人教版高中数学必修一基础精品讲义
人教版(新教材)高中数学第一册(必修1)精品课件5:4.3.2 对数的运算
3.判断正误(正确的打“√”,错误的打“×”)
(1)积、商的对数可以化为对数的和、差.( )
(2)loga(xy)=logax·logay.( ) (3)log2(-5)2=2log2(-5).( )
(4)由换底公式可得 logab=lloogg- -22ba.(
)
[答案] (1)√ (2)× (3)× (4)×
针对训练 1.计算: (1)log535-2log573+log57-log51.8; (2)log2 478+log212-12log242-1; (3)12lg4392-43lg 8+lg 245.
[解] (1)原式=log5(5×7)-2(log57-log53)+log57-log595 =log55+log57-2log57+2log53+log57-2log53+log55=2. (2)原式=log2 478+log212-log2 42-log22 =log2 48×7×1422×2=log221 2
=2llgg23··l2gl3g2=4. ②原式=lologg55132·lologg73794=log13 2·log3 49
1 =lglg312·lglg394=-2llgg23··223llgg32=-32.
(2)[证明] ①logab·logba=llggab·llggab=1. ②loganbn=llggbann=nnllggba=llggab=logab.
题型二 对数换底公式的应用 典例 2 (1)计算:①log29·log34; ②log5 2×log79 .
log531×log73 4 (2)证明:①logab·logba=1(a>0,且 a≠1;b>0,且 b≠1); ②loganbn=logab(a>0,且 a≠1,n≠0).
人教版高中数学必修第一册同步讲义第一章 1.1 集合
第一章集合与简易逻辑第一单元集合单元知识要点点击本单元是“集合”.在初中数集(整数的集合、有理数的集合)、点集(直线、圆)等基础上,给出集合与集合元素的概念,并介绍其表示方法.从讨论集合与集合之间包含与相等关系入手,给出了子集的概念,与子集相联系的全集与补集的概念,属于集合运算的交集、并集的初步知识.考虑到集合知识的运用与巩固及下一章的函数的定义域与值域的需要,介绍了含绝对值不等式和一元二次不等式的解法.1.1 集合①课文三点专讲重点:(1)集合的含义集合的概念是数学中最原始的、不加定义的概念,它只是通过一些实例,描述性地说明其含义.(2)集合中元素的特征给定的集合,它的元素必须是确定的,互异的,并且集合与其中元素的排列次序无关,即集合中元素的三个性质:确定性、互异性、无序性.只要构成集合的元素是一样的,这两个集合就是相等的.(3)元素与集合的关系如果a是集合A的元素,就说a属于A,记作:a∈A;如果a不是集合A的元素,就说a不属于A,记作:a A.难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合(1)集合的表示——列举法列举法表示集合就是把集合中的元素一一列举出来,并用花括号“{ }”括起来.(2)集合的表示——描述法有些集合的元素无法用列举法一一列举出来的,我们可以用描述法表示,即在花括号“{ }”内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.考点:(1)集合元素的特性:考察集合元素的确定性、互异性、无序性,是高考中常考的内容之一.(2)集合的表示方法:考察集合的列举法和描述法两种表示方法,常用的还有图示法,要分清几种方法能间的相互转化及其关系.②练功篇典型试题分析例1.已知23{3,21,1}a a a -∈--+, 求实数a 的值.分析: -3的值可能有三种可能取值情况,必须分别代入求解,但要注意最后必须要验证所得结果的正确性. 实质上对于集合2{3,21,1}a a a --+均可能是-3 , 考虑集合元素的互异性, 在求得0a =或1a =-后,重新代入集合验证是必要的, 因为求得的值很可能会出现集合中有两个元素相同 , 此时对应的a 的值要舍去.解析: 由23{3,21,1}a a a -∈--+,可得33a -=-,即0a =; 或213a -=-,即1a =-; 或213a +=-(此方程无解). 当0a =时2{3,21,1}{3,1,1}a a a --+=-- ; 当1a =-时, 2{3,21,1}{4,3,2}a a a --+=-- . 所以0a =或1a =- . 例2.用列举法表示下列集合: (1)6{|,}2x Z x Z x ∈∈-; (2)*{|,,,||2,3}a x x a Z a b N b b=∈<∈≤且;(3) {(,)|2,14}x y y x x N x =-∈≤<且; (4) {|}x y x N ∈.分析:上述几题均是用描述法表示集合,列举其元素时一定要注意各自集合中的代表元素.寻找集合中的元素时,先要将其满足条件的集合中的相关数一一列举出来,其关键在于抓住集合中元素的特征,在列举元素时,要注意充分考虑集合中元素的三个特征:确定性、互异性、无序性,如(2)集合中的元素个数只能有7个.解析:(1)∵6,2Z x Z x∈∈- , ∴|2|x -是6的因数 , 即|2|x -的值应取1或2或3或6, 分别解得1,3,4,0,1,5,4,8x =-- , ∴6{|,}{1,3,4,0,1,5,4,8}2x Z x Z x∈∈=--- . (2)由,||2a Z a ∈<知1,0,1a =-; 由*3b N b ∈≤且知1,2,3b = . ∴a b 的值分别为101101101,,,,,,,,111222333--- , 考虑到集合中元素的互异性,故原集合可用列举法表示为:1111{1,0,1,,,,}2233--- . (3)由14x N x ∈≤<且知1,2,3x =, 其对应的y 的值分别为1,0,1y =-, 故原集合用列举法可表示为:{(1,1),(2,0),(3,1)}- .(4) 由已知条件可得20x x N -≥∈且, 即2x x N ≤∈且 , ∴0,1,2x = ,∴{|}{0,1,2}x y x N ∈= .基础知识巩固1.用列举法表示下列集合:(1){y |y =-x 2-2x +3,x ∈R ,y ∈N }.(2){20以内的质数}.(3){(x ,y )|x +y =6,x ∈N ,y ∈N }.2.用描述法表示下列集合:(1)数轴上离开原点的距离大于3的点的集合.(2)平面直角坐标系中第Ⅱ、Ⅲ象限点的集合.(3)方程组⎩⎨⎧=-=+11y x y x 的解的集合.(4)能被3整除的整数.3.用列举法表示下列集合:(1) {|}y y x N =∈;(2) {(,)|}x y y x N =∈4.方程组⎩⎨⎧=+-=++03062y x y x 的解集是 ( ). A .{(-3,0)} B .{-3,0} C .(-3,0) D .{(0,-3)}5.下列各题中M 与P 表示同一集合的是 ( )A .)},3,1{(-=M )}1,3{(-=PB .}0{,=∅=P MC .22{|1,},{(,)|1,}M y y x x R P x y y x x R ==+∈==+∈D .22{|1,},{|(1)1,}M y y x x R P t t y y R ==+∈==-+∈6.下列四个关系中,正确的是 ( )A .}{a ∈∅B .}0{=∅C .},{}{b a a ∈D .}}{},{{}{b a a ∈7.已知A ={-2,-1,0,1},B ={x |x =|y |y ∈A },求B .8..将方程组⎩⎨⎧=-=+273223y x y x 的解集用列举法、描述法分别表示. 9..设集合A ={x |x =2k ,k ∈Z },B ={x |x =2k +1,k ∈Z },C ={x |x =4k +1,k ∈Z },又有a ∈A ,b ∈B ,判断元素a +b 与集合A 、B 和C 的关系.10.已知2{|}A x x px q x =++=,2{|(1)(1)1}B x x p x q x =-+-+=+,当{2}A =时,求集合B .③升级篇典型试题分析例3:已知集合{0,2,4}M =,定义集合{|,,}P x x ab a M b M ==∈∈,求集合P . 分析:求集合P ,根据集合P 的定义,集合P 中的代表元素x 满足,,x ab a M b M =∈∈,所以分别取,a M b M ∈∈,求出ab 的所有可能值,用列举法一一列举出来,即得集合P .解析:∵,a M b M ∈∈,∴a =0,2,4, b =0,2,4,a 或b 至少有一个为0时,0x ab ==,a =2且b =2时, 4x ab ==, a =2且b =4时, 8x ab ==,a =4且b =2时, 8x ab ==, a =4且b =4时, 16x ab ==,根据集合中元素的互异性知{0,4,8,16}P =.例4.2008年第29届奥运会将在北京召开,现有三个实数的集合,既可以表示为{a ,a b ,1},也可表示为{a 2,a +b ,0},请求a 2008+b 2008的值 .分析:根据集合中元素的确定性,我们不难得到两集合的元素是相同的,这样需要列方程组分类讨论,显然复杂又烦琐.这时若能发现0这个特殊元素,和ab 中的a 不为0的隐含信息,就能得到如下解法.解析: 由已知得ab =0,及a ≠0,所以b =0,于是a 2=1,即a =1或a =-1,又根据集合中元素的互异性a =1应舍去,因而a =-1,故a 2008+b 2008=(-1) 2008=1. 知识应用与提升11.已知x 、y 、z 为非零实数,代数式xyzxyz z z y y x x +++的值所组成的集合是M ,则下列判断正确的是 ( )A .0∉MB .2∈MC .-4∉MD .4∈M12.集合{0,1,2,3,5}A =,当x A ∈时,若1x A -∉,且1x A +∉,则称x 为A 的一个“孤立元素”,则A 中孤立元素的个数为 .13.