,资料的汇总,对标准进行修改完善; 肖萌,负责本标准中数据元属性信息的调研和修改; 贾中辉,负责本标准格式和内容的检查; 亓永刚, 负责本标准中风云资料的收集、汇总 张海真,负责本标准内容的检查、意见的收集和汇总。 高昂,负责本标准意见的收集和汇总。 4. 主要工作过程 (1)成立起草组 2019年05月,编制单位成立了标准起草组,并制定了实施计划。起草组按计划进行了资料收集、工作分工。 (2)组织起草 2019年6月,认真学习《气象数据元:总则》、《气象要素分类与编码》(QX/T 133-2011)等相关标准,并查阅风云二号、风云三号、风云四号三个系列的极轨和静止气象卫星现有数据和产品的相关信息。 (3)完成初稿

2019年7月到9月,按照《气象数据元:总则》规定的数据元要求,完成卫星气象数据元的提取和总结,形成了标准草稿。标准编制组经过多次深入的讨论和充分的论证,不断进行修改完善,尤其是其中涉及的标准内容、技术方法等进行确认,形成初稿。 (4)征求意见 2019年10月到11月,起草组认真学习《气象数据元:总则》报批稿,对卫星气象数据元进行完善修改添加同义编码、关系、特征值等气象数据元属性,并进行了内部讨论,形成行标征求意见稿。 二、标准编制原则和确定标准主要内容的论据 1. 编制原则 本标准以QX/T-2018-33 气象行业标准《气象数据元总则》为基础,在编制过程中遵循总则气象数据元确定规则、数据元类型与描述方法等规定。同时依据卫星气象数据特点,按照总则确定的15个数据元属性,规定卫星气象相关数据元。为保持气象信息业务的延续性,同时还参考了行标《气象要素分类与编码》(QX/T 133-2011)、《气象卫星数据分类与编码规范》 (QX/T327-2016)中卫星气象产品分类和代码等相关信息。标准编制还参考了出版行业的相关编写规定,遵照中国气象局相关法律、法规、规章、技术政策、标准及其规范,以及气象行业标准的特点,本着简明、规范、实用的原则进行编制。 2.主要内容及确定依据 本标准按照《气象数据元总则》的要求,规定卫星气象相关数据元的编制原则和数据元,本标准适用于气象数据元中卫星气象相关数据元的采集、加工、应用和服务等业务环节。 本标准以风云二号、风云三号、风云四号三个系列的极轨和静止气象卫星现有数据和产品为研究对象。整理汇总国家卫星气象中心地面应用系统中现有数据和产品,分类提取数据集描述信息和属性信息,作为数据元分析的基础。对汇总的数据集描述信息和属性信息进行分析和整理,依照数据元规则进行分解,形成以现有风云气象卫星数据为基础的统一、规范、无歧异的卫星气象数据元。 首先,根据总则的分类要求,识别卫星观测要素是否可用其他要素类型定义,对无法用其他要素类型定义的数据元进行定义和进一步编制。对收集汇总的数据元与《气象要素分类与编码》和《气象卫星数据分类与编码规范》进行比对,对已定义且仍适用的数据元概念沿用其代码和中文名称,继承已有标识类属性,与现有气象标准保持一致性和连贯性;对未定义或已定义但不适用的数据元概念重新编码和定义。