关于x 的方程0=+b ax ,当实数b a ,满足条件 时,方程的解集是有限集;当实数b a ,满足条件 时,方程的解集是无限集.14.若一数集中的任一元素的倒数仍在该集合中,则称该集合为“可倒数集”,试写出一个含三个元素的可倒数集_____.15.已知},,0,1{2x x ∈ 求实数x 的值.16.已知集合12,6A x x N N x ⎧⎫=∈∈⎨⎬-⎩⎭用列举法表示集合A 为 ④闯关篇典型试题分析例5:集合M 由正整数的平方组成,即{}1,4,9,16,25,...M =,若对某集合中的任意两个元素进行某种运算,运算结果仍在此集合中,则称此集合对该运算是封闭的. M 对下列运算封闭的是( )A. 加法B. 减法C. 乘法D. 除法分析:本题定义了集合的封闭运算,要探求集合对哪种运算封闭,一种思路是直接根据定义去探求这种运算,对于选择题,再一种思路就是排除不符合定义的运算,从而得到符合定义的运算.解析:设a b 、表示任意两个正整数,则22a b 、的和不一定是属于M ,如22125M =∉+;22a b 、的差也不一定是属于M ,如22123M =-∉-;22a b 、的商也不一定是属于M ,如2211M 24=∉;因为a b 、表示任意两个正整数, 222()a b ab ⋅= ,ab 为正整数,所以2()ab 属于M ,即22a b 、的积属于M .故选C.例6. 已知集合A ={x |x =m +n 2,m ,n ∈Z}.(1)证明任何整数都是A 的元素;(2)设x 1,x 2∈A ,求证:x 1·x 2∈A .分析: 转换思维模式可将复杂问题具体化、简略化,本题的实质是证明任意两个A 集合中的元素的乘积运算仍在A 集合中,它反映了集合元素运算封闭性.证明:(1)设a ∈Z ,则a =a +02 .∵a ,0∈Z ,∴ a =a +02∈A .故任何整数都是A 的元素 .(2)∵x 1,x 2∈A ,可设x 1=m 1+n 12,x 2=m 2+n 22,(其中m 1,n 1,m 2,n 2∈Z ). ∴x 1x 2=(m 1+n 12)(m 2+n 22)=(m 1m 2+2n 1n 2)+(m 1n 2+m 2n 1)2. ∵m 1,n 1,m 2,n 2∈Z ,∴(m 1m 2+2n 1n 2)∈Z ,(m 1n 2+m 2n 1)∈Z .当m 1n 2+m 2n 1=0时,x 1·x 2=(m 1m 2+2m 1n 2)∈Z , ∴x 1·x 2∈A .知识拔高与创新17.已知A={1,2,3}, B={2,4},定义集合A 、B 间的运算A*B={|}x x A x B ∈∈且,则集合A*B=( )A. {1,2,3}B. {2,4}C. {1,2,3,4}D. {2}18. 已知集合241x A a x a ⎧⎫-⎪⎪==⎨⎬+⎪⎪⎩⎭有惟一解,又列举法表示集合A 为 19.求集合2160{|}3a a Z Z a∈∈-且中所有元素的和. 20.已知集合A ={x |x =m 2-n 2,m ∈Z ,n ∈Z}求证:(1)3∈A ; (2)偶数4k —2 (k ∈Z)不属于A.⑤行侠篇高考试题点击21.(2005高考湖北)设P 、Q 为两个非空实数集合,定义集合P+Q=},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ,则P+Q 中元素的个数是 ( )A .9B .8C .7D .622.(2004高考湖南)若集合{}(,)|20A x y x y m =-+>,{}(,)|0B x y x y n =+-≤,若点P (2,3)∈A 且P (2,3)∉B ,则( )A. 15m n >-<,B. 15m n <-<,C. 15m n >->,D. 15m n <->,⑥娱乐广场开阔视野、趣味学习为数学而疯的人集合论的创立者是德国数学家康托尔.1845年3月3日,乔治·康托生于俄国的一个丹麦—犹太血统的家庭.1856年康托尔和他的父母一起迁到德国的法兰克福.他在中学阶段就表现出一种对数学的特殊敏感,并不时得出令人惊奇的结论.进入了柏林大学后,康托尔受了外尔斯特拉斯的影响而转到纯粹的数学.他在1869年取得在哈勒大学任教的资格,不久后就升为副教授,并在1879年被升为正教授.由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对与太平洋面上的点,以及整个地球内部的点都应这样看起来,1厘米长的线段内的点“一样多”.后来几年,康托尔对这类“无穷集合”问题发表了一系列文章,通过严格证明得出了许多惊人的结论,轰动了当时数学界. 康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂,有人说,康托尔的集合论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”,康托尔一直在逆境中拼搏着,以致不到40岁就患了神经衰弱和精神抑郁症,就这样他还在奋斗着.真金不怕火炼, 1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作”可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦1918年1月6日,康托尔在哈勒大学附属精神病院去世.1.2子集、全集、补集①课文三点专讲重点:(1)子集、全集、补集的概念.集合之间包含与相等的含义,识别给定集合的子集; 在具体情境中,了解全集与空集的含义(2)注意区别区分}0{},{,∅∅间的关系.}{∅表示以空集,∅为元素的单元素集合,当把∅视为集合时, }{∅⊆∅成立;当把∅视为元素时,}{∅∈∅也成立.0表示元素,}0{表示以0为元素的单元素集合,不能混淆它们的含意.难点:(1)弄清元素与子集、属于与包含之间的区别.区分∈与⊆符号: ∈表示元素与集合之间的关系,如:N N ∉-∈1,1; ⊆表示集合与集合之间的关系,如R R N ⊆∅⊆,等.(2) 有限集合的子集个数:n 个元素的集合有n 2个子集;有12-n个非空子集;有12-n 个真子集;有22-n 个非空真子集.考点:(1)求集合的所有子集或子集的个数.此类问题有两种类型:其一是无条件地写出已知集合的所有子集或所有真子集,其解题关键是正确地进行分类,分别写出含有1个元素,2个元素,……,n 个元素的子集;其二是有条件地写出适合某条件的所有子集.(2)集合与集合之间的关系考察.此类问题常以两个集合间元素的属性及它们属性间的共同点及不同的点,来判断元素与集合间的从属关系,然后由子集定义得出其间的包含关系.几何图形可以直观形象地提示集合间的包含关系.(3)补集的求解问题.此类问题需要弄清全集U 及集合A 的元素构成,掌握补集的性质及应用,如(),,.U U U U A A U U ==∅∅=痧痧②练功篇典型试题分析例1.满足∅⊂≠A ⊆},,,{d c b a 的集合A 是什么?共有多少个?分析: ∅⊂≠A ⊆},,,{d c b a 的意义是集合A 为非空集合,且{,,,}A a b c d ≠.解析:由∅⊂≠A 可知,集合A 必为非空集合;又由A ⊆},,,{d c b a 可知,此题即为求集合},,,{d c b a 的所有非空子集。
人教版高中数学必修一全套PPT课件
直线与平面所成的角及应用 通过求解直线与平面所成的角,可以判断直线与平面的位 置关系,进而解决一些实际问题,如光线照射角度、物体 倾斜角度等。
2023 WORK SUMMARY
THANKS
感谢观看
REPORTING
集合的运算
详细介绍交集、并集、补集等集合 运算的定义和性质,并给出相应的 例子和练习题。
Байду номын сангаас数及其表示方法
函数的概念
讲解函数的定义、定义域、 值域等基本概念,并给出 相应的例子。
函数的表示方法
介绍解析法、列表法、图 象法等多种表示函数的方 法,并给出相应的例子。
函数的性质
讲解函数的单调性、奇偶 性、周期性等性质,并通 过实例加以说明。
2023 WORK SUMMARY
人教版高中数学必修 一全套PPT课件
REPORTING
目录
• 高中数学必修一概述 • 集合与函数概念 • 基本初等函数(Ⅰ) • 空间几何体 • 点、直线、平面之间的位置关系
PART 01
高中数学必修一概述
教材内容与结构
集合与函数概念
包括集合的含义与表示、集合间的基 本关系、集合的基本运算、函数及其 表示、函数的单调性与最值、函数的 奇偶性与周期性等内容。
函数的单调性与奇偶性
函数的单调性
01
详细讲解函数单调性的定义和性质,包括增函数和减函数的判
断方法,并给出相应的例子和练习题。
函数的奇偶性
02
介绍函数奇偶性的定义和性质,包括奇函数和偶函数的判断方
法,并给出相应的例子和练习题。
人教版高中数学必修1课件:第一章__集合与函数概念_章末归纳总结课件
①方程(※)有两不等实根⇔Δ>0,方程(※)有两相等
实根⇔Δ=0,方程(※)无实根⇔Δ<0,方程(※)有实数解
⇔Δ≥0.
②方程(※)有零根⇔c=0.
Δ≥0 ③ 方 程 (※) 有 两 正 根 ⇔ x1+x2>0
x1x2>0
⇔较小的根 x=
-b- 2a
Δ >0 (a>0)
⇔-f(02)b>a>00
.
(2)集合 A 是直线 y=x 上的点的集合,集合 B 是抛物线 y=x2 的图象上点的集合,∴A∩B 是方程组yy= =xx2 的解为坐 标的点的集合,∴A∩B={(0,0),(1,1)}.
2.熟练地用数轴与Venn图来表达集合之间的关系 与运算能起到事半功倍的效果.
[例2] 集合A={x|x<-1或x>2},B={x|4x+p<0}, 若B A,则实数p的取值范围是________.
当 a≠0 时,应有 a=1a,∴a=±1.故选 D.
二、函数的定义域、值域、单调性、奇偶性、最值 及应用
1.解决函数问题必须第一弄清函数的定义域
[ 例 1] 函 数 f(x) = x2+4x 的 单 调 增 区 间 为 ________.
[解析] 由x2+4x≥0得,x≤-4或x≥0,又二次函数u =x2+4x的对称轴为x=-2,开口向上,故f(x)的增区间为 [0,+∞).
人教版(新教材)高中数学第一册(必修1)精品课件3:1.2 集合间的基本关系
[微体验] 1.思考辨析 (1)空集可以用表示.( ) (2)空集中只有元素0,而无其余元素.( ) 答案 (1)× (2)×
2.下列四个集合中,是空集的为( )
A.{0}
B.{x|x>8,且x<5}
C.{x∈N|x2-1=0}
D.{x|x>4}
解析 满足x>8且x<5的实数不存在,故{x|x>8,且x<5}=∅. 答案 B
答案 C B A
课堂互动探究
探究一 集合关系的判断
例 1 (1)已知集合 M={x|x2-3x+2=0},N={0,1,2},则集合 M 与 N 的关系是( )
A.M=N
ቤተ መጻሕፍቲ ባይዱ
B.N M
C.M N
D.N⊆M
解析 解方程 x2-3x+2=0 得 x=2 或 x=1,则 M={1,2},
因为 1∈M 且 1∈N,2∈M 且 2∈N,所以 M⊆N.
探究二 子集、真子集问题
例 2 已知集合 A={x|x2-3x+2=0},B={x|0<x<6,x∈N},写出满足 A⊆C⊆B 的集合 C 的所有可能情况.
解 由 A={x|x2-3x+2=0}={1,2},B={x|0<x<6,x∈N}={1,2,3,4,5}, 又因为 A⊆C⊆B,即{1,2}⊆C⊆{1,2,3,4,5}, 所以 C 中至少含有元素 1,2,故 C 的所有可能情况是: {1,2},{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5}, {1,2,3,4,5},共 8 个.
A.M⊆P
B.P⊆M
C.M=P
D.M,P互不包含
解析 由于集合M为数集,集合P为点集,因此M与P互不包含. 答案 D
人教版高中数学必修一基础精品讲义
学科教师辅导讲义体系搭建一、知识概念(一)元素与集合(1)集合中元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(二)集合间的基本关系表示关系文字语言符号语言集合间的基本关系相等集合A与集合B中的所有元素都相同A=B 子集A中任意一个元素均为B中的元素A⊆B 真子集A中任意一个元素均为B中的元素,且B中至少有一个元素不是A中的元素A B 空集空集是任何集合的子集,是任何非空集合的真子集(三)集合间的基本运算集合的并集集合的交集集合的补集图形语言符号语言A∪B={x|x∈A,或x∈B}A∩B={x|x∈A,且x∈B}∁U A={x|x∈U,且x ∉A}(四)集合的运算性质并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A ⇔B ⊆A.交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A ⇔A ⊆B.补集的性质:A∪(∁U A)=U;A∩(∁U A)=∅;∁U (∁U A)=A.典例分析考点一:集合的含义与表示例1、判断下列各组对象能否组成一个集合:(1)9以内的正偶数;(2)篮球打得好的人;(3)2012年伦敦奥运会的所有参赛运动员;(4)高一(1)班所有高个子同学.例2、集合A 是含有两个不同实数a-3,2a-1的集合,求实数a 的取值范围.例3、已知集合A 由a+2,(a+1)2,a 2+3a+3三个元素构成,且1∈A,求实数a 的值.例4、用列举法表示下列集合(1){}2A x Z x =∈≤;(2)(){},4,,M x y x y x N y N **=+=∈∈例5、现有三个实数的集合,既可以表示为{,,1}b a a,也可以表示为2{,,0}a a b +,则20142014a b +=________考点二:集合间的基本关系例1、已知集合M 满足{1,2}⊆M {1,2,3,4,5},求所有满足条件的集合M.例2、已知集合{x 2,x+y,0}={x,y x,1},求x 2015+y 2015的值为________.例3、将下列两集合相等的组的序号填在横线上。
高中数学必修一全册课件人教版(共99张PPT)
四、集合的表示方法
1、列举法
就是将集合中的元素一一列举出来并放在大括号内表示集合的方法
注意:1、元素间要用逗号隔开; 2、不管次序放在大括号内。
例如:book中的字母组成的集合表示为:{b,o,o,k}{b,o,k} 一次函数y=x+3与y=-2x+6的图像的交点组成的集合。{1,4}{(1,4)}
的关系f则成为对应法则,则上面两个例子中,对应法则分别是“乘以10再加20” 和“平方后乘以”
1 乘以10再加20 30
2
40
3
50
4
60
5
70
6
80
7
90
8
100
1 平方后乘以4.94.9
1.5
?
2
?
3
?
5
?
6
?
7
?
8
?
二、映射
通过上面的两个例子,我们说明了什么是函数,上面的两个例子都是研究的 数值的情况,那么进一步扩展,如果集合A和集合B不是数值,而是其他类型的 集合,则这种对应关系就称为映射。具体定义如下:
7、判断下列表示是否正确:
(1)a {a}; (2) {a} ∈{a,b};
(3){a,b} {b,a}; (4){-1,1}{-1,0,1}
(5)0;
(6) {-1,1}.
集合与集合的运算
1、交集
一般地,由所有属于集合A且属于集合B的元素构成的集合,称为A与B的交集, 记作A∩B,即
A∩B={x|x∈A,且x∈B} A∩B可用右图中的阴影部分来表示。
⑴ A={1,2,3} , B={1,2,3,4,5};
人教版(新教材)高中数学第一册(必修1)精品课件4:1.1 第1课时 集合的概念
名称 自然数集 正整数集 整数集 有理数集 实数集
符号 _N__ __N__+_或__N_*_ _Z__
_Q__
_R__
[题型探究] 题型一 集合的基本概念 例1 下列每组对象能否构成一个集合: (1)我们班的所有高个子同学; 解 “高个子”没有明确的标准,因此不能构成集合. (2)不超过20的非负数; 解 任给一个实数x,可以明确地判断是不是“不超过20的非负数”, 即“0≤x≤20”与“x>20或x<0”,两者必居其一,且仅居其一,故 “不超过20的非负数”能构成集合;
[预习导引]
1.元素与集合的概念 (1)集合:把一些能够 确定的不同的对象看成一个整体,就说这个 整体是由这些对象的全体 构成的集合(或集). (2)元素:构成集合的 每个对象 叫做这个集合的元素. (3)集合元素的特性: 确定性、 互异性 .
2.元素与集合的关系
关系
概念
记法
如果 a是集合A 的元素, 属于
[即时达标]
1.下列能构成集合的是( C ) A.中央电视台著名节目主持人 C.上海市所有的中学生
B.我市跑得快的汽车 D.香港的高楼
【解析】A、B、D中研究的对象不确定,因此不能构成集合.
2.已知1∈{a2,a},则a=__-_1___.
【解析】当a2=1时,a=±1,但a=1时,a2=a,由元素的互异性 知a=-1.
【解析】深圳不是省会城市,而广州是广东省的省会.
4.已知① 5∈R;②13∈Q;③0∈N;④π∈Q;⑤-3∉Z.
【解析】序号 Biblioteka 否构成集合理由(1)
能
其中的元素是“三条边相等的三角形”
“难题”的标准是模糊的、不确定的,所以
(2)
不能
人教版高中数学必修1全套课件
函数与方程
函数与方程的基本概念
包括函数定义、函数值、自变量、因 变量等概念的介绍。
函数的表示方法
解析法、列表法、图象法等表示方法 的特点和适用范围。
函数的性质
单调性、奇偶性、周期性等性质的定 义和判断方法。
方程与不等式的解法
一元一次方程、一元二次方程、分式 方程等方程和不等式的解法,以及函 数与方程的联系。
对数函数
对数函数的定义与性质
01
介绍对数函数的基本概念、性质,包括底数、对数的定义和运
算规则。
对数函数的图像与性质
02
通过图像展示对数函数的增减性、奇偶性、周期性等性质,帮
助学生直观理解函数特点。
对数函数的应用
03
列举对数函数在生活中的实际应用,如音量的分贝计算、地震
震级的计算等,培养学生运用数学知识解决问题的能力。
数列的项与通项公式
数列中的每一个数称为数列的项;表示数列第n项的公式称为数列 的通项公式。
数列的表示方法
列表法、图象法和通项公式法。
等差数列和等比数列
等差数列的定义与性质
从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。
等比数列的定义与性质
从第二项起,每一项与它的前一项的比等于同一个常数的一种数列。
正切函数、余切函数的图象和性质 三角函数的最值问题
三角恒等变换
两角和与差的正弦、余弦 公式
半角公式及其应用
二倍角公式及其应用 积化和差与和差化积公式
解三角形及其应用举例
01
正弦定理及其应用
02
余弦定理及其应用
03
解三角形的常用方法:面积法、正弦定理 法、余弦定理法等
04
解三角形的实际应用举例:测量、航海、 地理等问题
人教版(新教材)高中数学第一册(必修1)精品课件:第一章集合与常用逻辑用语章末复习课
【例1】 (1)设集合A={1,2,4},集合B={x|x=a+b,a∈A,b∈A},则集合B中元
素的个数是( )
A.4
B.5
C.6
D.7
(2)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是( )
A.1
B.3
ቤተ መጻሕፍቲ ባይዱ
C.5
D.9
解析 (1)∵a∈A,b∈A,x=a+b,所以x=2,3,4,5,6,8,∴B中有6个元素, 故选C. (2)当x=0,y=0时,x-y=0;当x=0,y=1时,x-y=-1;当x=0,y=2时,x-y =-2;当x=1,y=0时,x-y=1;当x=1,y=1时,x-y=0;当x=1,y=2时,x -y=-1;当x=2,y=0时,x-y=2;当x=2,y=1时,x-y=1;当x=2,y=2时, x-y=0.根据集合中元素的互异性知,B中元素有0,-1,-2,1,2,共5个. 答案 (1)C (2)C
【训练4】 (1)若p:x2+x-6=0是q:ax+1=0的必要不充分条件,则实数a的值为 ________. (2) 若 - a<x< - 1 成 立 的 一 个 充 分 不 必 要 条 件 是 - 2<x< - 1 , 则 a 的 取 值 范 围 是 ________.