卫星载荷

一、红外成像技术概述 二、国内外卫星载荷研究现状 阿特拉斯-5火箭发射SBIRSGEO-1卫星: 世界协调时2011年5月7日18时10分,美国空军使用联合发射联盟公司(ULA)阿特拉斯-5火箭在卡纳维拉尔角空军基地成功发射首颗天基红外系统(SBIRS)地球同步轨道卫星GEO-1。GEO-1卫星星上载有扫描与凝视(staring sensors)传感器,且其红外敏感度及重访周期均较现役卫星星座有所提高。据该星建造方洛克希德·马丁公司(以下简称“洛·马公司”)消息,SBIRSGEO-1的卫星是目前技术最为先进的军事红外卫星,可大大提高美国的导弹预警能力,星上扫描传感器可进行大范围导弹发射侦察和覆盖全球的自然现象监测。同时,由于星载凝视传感器敏感性绝佳,因此其将用于小范围目标区域观测。 该“宇宙神”-5火箭将“天基红外系统”(SBIRS)“静地轨道”-1(GEO-1)卫星送入轨道。发射43分钟后,星箭分离。卫星距地约185千米,目标是远地点高度约为3.58万千米的轨道位置。美国空军SBIRS项目官员厄姆斯塔德(Ryan Umstattd)中校表示:由6个液体远地点发动机(LAE)组成的发动机组计划点火9天多,将卫星送至距地约3.54万千米的静地轨道上,并进行初始检测与运行。 在该轨道上,卫星将打开其防光设备(设计用于保护传感器有效载荷)、天线以以及有效载荷舱门。预计发射后35天,红外有效载荷(通过“视达地面”能力在短波、中波红外波段收集信息)将被开启,并开始传送来自卫星的原始数据。发射后18个月内会实现全面综合战术预警与攻击评估确认能力,以使卫星能够正式参与导弹防御。 日本ASTRO-F红外成像卫星的观测设备试验成功2004年12月初,日本ASTRO-F红外成像卫星的观测设备在住友重机械工业株式会社的Nihama工厂进行了试验,冷却剂和观测仪使用良好。这是该设备组装完后的首次试验。 此次试验对各种装置的性能进行了一周的测试,所获得的结果与组装前各单元的试验数据相当或更好。数据分析仍在进行中,当所有工作完成之后,将可获得最终的飞行评估结果。ASTRO-F卫星目前正在研制中,它将是日本第一个红外-射线天文卫星,用于对恒星和银河系的观测。 Glory 卫星主要收集地球大气中黑炭和气溶胶含量,以及记录太阳黑子对地球大气的长期影响。 气溶胶主要来自汽车尾气,工厂,海洋,火山喷发等,另外,大面积的森林,海洋浮游生物,土壤微生物都是其来源。 之所以同时探测地球大气中的黑炭与气溶胶,是因为这两者在地球温室效应上起到一定的作用,比如硫酸盐气溶胶和海盐气溶胶,能反射太阳辐射,对降低温室效应有作用,但是黑碳气溶胶和其他类型的碳粒子,就会吸收太阳辐射,对地球温室效应是正贡献。 三、红外探测器的发展

气象卫星的资料

气象卫星的资料 气象卫星实质上是一个高悬在太空的自动化高级气象站,是空间、遥感、计算机、通信和控制等高技术相结合的产物。 气象卫星主要观测内容包括: ①卫星云图的拍摄。 ②云顶温度、云顶状况、云量和云内凝结物相位的观测。 ③陆地表面状况的观测,如冰雪和风沙,以及海洋表面状况的观测,如海洋表面温度、海冰和洋流等。 ④大气中水汽总量、湿度分布、降水区和降水量的分布。 ⑤大气中臭氧的含量及其分布。 ⑥太阳的入射辐射、地气体系对太阳辐射的总反射率以及地气体系向太空的红外辐射。 ⑦空间环境状况的监测,如太阳发射的质子、α粒子和电子的通量密度。这些观测内容有助于我们监测天气系统的移动和演变;为研究气候变迁提供了大量的基础资料;为空间飞行提供了大量的环境监测结果。 气象卫星的轨道大致有两种,一种是太阳同步轨道,一种是地球静止轨道。按照前一种轨道运行,卫星每天对地球表面巡视两遍,其优点是可以获得全球气象资料,缺点是对某一地区每天只能观测两次。若运行于地球静止轨道,则可以对地球近1/5的地区连续进行气象观测,实时将资料送回地面,用四颗卫星均匀地布置在赤道上空,就能对全球中、低纬度地区气象状况进行连续监测;它的缺点是对纬度大于55度地区的气象观测能力差。这两种卫星如果同时在天上工作,就可以优势互补。 世界上第一颗气象卫星是美国发射的“泰罗斯”卫星,它为美国提供了大量气

象资料。中国1988年9月7日发射了第一颗气象卫星—“风云一号”太阳同步轨道气象卫星。卫星云图的清晰度可与美国“诺阿”卫星云图媲美,但由于星上元器件发生故障,它只工作了39天。后成功发射了四颗极轨气象卫星(风云号)和三颗静止气象卫星(风云二号),经历了从极轨卫星到静止卫星,从试验卫星到业务卫星的发展过程。同时还建立了以接收风云卫星为主、兼收国外环境卫星的卫星地面接收和应用系统,在气象减灾防灾、国民经济和国防建设中发挥了显著作用。 目前,我国的极轨气象卫星和静止气象卫星已经进入业务化,在轨运行的卫星分别是风云一号D星(2002年发射)和风云二号C星(2004年发射)。我国是世界上少数几个同时拥有极轨和静止气象卫星的国家之一,是世界气象组织对地观测卫星业务监测网的重要成员。风云二号卫星作用是获取白天可见光云图、昼夜红外云图和水气分布图,进行天气图传真广播,供国内外气象资料利用站接收利用,收集气象、水文和海洋等数据收集平台的气象监测数据,监测太阳活动和卫星所处轨道的空间环境,为卫星工程和空间环境科学研究提供监测数据。中国位于全球气候脆弱带,旱涝、高温、冷寒等气候灾害频繁发生。风云二号静止气象卫星资料越来越成为天气分析,预报服务中必不可少的重要监测手段。对灾害性天气的监测,特别是对台风、暴雨、洪水、沙尘暴等重大自然灾害的监测,静止气象卫星发挥了重要作用。

《卫星通信技术》完全

《卫星通信技术》 卫星通信:是指利用人造地球卫星作为中继站转发无线电波,在两个或多个地球站之间进行的通信 通信卫星:由一颗或多颗通信卫星组成,在空中对发来的信号起中继放大和转发作用。每颗通信卫星都由收发天线、通信转发器、跟踪遥测指令、控制和电源等分系统。 卫星轨道按卫星离地面的高度分为: ●HEO P14.高椭圆轨道,最近点为1000-21000km,最远点为39500-50600km ●MEO P14.中轨道,h≈10000km ●LEO P14.低轨道,700-1500km ●GEO P14.地球同步轨道,h≈35786km ●EIRP :(P115)把卫星和地球站发射天线在波束中心轴向上辐射的功率称为发送设备 的有效全向辐射功率(EIRP),即天线发射功率PT与天线增益GT的乘积,表征地球站或转发器的发射能力的重要指标 ●S-ALOHA:(P108)是以卫星转发器的输入端为参考点的埋在时间上等间隔的划分为 若干时隙,而每个站多发射的分组就必须进入指定的时隙,每个分组的持续时间将占满一个时隙。 ●P-ALOHA:(P107)纯ALOHA方式,在该系统中,各个地球站共用一个卫星转发器 的频段,各站在时间上随机地发射其数据分组。在发生碰撞,就会使数据分组丢失,各站将随机延迟一定时间后,再重发这个数据分组。 ●VSAT:即甚小口径天线终端,指一类具有甚小口径天线的小型地球站与一个大站协调 工作构成的卫星通信网 ●G/T :(P118)地面站性能指数(G:接收天线增益、T:等效噪声温度) ●GNSS :P213,即全球导航卫星系统,它是所有在轨工作的卫星导航定位系统的总称。 ●GMDSS:全球海上遇险与安全系统。该系统主要由卫星通信系统— INMARSAT (海事 卫星通信系统) 和COS-PAS/SARSAT(极轨道卫星搜救系统)、地面无线电通信系统(即海岸电台)以及海上安全信息播发系统三大部分构成 ●INMARSAT-A:(INMARSAT是国际移动通信卫星系统)P194,它属于模拟系统,其 终端通过直径大约为1m的抛物面天线提供话音,数据,电传,传真以及高速数据。提供一个话音和电传信道,可连接电传机或小型交换机等外设。

计算机网络原理 卫星通信系统

计算机网络原理卫星通信系统 卫星通信是航天技术和电子技术相结合而产生的一种重要通信方式。它是在19世纪60年代迅速发展起来的。通常卫星通信是以空间轨道中运行的人造卫星作为中继站,地球站作为终端站,来实现两个或者多个地球站之间的长距离大容量的区域性通信及至全球通信。1.卫星通信 通常,我们把用作通信的卫星叫通信卫星,这种卫星在地球赤道上空约36000公里的轨道上从西向东转动,方向和速度恰好与地球自转同步,在地面上看来是静止不动的,所以又称同步静止卫星。它为军事、政府、私人和商业用户等消费者提供通信服务,图12-8所示就为一个典型的卫星微波系统。 号,卫星使用的频率实质上与微波系统相同。卫星中继器称为发射机应答器,一个卫星可以有许多发射机应答器。一个卫星系统包括一个或多个卫星空间飞行器、地面控制站,以及为传输、接收和处理通过该卫星系统的陆地通信量而提供的地面站用户网络。进出卫星的传输被分为总线或有效负载。总线包括支持有效负载操作的控制机制。有效负载是实际的用户信息。 虽然卫星系统的类型很多,但是最流行的系统是用于通信、监视、天气和导航的系统。通信系统由政府、军队和商业通信公司广泛应用于在全世界各地的用户之间传输语音、数据和视频信息。天气和监视卫星主要由政府和军事机构使用,而导航卫星则几乎是每个人都会用到的,这包括政府、军队、市民和商业公司。 卫星通信系统按照卫星高度一般分为低轨道(LEO)、MEO(中轨道)或地球同步轨道(GEO)卫星。大多数LEO卫星的工作频率范围是1.0GHz至2.5GHz。如Motolora公司的基于卫星的移动电话系统Iridium就是一个LEO系统,它使用67个卫星星座在地球表面上大约480英里的轨道上运行。MEO卫星在1.2GHz至1.67GHz的频段内工作。如美国国防部的基于卫星的全球定位系统NAVSTAR就是一个MEO系统,其星座包括在地球表面上大约9500英里的轨道上运行的21个工作卫星和6个或更多的备用卫星。GEO是高空地球轨道卫星,其工作频率范围是2GHz至18GHz,运行轨道在地球表面以上的22300英里处。 另外,卫星通信系统按照其使用的空间轨道位置,还可以分为对地静止轨道(GEO)和非对地静止轨道(Non-GEO);按照其业务提供的范围可以分为全球卫星通信系统和区域卫