解析 (1)p:x2+x-6=0,即x=2或x=-3. q:ax+1=0,当 a=0 时,方程无解;当 a≠0 时,x=-1a. 由题意知p q,q p,故a=0舍去;
当 a≠0 时,应有-1a=2 或-1a=-3,解得 a=-12或 a=13. 综上可知,a=-12或 a=13. (2)根据充分条件、必要条件与集合间的包含关系,应有{x|-2<x<-1} {x|-a<x< -1},故有a>2. 答案 (1)-12或13 (2)a>2
人教版(新教材)高中数学第一册(必修1)精品课件3:1.5.2 全称量词命题和存在量词命题的否定
﹁p:存在实数m,使得x2+x-m=0没有实数根.
1
注意到当Δ=1+4m<0时,即m<- 时,一元二次方程
4
没有实数根,所以﹁p是真命题.
(2)这一命题的否定形式是﹁q:∀x∈R,都有x2+x+
1 2 3
2
1>0,由x +x+1=(x+ ) + >0知.﹁q是真命题.
又f(x)=(x-1)2+4,∴f(x)min=4,∴m>4.
所以,所求实数m的取值范围是(4,+∞).
规律方法
(1)对任意的实数x,a>f(x)恒成立,只需a>f(x)max.
若存在一个实数x0,使a>f(x0)成立,只需a>f(x)min.
(2)有关恒成立的问题,一是转化为二次函数,
利用数形结合求解,二是利用分离参数法求解.
即m>-x2+2x-5=-(x-1)2-4.
要使m>-(x-1)2-4对于任意x∈R恒成立,
只需m>-4即可.
故存在实数m,使不等式m+f(x)>0对于任意x∈R恒
成立,此时,只需m>-4.
(2)不等式m-f(x0)>0可化为m>f(x0),若存在一个实数
x0,使不等式m>f(x0)成立,只需m>f(x)min.
π
∵sinx+cosx= 2sin(x+4)≤ 2恒成立,
∴﹁r 是假命题.
题型三
例3
含有一个量词的命题的否定
写出下列命题的否定,并判断其真假:
(1)p:不论m取何实数,方程x2+x-m=0必有实数根;
(2)q:存在一个实数x0,使得x+x0+1≤0;
新人教A版新教材学高中数学必修第一册第一章集合与常用逻辑用语集合间的基本关系讲义
最新课程标准:(1)在具体情境中,了解空集的含义.(2)理解集合之间包含与相等的含义,能识别给定集合的子集.知识点一子集文字语言符号语言图形语言对于两个集合A,B,如果集合A 中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集对任意元素x∈A,必有x∈B,则A⊆B(或B⊇A),读作A包含于B或B包含A错误!“A是B的子集”的含义是:集合A中的任何一个元素都是集合B的元素,即任意x∈A都能推出x∈B.知识点二集合相等文字语言:一般地,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么集合A与集合B相等,记作A=B.符号语言:若A⊆B,且B⊆A,则A=B.错误!1.若A ⊆B,又B ⊆A,则A=B;反之,如果A=B,则A ⊆B,且B ⊆A.2.若两集合相等,则两集合所含元素完全相同,与元素排列顺序无关.知识点三真子集文字语言:如果集合A⊆B,但存在元素x∈B,且x∉A,就称集合A是集合B的真子集(proper subset).符号语言:A B(或B A).错误!在真子集的定义中,A B首先要满足A ⊆B,其次至少有一个x∈B,但x∉A.知识点四空集不含任何元素的集合叫做空集,记为∅.规定:空集是任何集合的子集.知识点五子集的性质1.任何一个集合都是它本身的子集,即A⊆A.2.对于集合A,B,C,若A⊆B,B⊆C,则A⊆C.[教材解难]教材P8思考{a}表示含有一个元素a的集合,{a}⊆A表示集合A包含{a},这是两个集合之间的关系;a∈A,表示a是A的一个元素,这是元素与集合之间的关系.[基础自测]1.下列四句话中:1∅={0};2空集没有子集;3任何一个集合必有两个或两个以上的子集;4空集是任何一个集合的子集.其中正确的有()A.0个B.1个C.2个D.3个解析:由空集的性质可知,只有4正确,123均不正确.答案:B2.集合{0,1}的子集有()A.1个B.2个C.3个D.4个解析:集合{0,1}的子集为∅,{0},{1},{0,1}.答案:D3.已知集合A={x|—1—x<0},则下列各式正确的是()A.0⊆AB.{0}∈AC.∅∈AD.{0}⊆A解析:集合A={x|—1—x<0}={x|x>—1},所以0∈A,{0}⊆A,D正确.答案:D4.已知集合A={—1,3,2m—1},集合B={3,m2},若B⊆A,则实数m=________.解析:∵B⊆A,∴2m—1=m2,∴m=1.答案:1题型一集合间关系的判断[经典例题]例1(1)下列各式中,正确的个数是()1{0}∈{0,1,2};2{0,1,2}⊆{2,1,0};3∅⊆{0,1,2};4∅={0};5{0,1}={(0,1)};⑥0={0}.A.1B.2C.3D.4(2)指出下列各组集合之间的关系:1A={—1,1},B={(—1,—1),(—1,1),(1,—1),(1,1)};2A={x|x是等边三角形},B={x|x是等腰三角形};3M={x|x=2n—1,n∈N*},N={x|x=2n+1,n∈N*}.【解析】(1)对于1,是集合与集合的关系,应为{0}{0,1,2};对于2,实际为同一集合,任何一个集合是它本身的子集;对于3,空集是任何集合的子集;对于4,{0}是含有单元素0的集合,空集不含任何元素,并且空集是任何非空集合的真子集,所以∅{0};对于5,{0,1}是含有两个元素0与1的集合,而{(0,1)}是以有序数组(0,1)为元素的单元素集合,所以{0,1}与{(0,1)}不相等;对于⑥,0与{0}是“属于与否”的关系,所以0∈{0}.故23是正确的,应选B.(2)1集合A的代表元素是数,集合B的代表元素是有序实数对,故A与B之间无包含关系.2等边三角形是三边相等的三角形,等腰三角形是两边相等的三角形,故A B.3方法一两个集合都表示正奇数组成的集合,但由于n∈N*,因此集合M含有元素“1”,而集合N不含元素“1”,故N M.方法二由列举法知M={1,3,5,7,…},N={3,5,7,9,…},所以N M.【答案】(1)B (2)见解析根据元素与集合、集合与集合之间的关系直接判断1234⑥,对于5应先明确两个集合中的元素是点还是实数.方法归纳判断集合间关系的方法(1)用定义判断首先,判断一个集合A中的任意元素是否属于另一集合B,若是,则A⊆B,否则A不是B的子集;其次,判断另一个集合B中的任意元素是否属于第一个集合A,若是,则B⊆A,否则B不是A的子集;若既有A⊆B,又有B⊆A,则A=B.(2)数形结合判断对于不等式表示的数集,可在数轴上标出集合的元素,直观地进行判断,但要注意端点值的取舍.跟踪训练1(1)若集合M={x|x2—1=0},T={—1,0,1},则M与T的关系是()A.M TB.M TC.M=TD.M T(2)用Venn图表示下列集合之间的关系:A={x|x是平行四边形},B={x|x是菱形},C={x|x是矩形},D={x|x是正方形}.解析:(1)因为M={x|x2—1=0}={—1,1},又T={—1,0,1},所以M T.(2)根据几何图形的相关知识明确各元素所在集合之间的关系,再画Venn图.如图答案:(1)A (2)见解析错误!(2)学习完知识点后,我们可以得到B ⊆A,C ⊆A,D ⊆A,D ⊆B,D ⊆C.题型二子集、真子集及个数问题[教材P8例1、2]例2(1)写出集合{a,b}的所有子集,并指出哪些是它的真子集.(2)判断下列各题中集合A是否为集合B的子集,并说明理由:1A={1,2,3},B={x|x是8的约数};2A={x|x是长方形},B={x|x是两条对角线相等的平行四边形}.【解析】(1)集合{a,b}的所有子集为∅,{a},{b},{a,b}.真子集为∅,{a},{b}.(2)1因为3不是8的约数,所以集合A不是集合B的子集.2因为若x是长方形,则x一定是两条对角线相等的平行四边形,所以集合A是集合B的子集.错误!(1)题写出集合的子集时易忘∅,真子集是在子集的基础上去掉自身.(2)题先确定集合A,B中的元素,再根据子集的定义判断.教材反思1.求集合子集、真子集个数的三个步骤2.若集合A中含有n个元素,集合A的子集个数为2n,真子集的个数为2n—1,非空真子集的个数为2n—2.跟踪训练2(1)已知集合A={x∈R|x2—3x+2=0},B={x∈N|0<x<5},则满足条件A C B的集合C的个数为()A.1B.2C.3D.4(2)已知集合A={x∈R|x2=a},使集合A的子集个数为2个的a的值为()A.—2B.4C.0 D.以上答案都不是解析:(1)由x2—3x+2=0,得x=1或x=2,所以A={1,2}.