卫星通信系统复习纲要--个人辛苦总结

卫星通信系统复习纲要 第一章概述 1、卫星通信定义:是指利用人选地球卫星作为中继站转发或反射无线电信号,在两个或多个地球站之间进行的通信 2、静止卫星通信 静止卫星是指以赤道平面内的圆形轨道为运行轨道,运行方向与地球自转方向相同,公转周期和地球的自转周期同为24小时,与地球同步运行的卫星。在两个或多个以静止卫星作为中继站所进行的通信就称为静止卫星通信。 3、最少三颗卫星就可实现全球通信 若以120度的等间隔在静止轨道上配置三颗卫星,刚地球表面除了两极区未被卫星波束覆盖外,其他区域均在覆盖范围之内,而且其中部分区域为两个静止卫星波束的重叠地区,因此借助于在重叠区内地球站的中继(称之为双跳),可以实现在不同卫星覆盖区内地球站之间的通信。由此可见,只要用三颗等间隔配置的静止卫星就可以实现便于通信。 4、星蚀 静止卫星围绕地球赤道面旋转,当卫星、地球和太阳共处在一条直线上时,地球挡住了阳光对卫星的照射,卫星进入地球的阴影区,造成了卫星的日蚀——星蚀 5、日凌:静止卫星围绕地球赤道面旋转,当卫星、地球和太阳共处在一条直线上,这里地球站天线对准卫星的同时也就对准太阳,强大的太阳噪声进入地球站将造成通信中断-日凌中断 简要回答 6、卫星通信的优点和不足是什么? 优点:1)通信距离远,且费用与通信距离无关;2)覆盖面积大,可进行多址通信; 3)通信频带宽,传输容量大,适于多种业务传输;4)通信线路稳定可靠,通信质量高; 5)通信电路灵活;6)机动性好;7)可以自发自收进行监测 不足:1)卫星通信具有广播特性,一般来讲较易被窃听; 2)由于传播距离远产生较长时延,将带来回波干扰和话音重叠问题 3)受星蚀、日凌中断影响 7、卫星通信系统的组成包括什么? 主要由通信卫星、卫星通信地球站、测控系统和监测管理系统组成。 8、卫星通信的工作频段有哪些? 有:1、UHF波段400/200MHz 2、L波段1.6/1.5GHz 3、C波段6.0/4.0GHz 4、X波段8.0/7.0GHz 5、Ku波段14.0/12.4 GHz;14.011.0 GHz 6、Ka波段30/20 GHz 9、什么是移动卫星通信的电波衰落和多普勒效应? 电波在移动环境中传播时,会遇到各种物体,经反射、散射、绕射到达接收天线时已成为通过各个路径到达的合成波,由于各传播路径分量的幅度和相信各不相同,因此合成信号起伏很大,称为多径衰落 多普勒频移:当卫星与用户终端之间、卫星与基站之间、卫星与卫星之间存在相对运动时,接收端接收到的发射端载频发生频移 第二章、通信卫星和地球站设备概念 10、卫星轨道 地球绕卫星运行的运动轨迹叫卫星轨道 11、卫星运动规律 卫星运动的三个定律:1、卫星以地球中心为一焦点,作干净曲线运动。2、连接卫星与地球质量中心的矢径(即位置矢量),在单位时间内所扫过的面积相等。3、卫星绕地球公转周期的平方,与椭圆半长轴的立方成正比 12、摄动:由于一些次要因素的影响,卫星运动的实际轨道不断发生不同程度地偏离开普勒定律所确定的理想轨道的现象称为摄动13、如何保持卫星的轨道位置? 实现位置控制主要是靠星体上的轴向喷嘴与横向喷嘴来完成 14、按高度分卫星轨道如何分类? 静止轨道GEO、中轨道MEO、低轨道LEO、长椭圆轨道HEO 15、哪些因素导致卫星摄动?太阳、月亮引力的影响,2、地球引力场不均匀,3、地球大气层阻力4、太阳辐射压力 16、卫星姿态控制有哪些方法?最常用的是哪两种? 自旋稳定法、重力梯度稳定法、磁力稳定法和三轴稳定法;最常用的是自旋稳定法和三轴称稳定法 17、通信卫星由哪两部分组成?由空间平台和有效负荷两部分组成 18、通信卫星的有效载荷包括哪些?包括全部通信转发器和天线 19、卫星通信天线有哪两种?由于通信的微波定向天线分为哪三类? (1)全身天线和微波定向天线(2)全球波束天线、点波束天线、区域波束天线 20、卫星转发器分为哪两类?透明转发器和处理转发器 21、典型地球站有哪些部分组成? 由天线分系统,发射系统,接收分系统,信道终端设备分系统,伺服跟踪设备分系统,监控分系统,用户接口分系统和电源分系统组成 第三章卫星通信的多址技术 22、多址联接:是指多个地球站通过共同的卫星,同时建立各自的信道,从而实现各地球站相互之间通信的一种方式 23、ALOHA方式:是一种为交互计算机传输而设计的按需分配时分多址方式 24、卫星通信中常用的信道分配制度有哪些? (1)、预分配方式;(2)、按需分配方式(3)、随机分配方式25、什么是SCPC\FDMA方式? SCPC\FDMA方式是一种比较好的卫星通信体制。它是在每一载波上只传送一路电话,或相当于一路话的数据或电报,并且可以采用“话音激活”(又称话音开关)技术,不讲话时关闭所有虚渺,有话音时才发射载波。 26、FDMA产生互调干扰的主要原因是什么?减少互调干扰的方法有哪些? 主要原因:当卫星转发器的行波管放大器(TWTA)同时放大多个不同频率的信号时,由于输入、输出特性和调幅/调相转换特性的非线性,使输出信号出现各种组合频率成分。当这些组合频率成分汇入工作频带内时,就会造成干扰 几种常用减少互调干扰的方法: 1、载波不等间隔排列 2、对上行载波功率进行控制,合理选择行