由题意知B={1,2,3,4},所以满足条件的C可为{1,2,3},{1,2,4}.(2)由题意知,集合A中只有1个元素,必有x2=a只有一个解;若方程x2=a只有一个解,必有a=0.答案:(1)B (2)C错误!(1)先用列举法表示集合A,B,然后根据A C B确定集合C.(2)先确定关于x的方程x2=a解的个数,然后求a的值.题型三根据集合的包含关系求参数[经典例题]例3已知集合A={x|1<ax<2},B={x|—1<x<1},求满足A⊆B的实数a的取值范围.【解析】(1)当a=0时,1A=∅,满足A⊆B.(2)当a>0时,A=错误!.又∵B={x|—1<x<1},且A⊆B,∴错误!2∴a≥2.(3)当a<0时,A=错误!.3∵A⊆B,∴错误!∴a≤—2.综上所述,a的取值范围是{a|a=0,或a≥2,或a≤—2}.错误!1欲解不等式1<ax<2,需不等号两边同除以a,而a的正负不同时,不等号的方向不同,因此需对a分a=0,a>0,a<0进行讨论.2A ⊆B用数轴表示如图所示:(a>0时)由图易知,错误!和错误!需在—1与1之间.当错误!=—1,或错误!=1时,说明A 与B的某一端点重合,并不是说其中的元素能够取到端点,如错误!=1时,A=错误!,x 取不到1.3a<0时,不等式两端除以a,不等号的方向改变.方法归纳(1)分析集合关系时,首先要分析、简化每个集合.(2)此类问题通常借助数轴,利用数轴分析法,将各个集合在数轴上表示出来,以形定数,还要注意验证端点值,做到准确无误,一般含“=”用实心点表示,不含“=”用空心点表示.(3)此类问题还应注意“空集”这一“陷阱”,尤其是集合中含有字母参数时,初学者会想当然认为非空集合而丢解,因此分类讨论思想是必需的.跟踪训练3设集合A={x|x2—8x+15=0},B={x|ax—1=0}.(1)若a=错误!,试判定集合A与B的关系.(2)若B⊆A,求实数a的取值集合.解析:(1)由x2—8x+15=0得x=3或x=5,故A={3,5},当a=错误!时,由ax—1=0得x=5.所以B={5},所以B A.(2)当B=∅时,满足B⊆A,此时a=0;当B≠∅,a≠0时,集合B=错误!,由B ⊆A得错误!=3或错误!=5,所以a=错误!或a=错误!.综上所述,实数a的取值集合为错误!错误!(1)解方程x2—8x+15=0,求出A,当a=错误!时,求出B,由此能判定集合A与B的关系.(2)分以下两种情况讨论,求实数a的取值集合.1B=∅,此时a=0;2B≠∅,此时a≠0.易错点忽略空集的特殊性致误例设M={x|x2—2x—3=0},N={x|ax—1=0},若N⊆M,求所有满足条件的a 的取值集合.【错解】由N⊆M,M={x|x2—2x—3=0}={—1,3},得N={—1}或{3}.当N={—1}时,由错误!=—1,得a=—1.当N={3}时,由错误!=3,得a=错误!.故满足条件的a的取值集合为错误!.【正解】由N⊆M,M={x|x2—2x—3=0}={—1,3},得N=∅或N={—1}或N={3}.当N=∅时,ax—1=0无解,即a=0.当N={—1}时,由错误!=—1,得a=—1.当N={3}时,由错误!=3,得a=错误!.故满足条件的a的取值集合为错误!.【易错警示】错误原因纠错心得错解忽略了N=∅这种情况空集是任何集合的子集,解这类问题时,一定要注意“空集优先”的原则课时作业2一、选择题1.能正确表示集合M={x|x∈R且0≤x≤1}和集合N={x∈R|x2=x}关系的Venn图是()解析:N={x∈R|x2=x}={0,1},M={x|x∈R且0≤x≤1},∴N M.答案:B2.已知集合A={1,2,3},B={3,x2,2},若A=B,则x的值是()A.1B.—1C.±1D.0解析:由A=B得x2=1,所以x=±1,故选C.答案:C3.已知集合A={—1,0,1},则含有元素0的A的子集的个数为()A.2B.4C.6 D.8解析:根据题意,含有元素0的A的子集为{0},{0,1},{0,—1},{—1,0,1},共4个.答案:B4.设A={x|2<x<3},B={x|x<m},若A⊆B,则m的取值范围是()A.m>3B.m≥3C.m<3D.m≤3解析:因为A={x|2<x<3},B={x|x<m},A⊆B,将集合A,B表示在数轴上,如图所示,所以m≥3.答案:B二、填空题5.已知集合:(1){0};(2){∅};(3){x|3m<x<m};(4){x|a+2<x<a};(5){x|x2+2x+5=0,x∈R}.其中,一定表示空集的是________(填序号).解析:集合(1)中有元素0,集合(2)中有元素∅,它们不是空集;对于集合(3),当m<0时,m>3m,不是空集;在集合(4)中,不论a取何值,a+2总是大于a,故集合(4)是空集;对于集合(5),x2+2x+5=0在实数范围内无解,故为空集.答案:(4)(5)6.已知集合A={1,3,5},则集合A的所有子集的元素之和为________.解析:集合A的子集分别是:∅,{1},{3},{5},{1,3},{1,5},{3,5},{1,3,5}.注意到A中的每个元素出现在A的4个子集,即在其和中出现4次.故所求之和为(1+3+5)×4=36.答案:367.若集合A{1,2,3},且A中至少含有一个奇数,则这样的集合有________个.解析:若A中含有一个奇数,则A可能为{1},{3},{1,2},{3,2};若A中含有两个奇数,则A={1,3}.答案:5三、解答题8.已知{1,2}⊆A{1,2,3,4},写出所有满足条件的集合A.解析:∵{1,2}⊆A,∴1∈A,2∈A.又∵A{1,2,3,4},∴集合A中还可以有3,4中的一个,即集合A可以是{1,2},{1,2,3},{1,2,4}.9.已知M={2,a,b},N={2a,2,b2},且M=N,试求a与b的值.解析:方法一根据集合中元素的互异性,有错误!或错误!解得错误!或错误!或错误!再根据集合中元素的互异性,得错误!或错误!方法二∵两个集合相同,则其中的对应元素相同.∴错误!即错误!∵集合中的元素互异,∴a,b不能同时为零.当b≠0时,由2得a=0或b=错误!.当a=0时,由1得b=1或b=0(舍去).当b=错误!时,由1得a=错误!.当b=0时,a=0(舍去).∴错误!或错误![尖子生题库]10.已知集合A={x|—3≤x≤4},B={x|2m—1<x<m+1},且B⊆A.求实数m的取值范围.解析:∵B⊆A,(1)当B=∅时,m+1≤2m—1,解得m≥2.(2)当B≠∅时,有错误!解得—1≤m<2.综上得m≥—1.即实数m的取值范围为[—1,+∞).。
人教版(新教材)高中数学第一册(必修1)优质课件:5.1.1任意角
规律方法 判断角的概念问题的关键与技巧 (1)关键:正确理解象限角与锐角、直角、钝角、平角、周角等概念. (2)技巧:判断一种说法正确需要证明,而判断一种说法错误只要举出反例即可.
①终边落在第一象限的角为锐角; ②锐角是第一象限角; ③第二象限角为钝角; ④小于90°的角一定为锐角; ⑤角α与-α的终边关于x轴对称.
(2)如图,射线OA先绕端点O逆时针方向旋转60°到OB处,再按顺 时针方向旋转820°至OC处,则β=________.
解析 (1)终边落在第一象限的角不一定是锐角, 如400°的角是第一象限角,但不是锐角, 故①的说法是错误的;同理第二象限角也不一定是钝角,故③的说法也是错 误的;小于90°的角不一定为锐角,比如负角,故④的说法是错误的. (2)两次旋转后形成的角为60°+(-820°)=-760°,β=-760°+720°=-40°. 答案 (1)②⑤ (2)-40°
[微思考] 1.角的概念推广后角的范围有怎样的变化?
提示 角的概念推广后,角度的范围不限于0°~360°,而是任意的角,包括正 角、负角与零角. 2.终边相同的角相等吗?相等的角终边相同吗? 提示 当角的始边相同时,若角相等,则终边相同,但若角终边相同,则不 一定相等.
题型一 与任意角有关的概念辨析 【例1】 (1)下列说法中,正确的是________(填序号).
三角学与其天文学的应用在埃及的托勒密时代达到了高峰,托勒密在《数学汇编》 中计算了36度角和72度角的正弦值,还给出了计算和角公式和半角公式的方法.托 勒密还给出了所有0度到180度的所有整数和半整数弧度对应的正弦值.
喜帕恰斯
[读图探新]——发现现象背后的知识 伦敦眼(英文名:The London Eye),全称英国航空伦敦眼 (The British Airways London Eye),又称千禧之轮,坐落在伦 敦泰晤士河畔,是世界第四大摩天轮,是伦敦的地标之一, 也是伦敦最吸引游人的观光点之一.伦敦眼于1999年年底开 幕,总高度135米(443英尺).伦敦眼共有32个乘坐舱,因舱内 外用钢化玻璃打造,所以设有空调系统.每个乘坐舱可载客 约25名,回转速度约为每秒0.26米,即一圈需时30分钟.