极轨气象卫星及其AVHRR介绍

极轨气象卫星及其AVHRR介绍极轨气象卫星是围绕太阳同步轨道运行的卫星,其携带的可见光、红外遥感仪器可以在较低的轨道上以较高的地面分辨率对全球进行监测。目前在轨运行的业务极轨气象卫星主要有美国的NOAA系列(NOAA12、NOAA14、NOAA16和NOAA17)和中国的“风云一号”(FY-1)系列(FY1C和FY1D)。 “风云一号”(FY-1)系列极轨气象卫星是由中国自行设计研制的,此系列卫星目前为止共发射了4颗,即FY-1A、FY-1B、FY-1C、FY-1D,其中FY-1A(1998年9月发射),FY-1B (1990年9月发射)与NOAA卫星兼容,均属于实验性质卫星,现都已经退出业务运行。FY-1C(1999年5月发射)及其接替卫星FY-1D(2002年3月发射)是改进型的极轨气象卫星,它的多通道可见光红外扫描辐射计是MVISR,其通道数为10个,包括4个可见光通道,1个短红外,2个近红外通道,1个中波红外通道和2个长波红外,它的高分辨率图像传输仪称为CHRPT。 NOAA系列卫星是美国第三代太阳同步轨道气象环境监测业务卫星,即TIROS-N和NOAA-A~J。第一颗卫星TIROS-N于1978年10月13日发射并投入业务运行。自1978年至今,NOAA-A~J卫星相继发射,卫星发射前命名为NOAA-A、B、C、……,入轨运行后改为数字标号,例如:1984年12月12日发射的NOAA-F投入业务运行后更名为NOAA-9,1993年8月9日发射的NOAA-I,转入业务运行后将更名为NOAA-13。NOAA系列卫星分为两种类型:5颗TIROS-N型的,即TIROS-N和NOAA-A~D,6颗改进TIROS-N型(ATN),即NOAA-E~J。卫星携带了两部对气象业务预报非常有用的仪器:一部是甚高分辨率辐射仪(AVHRR),用以获得图像资料;另一部是泰罗斯垂直业务探测器(TOVS),用以得到温度垂直探测资料。AVHRR辐射仪有5个波段的辐射,即5个通道,星下点地面分辨率约为1公里。具有这种分辨率的大量数据资料由高分辨率图像传输设备(HRPT)实时传送。此外星上还携带有资料收集系统(DCS)和空间环境监测仪(SEM)。改进的TIROS-N型卫星,逐步加强了仪器的功能,NOAA-8卫星增加了探索搜救系统(SARSAT),NOAA-9和NOAA-10增加了地球辐射收支实验器(ERBE),NOAA-9卫星还增加了太阳紫外后向散射辐射计(SBUV)。NOAA系列后期的卫星星载改进的甚高分辨率扫描辐射仪(AVHRR)是具有5个观测通道,对可见光、近红外和红外光谱“窗区”波段敏感的扫描仪。NOAA系列前几颗卫星使用4个通道的扫描辐射仪,第五通道重复第四通道的信息。在后续的卫星上,增加了第五通道。NOAA-11以前一般是双序号卫星携带四通道扫描辐射仪,单序号卫星携

卫星通信期末考试复习重点

一.名词解释 卫星通信:利用人造地球卫星作为中继站转发无线电波,在两个或多个地球站之间进行的通信。 日凌中断:当卫星处在太阳和地球之间,并且三者在一条时间上时,卫星天线在对准卫星接收信号的同时,也会因对准太阳而受到太阳的辐射干扰,又由于地球站天线对准卫星的同时也就对准了太阳,使得强大的太阳噪声进入地球站,因此会造成通信中断,这种现象称为日凌中断。 星蚀现象:当地球处于卫星与太阳之间时,地球把阳光遮挡,卫星处于地球的阴影区,此时通信卫星上的太阳能电池不能正常工作,而星载蓄电池只能维持卫星自转,不能支持转发器工作,这种现象造成的通讯中断称为星蚀现象。 多址技术:多个地球站通过同一颗卫星建立两址和多址之间的通信的技术。FDMA:是一种把卫星占用的频带按频率高低划分给各地面站的多址方式。CDMA:是一种给各地球站分配一个特殊的地址码(伪随机码)的扩频通信多址方式。 复用技术: 个人认为,复用技术和多址技术最大的区别在于应用的领域不同。 复用这个词通常用在传输上,将一个物理信道根据时间、频率、空间等资源划分为多个虚拟信道。这么做的好处有二:一是减少管道的个数,为运营商减少线路成本;二是提升单通道的容量。从作用上看都是针对传输而言的,与具体用户无关。 多址则应用在接入中,特别是移动通信。我们知道在同一个基站下,不同的用户利用相同的资源(同一时间,同一频率)发出通信请求肯定会发生冲突。而多址技术正是用来解决这个问题:如何划分资源块,使更多的用户终端(如手机)能够在不发生冲突的情况下获得服务。当然,处理好用户接入的问题能够提升服务质量并带来商业效益。 总的来说,两个技术十分接近,都是针对资源进行细粒度的划分和重用,但应用的领域和目的不大相同。 2、多址的“址”在移动通信中是指用户临时占用的信道,多址就是要给用户动态分配一种地址资源——信道,当然这种分配只是临时的; 3、多址和复用的区别还在于,多址技术是要根据不同的“址”来区分用户;复用是要给用户一个很好的利用资源的方式。一句话“复用针

NOAA系列极轨气象卫星数据格式

NOAA系列极轨气象卫星 数据格式

目录 1卫星介绍 (1) 2有效载荷介绍 (2) 3NOAA 1B数据格式 (4) 3.1 压缩形式的1B格式 (4) 3.2 NOAA_K/L/M/N(15,16,17..)卫星1B数据格式 (7) 3.3 NOAA-16/17A TOVS L EVEL 1数据文件格式 (13)

1卫星介绍 目前我国接收、存档和使用的NOAA系列卫星主要分为美国第四代(NOAA-9--NOAA-14)和第五代(NOAA-15--NOAA-17)极轨气象卫星,它们的共同点是卫星姿态为三轴稳定,扫描率为6条扫描线/秒,对地扫描角±55.4度,星下点分辨率1.1公里,卫星轨道是太阳同步轨道,高度在800-850.0公里之间,倾角为98.6-99.1度之间,偏心率小于10E-4。周期101-102分。24小时内卫星绕地球运行14圈左右。回归周期9天左右,所不同的第五代卫星在AVHRR探测器安装改进的甚高分辨率辐射计3型(AVHRR/3),增加CH3A(同CH3B进行时间切换),同时TOVS变为ATOVS,增加微波探测器等先进仪器,并且预处理生成的1B文件由压缩形式改变成二进制长字节文件。现将卫星某些轨道参数介绍如下: NOAA-11卫星: 发射日期1988年9月24日,正式运行日期1988年11月8日 轨道高度:841公里轨道倾角:98.9度轨道周期:101.8分 NOAA-12卫星: 发射日期1991年5月14日,正式运行日期1991年9月17日 轨道高度:804公里轨道倾角:98.6度轨道周期:101.1分 NOAA-14卫星: 发射日期1994年12月30日,正式运行日期1985年4月10日 轨道高度:845公里轨道倾角:99.1度轨道周期:101.9分 NOAA-15卫星: 发射日期1998年5月13日,正式运行日期1998年12月15日 轨道高度:808公里轨道倾角:98.6度轨道周期:101.2分 NOAA-16卫星: 发射日期2000年9月12日,正式运行日期2001年3月20日 轨道高度:850公里轨道倾角:98.9度轨道周期:102.1分 NOAA-17卫星:

极轨气象卫星的运动采用近极地太阳同步轨道

极轨气象卫星的运动采用近极地太阳同步轨道,卫星轨道平面和太阳光线保持固定的交角。卫星每天差不多在固定的时间经过同一地区两次。极轨气象卫星的轨道接近圆形,飞行高度约为600~1500公里,卫星倾角约为81度~103度,每条轨道都经过高纬度地区。地球自转,使一个极轨卫星每隔12小时左右就可以获得一次全球的气象资料。 卫星运行时,卫星上装备的仪器对地面所取的方向,称为卫星的姿态。如果仪器不是正对地球表面,拍摄照片时照相机是倾斜的,所得照片在各处的比例差别很大,有的区域被拉长,有的区域被压缩,云图的定位误差就比较大。为了提高定位精度,应尽量使卫星携带的仪器正对地球表面。所以,在气象卫星上,采用了各种姿态控制技术,70年代以来,投入使用的气象卫星已采用三轴地球定向姿态,保证遥感仪器时刻对准地球,姿态控制精度达到了正负0.1度以上。这样,不但提高了观测精度,也增加了有效观测时间。 卫星上携带的电视照相机可以在白昼拍摄可见光云图,而扫描辐射仪则无论在白昼和黑夜都能拍摄红外云图。20世纪70年代的扫描辐射仪主要采用两个波段:—个在0.52~0.73微米(可见光),另一个在10.5~12.5微米(红外)。外界辐射由旋转的扫描反射镜反射后,经过聚光和滤光后到达可见光感应元件和红外感应元件上。扫描反射镜同旋转轴成45度角,旋转轴和卫星飞行方向一致。扫描反射镜每转动一周,分别对着外空(外空是温度约为3K的辐射源)和卫星内的恒温黑体各扫描一次。用这两个信号作为校准点,可以得出所测地球和大气的辐射数值。扫描线和卫星轨道垂直,随着卫星的前进和地球的自转,扫描出长条形的云图。 在红外云图上,不同的亮度代表不同的温度,对流层大气的温度是随高度降低的,因此由云顶温度可判别云顶高度。在可见光云图上,云顶和雪面对阳光反射率相近,都是白色,很难区分,而在红外云图上,却可以由它们亮度的差别区分开来。卫星云图的水平分辨率各不相同,最高分辨率可达1公里左右。 气象卫星携带的红外探测器通过滤光或分光设备可以测量地球和大气向卫星发出的不同波长的红外辐射强度。由卫星上用红外探测器接收到的若干不同波长的红外辐射强度,根据红外大气遥感原理,可以计算各地晴空大气温度和湿度的铅直分布。但在云量较多时,云的影响难以消除,云层内部和云层以下的温度和湿度的分布无法用红外探测器进行探测。 气象卫星上携带的微波辐射仪,根据微波大气遥感原理,可以探测云上和云下的大气温度和湿度的分布,以及云中含水总量和雨强的分布。当海面的风速增加时,波浪造成的泡沫,使海面向上空发射的波长为1.55厘米的微波辐射增强,在卫星上测得的这个波长的微波辐射,可用以推算海面风速的分布。 大气中的臭氧能吸收太阳发出的紫外辐射。利用卫星上的紫外光谱仪测量大气向卫星散射的太阳紫外辐射强度,可以算出大气中臭氧的分布。 平板辐射仪用于测量地球和大气向上发射的红外辐射总能量,以及地-气系统反射太阳辐射总能量的一种仪器。探测所得的资料用于研究地球和大气辐射收支和气候变化的规律。 空间环境监测器是用来测量太阳发射的质子、a粒子和电子的通量密度的一种仪器,为高层大气物理和日地空间物理研究提供资料。 自60年代初期以来,气象卫星已经有近50年的历史,它由低轨道发展到高轨道;由旋转稳定发展到三轴定向的姿态控制;由单波段的定性二维探测发展到多波段的定量三维探测;由比较单纯的气象试验发展到多学科的综合应用。并已广泛采用数字资料传送方式,以代替过去的模拟信号传送。地球同步气象卫星和极轨气象卫星,在世界天气监视网中已经发挥了并将继续发挥巨大的作用。