2019学年人教版高中数学必修一精品讲义word文件
1.1集__合1.1.1 集合的含义与表示 第一课时 集合的含义集合的概念[提出问题] 观察下列实例: (1)某公司的所有员工;(2)平面内到定点O 的距离等于定长d 的所有的点;(3)不等式组⎩⎪⎨⎪⎧x +1≥3,x 2≤9的整数解;(4)方程x 2-5x +6=0的实数根; (5)某中学所有较胖的同学.问题1:上述实例中的研究对象各是什么? 提示:员工、点、整数解、实数根、较胖的同学. 问题2:你能确定上述实例的研究对象吗? 提示:(1)(2)(3)(4)的研究对象可以确定.问题3:上述哪些实例的研究对象不能确定?为什么?提示:(5)的研究对象不能确定,因为“较胖”这个标准不明确,故无法确定. [导入新知] 元素与集合的概念 定义表示元素 一般地,我们把研究对象统称为元素 通常用小写拉丁字母a ,b ,c ,…表示 集合把一些元素组成的总体叫做集合(简称为集)通常用大写拉丁字母A ,B ,C ,…表示[化解疑难]准确认识集合的含义(1)集合的概念是一种描述性说明,因为集合是数学中最原始的、不加定义的概念,这与我们初中学过的点、直线等概念一样,都是用描述性语言表述的.(2)集合含义中的“元素”所指的范围非常广泛,现实生活中我们看到的、听到的、闻到的、触摸到的、想到的各种各样的事物或一些抽象的符号等,都可以看作“对象”,即集合中的元素.元素的特性及集合相等[提出问题]问题1:“知识点一”中的实例(3)组成的集合的元素是什么?提示:2,3.问题2:“知识点一”中的实例(4)组成的集合的元素是什么?提示:2,3.问题3:“知识点一”中的实例(3)与实例(4)组成的集合有什么关系?提示:相等.[导入新知]1.集合相等只要构成两个集合的元素是一样的,我们就称这两个集合相等.2.集合元素的特性集合元素的特性:确定性、互异性、无序性.[化解疑难]对集合中元素特性的理解(1)确定性:作为一个集合的元素必须是明确的,不能确定的对象不能构成集合.也就是说,给定一个集合,任何一个对象是不是这个集合的元素是确定的.(2)互异性:对于给定的集合,其中的元素一定是不同的,相同的对象归入同一个集合时只能算作集合的一个元素.(3)无序性:对于给定的集合,其中的元素是不考虑顺序的.如由1,2,3构成的集与3,2,1构成的集合是同一个集合.元素与集合的关系及常用数集的记法[某中学2017年高一年级20个班构成一个集合.问题1:高一(6)班、高一(16)班是这个集合中的元素吗?提示:是这个集合的元素.问题2:高二(3)班是这个集合中的元素吗?为什么? 提示:不是.高一年级这个集合中没有高二(3)班这个元素. [导入新知]1.元素与集合的关系(1)如果a 是集合A 的元素,就说a 属于集合A ,记作a ∈A . (2)如果a 不是集合A 中的元素,就说a 不属于集合A ,记作a ∉A . 2.常用的数集及其记法常用的数集 自然数集正整数集 整数集 有理数集实数集 记法NN *或N +ZQR[化解疑难]1.对“∈”和“∉”的理解(1)符号“∈”“∉”刻画的是元素与集合之间的关系.对于一个元素a 与一个集合A 而言,只有“a ∈A ”与“a ∉A ”这两种结果.(2)“∈”和“∉”具有方向性,左边是元素,右边是集合,形如R ∈0是错误的. 2.常用数集关系网集合的基本概念[例1] (1)上到点A 的距离等于1的点的全体;④正三角形的全体;⑤2的近似值的全体.其中能构成集合的组数是( )A .2B .3C .4D .5(2)判断下列说法是否正确,并说明理由. ①某个公司里所有的年轻人组成一个集合; ②由1,32,64,⎪⎪⎪⎪-12,12组成的集合有五个元素; ③由a ,b ,c 组成的集合与由b ,a ,c 组成的集合是同一个集合.[解] (1)选A “接近于0的数”“比较小的正整数”标准不明确,即元素不确定,所以①②不是集合.同样,“2的近似值”也不明确精确到什么程度,因此很难判定一个数,比如2是不是它的近似值,所以⑤也不是一个集合.③④能构成集合.(2)①不正确.因为“年轻人”没有确定的标准,对象不具有确定性,所以不能组成集合. ②不正确.由于32=64,⎪⎪⎪⎪-12=12,由集合中元素的互异性知,这个集合是由1,32,12这三个元素组成的.③正确.集合中的元素相同,只是次序不同,但它们仍表示同一个集合. [类题通法]判断一组对象能否组成集合的标准及其关注点(1)标准:判断一组对象能否组成集合,关键看该组对象是否满足确定性,如果此组对象满足确定性,就可以组成集合;否则,不能组成集合.(2)关注点:利用集合的含义判断一组对象能否组成一个集合,应注意集合中元素的特性,即确定性、互异性和无序性.[活学活用]判断下列每组对象能否构成一个集合. (1)著名的数学家;(2)某校2017年在校的所有高个子同学; (3)不超过20的非负数;(4)方程x 2-9=0在实数范围内的解; (5)平面直角坐标系内第一象限的一些点.解:(1)“著名的数学家”无明确的标准,对于某个人是否“著名”无法客观地判断,因此“著名的数学家”不能构成一个集合.(2)与(1)类似,也不能构成集合.(3)任给一个实数x ,可以明确地判断是不是“不超过20的非负数”,即“0≤x ≤20”与“x >20或x <0”两者必居其一,且仅居其一,故“不超过20的非负数”能构成集合.(4)类似于(3),也能构成集合.(5)“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合.元素与集合的关系[例2] (1)设集合A 只含有一个元素a ,则下列各式正确的是( ) A .0∈A B .a ∉A C .a ∈AD .a =A(2)下列所给关系正确的个数是( ) ①π∈R ;② 3∉Q ;③0∈N *;④|-4|∉N *. A .1B .2C.3 D.4[解析](1)由元素与集合的关系可知,a∈A.(2)①π∈R显然是正确的;②3是无理数,而Q表示有理数集,∴3∉Q,正确;③N*表示不含0的自然数集,∴0∉N*,③错误;④|-4|=4∈N*,④错误,所以①②是正确的.[答案](1)C(2)B[类题通法]判断元素与集合间关系的方法判断一个对象是否为某个集合的元素,就是判断这个对象是否具有这个集合的元素具有的共同特征.如果一个对象是某个集合的元素,那么这个对象必具有这个集合的元素的共同特征.[活学活用]给出下列说法:①R中最小的元素是0;②若a∈Z,则-a∉Z;③若a∈Q,b∈N*,则a+b∈Q.其中正确的个数为()A.0B.1C.2 D.3解析:选B实数集中没有最小的元素,故①不正确;对于②,若a∈Z,则-a也是整数,故-a∈Z,所以②也不正确;只有③正确.集合中元素的特性及应用[例3][解]若1∈A,则a=1或a2=1,即a=±1.当a=1时,a=a2,集合A中有一个元素,∴a≠1.当a=-1时,集合A中含有两个元素1,-1,符合互异性.∴a=-1.[类题通法]关注元素的互异性根据集合中元素的确定性,可以解出字母的所有可能取值,但要时刻关注集合中元素的三个特性,尤其是互异性,解题后要注意进行检验.[活学活用]已知集合A中含有三个元素1,0,x,若x2∈A,求实数x的值.解:∵x 2∈A ,∴x 2是集合A 中的元素.又∵集合A 中含有3个元素,∴需分情况讨论:①若x 2=0,则x =0,此时集合A 中有两个元素0,不符合互异性,舍去;②若x 2=1,则x =±1.当x =1时,此时集合A 中有两个元素1,舍去;当x =-1时,此时集合A 中有三个元素1,0,-1,符合题意;③若 x 2=x ,则x =0或x =1,不符合互异性,都舍去.综上可知,x =-1.1.警惕集合元素的互异性[典例] 若集合A 中有三个元素x ,x +1,1,集合B 中也有三个元素x ,x 2+x ,x 2,且A =B ,则实数x 的值为________.[解析] ∵A =B ,∴⎩⎪⎨⎪⎧ x +1=x 2,1=x 2+x 或⎩⎪⎨⎪⎧x +1=x 2+x ,1=x 2.解得x =±1.经检验,x =1不适合集合元素的互异性,而x =-1适合. ∴x =-1. [答案] -1 [易错防范]1.上面例题易由方程组求得x =±1后,忽视对求出的值进行检验,从而得出错误的结论.2.当集合中元素含字母并要求对其求值时,求出的值一定要加以检验,看是否符合集合元素的互异性.[成功破障]若集合A 中含有三个元素a -3,2a -1,a 2-4,且-3∈A ,则实数a 的值为________. 解析:①若a -3=-3,则a =0, 此时A ={-3,-1,-4},满足题意.②若2a -1=-3,则a =-1,此时A ={-4,-3,-3},不满足元素的互异性. ③若a 2-4=-3,则a =±1.当a =1时,A ={-2,1,-3},满足题意; 当a =-1时,由②知不合题意. 综上可知a =0或a =1. 答案:0或1[随堂即时演练]1.下列选项中能构成集合的是()A.高一年级跑得快的同学B.中国的大河C.3的倍数D.有趣的书籍解析:选C根据集合的定义,选项A,B,D都不具备确定性.2.若以集合A的四个元素a,b,c,d为边长构成一个四边形,则这个四边形可能是() A.梯形B.平行四边形C.菱形D.矩形解析:选A由于a,b,c,d四个元素互不相同,故它们组成的四边形的四条边都不相等.3.有下列说法:①集合N与集合N*是同一个集合;②集合N中的元素都是集合Z中的元素;③集合Q中的元素都是集合Z中的元素;④集合Q中的元素都是集合R中的元素.其中正确的有________(填序号).解析:因为集合N*表示正整数集,N表示自然数集,Z表示整数集,Q表示有理数集,R表示实数集,所以①③中的说法不正确,②④中的说法正确.答案:②④4.设由2,4,6构成的集合为A,若实数a∈A时,6-a∈A,则a=________.解析:代入验证,若a=2,则6-2=4∈A,符合题意;若a=4,则6-4=2∈A,符合题意;若a=6,则6-6=0∉A,不符合题意,舍去.所以a=2或a=4.答案:2或45.已知集合A中含有两个元素x,y,集合B中含有两个元素0,x2,若A=B,求实数x,y的值.解:因为集合A,B相等,则x=0或y=0.①当x=0时,x2=0,则B={0,0},不满足集合中元素的互异性,故舍去.②当y=0时,x=x2,解得x=0或x=1.由①知x=0应舍去.综上知x=1,y=0.[课时达标检测]一、选择题1.下列判断正确的个数为()(1)所有的等腰三角形构成一个集合.(2)倒数等于它自身的实数构成一个集合.(3)素数的全体构成一个集合.(4)由2,3,4,3,6,2构成含有6个元素的集合.A.1B.2 C.3 D.4解析:选C(1)正确;(2)若1a=a,则a2=1,∴a=±1,构成的集合为{1,-1},∴(2)正确;(3)也正确,任何一个素数都在此集合中,不是素数的都不在;(4)不正确,集合中的元素具有互异性,构成的集合为{2,3,4,6},含4个元素,故选C.2.设不等式3-2x<0的解集为M,下列正确的是()A.0∈M,2∈M B.0∉M,2∈MC.0∈M,2∉M D.0∉M,2∉M解析:选B从四个选项来看,本题是判断0和2与集合M间的关系,因此只需判断0和2是否是不等式3-2x<0的解即可.当x=0时,3-2x=3>0,所以0不属于M,即0∉M;当x=2时,3-2x=-1<0,所以2属于M,即2∈M.3.下列各组中集合P与Q,表示同一个集合的是()A.P是由元素1,3,π构成的集合,Q是由元素π,1,|-3|构成的集合B.P是由π构成的集合,Q是由3.141 59构成的集合C.P是由2,3构成的集合,Q是由有序数对(2,3)构成的集合D.P是满足不等式-1≤x≤1的自然数构成的集合,Q是方程x2=1的解集解析:选A由于选项A中P,Q元素完全相同,所以P与Q表示同一个集合,而选项B,C,D中元素不相同,所以P与Q不能表示同一个集合.4.已知集合M中的元素x满足x=a+b2,其中a,b∈Z,则下列实数中不属于集合M中元素的个数是()①0;②-1;③32-1;④23-22;⑤8;⑥11-2.A.0 B.1 C.2 D.3解析:选A 当a =b =0时,x =0;当a =-1,b =0时,x =-1;当a =-1,b =3时,x =-1+32;23-22=2(3+22)(3-22)(3+22)=6+42,即a =6,b =4;当a =0,b =2时,x=22=8;11-2=1+2(1-2)(1+2)=-1-2,即a =-1,b =-1.综上所述:0,-1,32-1,23-22,8,11-2都是集合M 中的元素.5.由实数-a ,a ,|a |,a 2所组成的集合最多含有________个元素.( ) A .1 B .2 C .3D .4解析:选B 当a =0时,这四个数都是0,所组成的集合只有一个元素0.当a ≠0时,a 2=|a |=⎩⎪⎨⎪⎧a ,a >0,-a ,a <0,所以一定与a 或-a 中的一个一致.故组成的集合中最多有两个元素.二、填空题6.方程x 2-2x -3=0的解集与集合A 相等,若集合A 中的元素是a ,b ,则a +b =________.解析:∵方程x 2-2x -3=0的解集与集合A 相等, ∴a ,b 是方程x 2-2x -3=0的两个根, ∴a +b =2. 答案:27.已知集合A 是由偶数组成的,集合B 是由奇数组成的,若a ∈A ,b ∈B ,则a +b ______A ,ab _____A .(填“∈”或“∉”)解析:∵a 是偶数,b 是奇数, ∴a +b 是奇数,ab 是偶数, 故a +b ∉A ,ab ∈A . 答案:∉ ∈8.设A 是由满足不等式x <6的自然数组成的集合,若a ∈A ,且3a ∈A ,则a 的值为________.解析:∵a ∈A ,且3a ∈A ,∴⎩⎪⎨⎪⎧a <6,3a <6, 解得a <2. 又∵a ∈N , ∴a =0或a =1. 答案:0或1三、解答题9.已知集合M 由三个元素-2,3x 2+3x -4,x 2+x -4组成,若2∈M ,求x . 解:当3x 2+3x -4=2时,即x 2+x -2=0,x =-2或x =1,经检验,x =-2,x =1均不合题意;当x 2+x -4=2时,即x 2+x -6=0,x =-3或x =2,经检验,x =-3或x =2均合题意.∴x =-3或x =2.10.设集合A 中含有三个元素3,x ,x 2-2x . (1)求实数x 应满足的条件; (2)若-2∈A ,求实数x .解:(1)由集合中元素的互异性可知,x ≠3,且x ≠x 2-2x ,x 2-2x ≠3. 解得x ≠-1且x ≠0,且x ≠3. (2)∵-2∈A ,∴x =-2或x 2-2x =-2. 由于x 2-2x =(x -1)2-1≥-1, ∴x =-2.11.数集M 满足条件:若a ∈M ,则1+a1-a∈M (a ≠±1且a ≠0).若3∈M ,则在M 中还有三个元素是什么?解:∵3∈M , ∴1+31-3=-2∈M , ∴1+(-2)1-(-2)=-13∈M ,∴1+⎝⎛⎭⎫-131-⎝⎛⎭⎫-13=2343=12∈M .又∵1+121-12=3∈M ,∴在M 中还有元素-2,-13,12.12.数集A 满足条件:若a ∈A ,则11-a ∈A (a ≠1).(1)若2∈A ,试求出A 中其他所有元素;(2)自己设计一个数属于A ,然后求出A 中其他所有元素;(3)从上面两小题的解答过程中,你能悟出什么道理?并大胆证明你发现的这个“道理”.解:根据已知条件“若a ∈A ,则11-a∈A (a ≠1)”逐步推导得出其他元素. (1)其他所有元素为-1,12.(2)假设-2∈A ,则13∈A ,则32∈A .其他所有元素为13,32.(3)A 中只能有3个元素,它们分别是a ,11-a,a -1a ,且三个数的乘积为-1. 证明如下:由已知,若a ∈A ,则11-a∈A 知,11-11-a=a -1a∈A ,11-a -1a=a ∈A . 故A 中只能有a ,11-a,a -1a 这3个元素.下面证明三个元素的互异性:若a =11-a,则a 2-a +1=0有解,因为Δ=1-4=-3<0,所以方程无实数解,故a ≠11-a. 同理可证,a ≠a -1a ,11-a≠a -1a .结论得证.第二课时 集合的表示列举法[提出问题] 观察下列集合:(1)中国古代四大发明组成的集合; (2)20的所有正因数组成的集合.问题1:上述两个集合中的元素能一一列举出来吗?提示:能.(1)中的元素为造纸术、印刷术、指南针、火药,(2)中的元素为1,2,4,5,10,20. 问题2:如何表示上述两个集合? 提示:用列举法表示. [导入新知]列举法把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.[化解疑难]使用列举法表示集合的四个注意点(1)元素间用“,”分隔开,其一般形式为{a1,a2,…,a n};(2)元素不重复,满足元素的互异性;(3)元素无顺序,满足元素的无序性;(4)对于含有有限个元素且个数较少的集合,采取该方法较合适;若元素个数较多或有无限个且集合中的元素呈现一定的规律,在不会产生误解的情况下,也可以列举出几个元素作为代表,其他元素用省略号表示.描述法[提出问题]观察下列集合:(1)不等式x-2≥3的解集;(2)函数y=x2-1的图象上的所有点.问题1:这两个集合能用列举法表示吗?提示:不能.问题2:如何表示这两个集合?提示:利用描述法.[导入新知]描述法(1)定义:用集合所含元素的共同特征表示集合的方法.(2)具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.[化解疑难]1.描述法表示集合的条件对于元素个数不确定且元素间无明显规律的集合,不能将它们一一列举出来,可以将集合中元素的共同特征描述出来,即采用描述法.2.描述法的一般形式它的一般形式为{x∈A|p(x)},其中的x表示集合中的代表元素,A指的是元素的取值范围;p(x)则是表示这个集合中元素的共同特征,其中“|”将代表元素与其特征分隔开来.一般来说,集合元素x的取值范围A需写明确,但若从上下文的关系看,x∈A是明确的,则x∈A可以省略,只写元素x.用列举法表示集合[例1] (1)( ) A .1 B .2 C .3D .9(2)用列举法表示下列集合:①不大于10的非负偶数组成的集合; ②方程x 2=x 的所有实数解组成的集合; ③直线y =2x +1与y 轴的交点组成的集合;④方程组⎩⎪⎨⎪⎧x +y =1,x -y =-1的解.[解] 选B (1)∵x ∈A , ∴x =1,2,3.又∵x ∉B ,∴x ≠1,3,9,故x =2.(2)①因为不大于10是指小于或等于10,非负是大于或等于0的意思,所以不大于10的非负偶数集合是{0,2,4,6,8,10}.②方程x 2=x 的实数解是x =0或x =1,所以方程x 2=x 的所有实数解组成的集合为{0,1}. ③将x =0代入y =2x +1,得y =1,即交点是(0,1),故直线y =2x +1与y 轴的交点组成的集合是{(0,1)}.④解方程组⎩⎪⎨⎪⎧ x +y =1,x -y =-1,得⎩⎪⎨⎪⎧x =0,y =1.∴用列举法表示方程组⎩⎪⎨⎪⎧x +y =1,x -y =-1的解集为{(0,1)}.[类题通法]用列举法表示集合的步骤(1)求出集合的元素;(2)把元素一一列举出来,且相同元素只能列举一次; (3)用花括号括起来. [活学活用]已知集合A ={-2,-1,0,1,2,3},对任意a ∈A ,有|a |∈B ,且B 中只有4个元素,求集合B .