卫星气象学知识点汇总

10 级大气基地班 一、名词解释 《卫星气象学》习题集 (最终版) 1.轨道面:根据理论力学,卫星在地球引力(有心力)作用下的运动为平面运动。 该平面称为轨道面,轨道面过地心。 2.轨道周期:指卫星绕地球运行一周的时间。 3.轨道数:指卫星从一升交点开始到以后任何一个升交点为止环绕地球运行一圈 的轨道数目。 4.倾角:指赤道平面与轨道平面间的(升段)夹角。 5.截距:连续两次升交点之间的经度差。 L=T*15 度/小时。 6.星下点:卫星与地球中心连线在地球表面的交点称为星下点。 7.升交点:轨道的升段与赤道的交点称升交点。(极轨卫星才会有升降交点) 8.降交点:轨道的降段与赤道的交点称降交点。 9.轨道摄动:由地球扁率、大气阻力和太阳月亮的引力等的影响,卫星轨道会偏离 轨道平面,轨道参数会随时间缓慢变化,与卫星运动三定律得出的轨道总有偏 离, 这种偏离叫做卫星轨道的摄动。 10.卫星蚀:若太阳、地球和卫星在一条直线上时,人造卫星进入地球的阴影区, 就出现卫星蚀。 11.电磁波谱:不同波长的电磁波有不同的物理特性,因此可以用波长来区分辐射, 并给以不同的名称,称之为电磁波谱。 12.立 体 角 : 锥 体 所 拦 截 的 球 面 积 σ 与 半 径 r 的 平 方 之 比 , 单 位 为 球 面 度 (sr: Steradians), ? = σ 。 r 2 13.辐射通量:辐射功率 φ (或 Radiant Flux 辐射通量 W )是单位时间内通过任意表 面的辐射能量,单位 J / S 。 14.辐射强度 I :点辐射源在某方向上单位立体角内传送的辐射通量。 I = λφ 单位 ?ω 为W ? sr ?1 ,如果点源是各向同性则 I = φ 。 4π 15.辐照度:指投射到一表面上的辐射通量密度。 16.辐亮度 L(辐射率 ):是指一个辐射源在单位时间内通过垂直面元法线方向 n r 上

环境卫星有效载荷——宽覆盖多光谱CCD相机

环境卫星有效载荷——宽覆盖多光谱CCD相机CCD相机利用光电转换进行环境地物目标探测,并将CCD探测器输出的地物模拟信号处理形成数字信号,其同一谱段图像数据按照约定格式编排送数传分系统处理和下传。 相机分系统结构组件主要由遮光罩、镜头组件、自补偿支架、焦面机构、基座组件等零部件、电控盒体结构组成。单台相机主体结构组件如下图所示。 CCD相机的光学系统由主光学系统和分光系统组成。主光学系统采用像方远心光路型式,是由窗口和11片光学玻璃组成的复杂光学系统,具有大视场特宽谱段超复消色差的特点;镜头分前后两组,CCD相机接收地面景物反射的光线,经过相机镜头和分光棱镜后,入射光分成兰(B1谱段)、绿(B2谱段)、红(B3谱段)及红外(B4谱段)4谱段分别成像在4片CCD 探测器线阵上。在积分时间内,CCD探测器完成光电转换,进行视频处理后,再输出给数传分系统。由于卫星连续飞行,相机就能连续拍摄地面图像,通过线阵连续推扫成像。 根据卫星总体,利用两台宽覆盖多光谱CCD相机联合工作共同完成对地刈宽为720公里、分辨率为30米、4个谱段的推扫成像,实现对大气、水体和陆面的多种遥感参数的综合探测。CCD相机主要用途:对于陆地需要考虑土地覆被、城市环境、植被和土壤、草地和农田、荒漠化、冰雪覆盖等探测;对于水体,需要考虑水体识别、藻类、悬浮物和水生植物监等探测;对于大气,需要考虑水汽、云雾覆盖、云和沙层、气溶胶等探测。环境一号卫星宽覆盖CCD 相机技术性能和指标如下表所示。 宽覆盖多光谱CCD相机技术性能与环境应用指标

项目性能 星下点像元分辨率(m)30 幅宽(km)360(2台组合≥ 700km) 谱段号B1B2B3B4谱段设置(μm)0.43~0.520.52~0.600.63~0.690.76~0.90系统各谱段MTF≥ 0.20≥ 0.20≥ 0.20≥ 0.14动态范围(W/m2Srμm)316/197334/195246/145246/163增益控制每个谱段设置一档增益控制, 各谱段分别可调 信噪比(S/N)≥ 48dB,最小值应大于门限6dB 中心像元配准精度0.3像元 有效视场角(2ω)31° 焦面像元数≥ 12000 CCD原始数据输出数据率(Mbps)约90(2台同时下传约180Mbps) 量化值(bit)8 定标精度相对定标精度5%,绝对定标精度10%

相关文档
最新文档