解:对任意a ∈A ,有|a |∈B . 因为集合A ={-2,-1,0,1,2,3},由-1,-2,0,1,2,3∈A,知0,1,2,3∈B.又因为B中只有4个元素,所以B={0,1,2,3}.用描述法表示集合[例2](1)①A={x|x2-x=0},则1____A,-1____A;②(1,2)________{(x,y)|y=x+1}.(2)用描述法表示下列集合:①正偶数集;②被3除余2的正整数的集合;③平面直角坐标系中坐标轴上的点组成的集合.[解](1)①将1代入方程,成立;将-1代入方程,不成立.故1∈A,-1∉A.②将x=1,y=2代入y=x+1,成立,故填“∈”.(2)①偶数可用式子x=2n,n∈Z表示,但此题要求为正偶数,故限定n∈N*,所以正偶数集可表示为{x|x=2n,n∈N*}.②设被3除余2的数为x,则x=3n+2,n∈Z,但元素为正整数,故x=3n+2,n∈N.所以被3除余2的正整数集合可表示为{x|x=3n+2,n∈N}.③坐标轴上的点(x,y)的特点是横、纵坐标中至少有一个为0,即xy=0,故坐标轴上的点的集合可表示为{(x,y)|xy=0}.[答案](1)①∈∉②∈[类题通法]利用描述法表示集合应关注五点(1)写清楚该集合代表元素的符号.例如,集合{x∈R|x<1}不能写成{x<1}.(2)所有描述的内容都要写在花括号内.例如,{x∈Z|x=2k},k∈Z,这种表达方式就不符合要求,需将k∈Z也写进花括号内,即{x∈Z|x=2k,k∈Z}.(3)不能出现未被说明的字母.(4)在通常情况下,集合中竖线左侧元素的所属范围为实数集时可以省略不写.例如,方程x2-2x+1=0的实数解集可表示为{x∈R|x2-2x+1=0},也可写成{x|x2-2x+1=0}.(5)在不引起混淆的情况下,可省去竖线及代表元素,如{直角三角形},{自然数}等.[活学活用]下列三个集合:①A={x|y=x2+1};②B={y|y=x2+1};③C={(x,y)|y=x2+1}.(1)它们是不是相同的集合? (2)它们各自的含义分别是什么?解:(1)由于三个集合的代表元素互不相同,故它们是互不相同的集合.(2)集合A ={x |y =x 2+1}的代表元素是x ,且x ∈R ,所以{x |y =x 2+1}=R ,即A =R ;集合B ={y |y =x 2+1}的代表元素是y ,满足条件y =x 2+1的y 的取值范围是y ≥1,所以{y |y =x 2+1}={y |y ≥1}.集合C ={(x ,y )|y =x 2+1}的代表元素是(x ,y ),是满足y =x 2+1的数对.可以认为集合C 是坐标平面内满足y =x 2+1的点(x ,y )构成的集合,其实就是抛物线y =x 2+1的图象.集合表示的应用[例3] (1)集合A ={1,-3,5,-7,9,…}用描述法可表示为( ) A .{x |x =2n ±1,n ∈N} B .{x |x =(-1)n (2n -1),n ∈N} C .{x |x =(-1)n (2n +1),n ∈N} D .{x |x =(-1)n -1(2n +1),n ∈N}(2)设集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈N ⎪⎪62+x ∈N .①试判断元素1,2与集合B 的关系; ②用列举法表示集合B .[解] 选C (1)观察规律,其绝对值为奇数排列,且正负相间,且第一个为正数,故应选C.(2)①当x =1时,62+1=2∈N ; 当x =2时,62+2=32∉N. 所以1∈B,2∉B . ②∵62+x∈N ,x ∈N , ∴2+x 只能取2,3,6.∴x 只能取0,1,4.∴B ={0,1,4}. [类题通法]判断元素与集合间关系的方法(1)用列举法给出的集合,判断元素与集合的关系时,观察即得元素与集合的关系. 例如,集合A ={1,9,12},则0∉A,9∈A .(2)用描述法给出的集合,判断元素与集合的关系时就比较复杂.此时,首先明确该集合中元素的一般符号是什么,是实数?是方程?…,其次要清楚元素的共同特征是什么,最后往往利用解方程的方法判断所给元素是否满足集合中元素的特征,即可确定所给元素与集合的关系.[活学活用]用列举法表示集合A={(x,y)|y=x2,-1≤x≤1,且x∈Z}.解:由-1≤x≤1,且x∈Z,得x=-1,0,1,当x=-1时,y=1;当x=0时,y=0;当x=1时,y=1.∴A={(-1,1),(0,0),(1,1)}.1.集合与方程的综合应用[典例]集合A={x|ax2+2x+1=0,a∈R}中只有一个元素,求a的取值范围.[解]当a=0时,原方程变为2x+1=0,此时x=-12,符合题意;当a≠0时,方程ax2+2x+1=0为一元二次方程,当Δ=4-4a=0,即a=1时,原方程的解为x=-1,符合题意.故当a=0或a=1时,原方程只有一个解,此时A中只有一个元素.[多维探究]解答上面例题时,a=0这种情况极易被忽视,对于方程“ax2+2x+1=0”有两种情况:一是a=0,即它是一元一次方程;二是a≠0,即它是一元二次方程,也只有在这种情况下,才能用判别式Δ来解决问题.求解集合与方程问题时,要注意相关问题的求解,如:1.在本例条件下,若A中至多有一个元素,求a的取值范围.解:A中至多有一个元素,即A中有一个元素或没有元素.当A中只有一个元素时,由例题可知,a=0或a=1.当A中没有元素时,Δ=4-4a<0,即a>1.故当A中至多有一个元素时,a的取值范围为{a|a=0或a≥1}.2.在本例条件下,若A中至少有一个元素,求a的取值范围.解:A中至少有一个元素,即A中有一个或两个元素.由例题可知,当a=0或a=1时,A中有一个元素;当A中有两个元素时,Δ=4-4a>0,即a<1.∴A中至少有一个元素时,a的取值范围为{a|a≤1}.3.若1∈A ,则a 为何值? 解:∵1∈A ,∴a +2+1=0,即a =-3.4.是否存在实数a ,使A ={1},若存在,求出a 的值;若不存在,说明理由. 解:∵A ={1},∴1∈A ,∴a +2+1=0,即a =-3. 又当a =-3时,由-3x 2+2x +1=0,得x =-13或x =1,即方程ax 2+2x +1=0存在两个根-13和1,此时A =⎩⎨⎧⎭⎬⎫-13,1,与A ={1}矛盾.故不存在实数a ,使A ={1}.[随堂即时演练]1.方程组⎩⎪⎨⎪⎧x +y =1,x 2-y 2=9的解集是( )A .(-5,4)B .(5,-4)C .{(-5,4)}D .{(5,-4)}解析:选D 解方程组⎩⎪⎨⎪⎧ x +y =1,x 2-y 2=9,得⎩⎪⎨⎪⎧x =5,y =-4,故解集为{(5,-4)}. 2.下列四个集合中,不同于另外三个的是( ) A .{y |y =2} B .{x =2}C .{2}D .{x |x 2-4x +4=0}解析:选B 集合{x =2}表示的是由一个等式组成的集合,其他选项所表示的集合都是含有一个元素2.3.给出下列说法:①平面直角坐标内,第一、三象限的点的集合为{(x ,y )|xy >0}; ②方程x -2+|y +2|=0的解集为{2,-2}; ③集合{(x ,y )|y =1-x }与集合{x |y =1-x }是相等的. 其中正确的是________(填序号).解析:直角坐标平面内,第一、三象限的点的横、纵坐标是同号的,且集合中的代表元素为点(x ,y ),故①正确;方程x -2+|y +2|=0等价于⎩⎪⎨⎪⎧ x -2=0,y +2=0,即⎩⎪⎨⎪⎧x =2,y =-2,解为有序实数对(2,-2),解集为{(2,-2)}或⎩⎨⎧(x ,y )⎪⎪⎪⎭⎬⎫⎩⎪⎨⎪⎧ x =2,y =-2,故②不正确; 集合{(x ,y )|y =1-x }的代表元素是(x ,y ),集合{x |y =1-x }的代表元素是x ,前者是有序实数对,后者是实数,因此这两个集合不相等,故③不正确.答案:①4.已知A ={-1,-2,0,1},B ={x |x =|y |,y ∈A },则B =________. 解析:∵|-1|=1,|-2|=2,且集合中的元素具有互异性, ∴B ={0,1,2}. 答案:{0,1,2}5.用适当的方法表示下列集合: (1)一年中有31天的月份的全体; (2)大于-3.5小于12.8的整数的全体; (3)梯形的全体构成的集合; (4)所有能被3整除的数的集合; (5)方程(x -1)(x -2)=0的解集; (6)不等式2x -1>5的解集.解:(1){1月,3月,5月,7月,8月,10月,12月}. (2){-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12}. (3){x |x 是梯形}或{梯形}. (4){x |x =3n ,n ∈Z}. (5){1,2}. (6){x |x >3}.[课时达标检测]一、选择题1.下列集合的表示,正确的是( ) A .{2,3}≠{3,2}B .{(x ,y )|x +y =1}={y |x +y =1}C .{x |x >1}={y |y >1}D .{(1,2)}={(2,1)}解析:选C {2,3}={3,2},故A 不正确;{(x ,y )|x +y =1}中的元素为点(x ,y ),{y |x +y =1}中的元素为实数y ,{(x ,y )|x +y =1}≠{y |x +y =1},故B 不正确;{(1,2)}中的元素为点(1,2),而{(2,1)}中的元素为点(2,1),{(1,2)}≠{(2,1)},故D 不正确.2.已知x ,y ,z 为非零实数,代数式x |x |+y |y |+z |z |+|xyz |xyz 的值所组成的集合是M ,则下列判断正确的是( )A .0∉MB .2∈MC .-4∉MD .4∈M解析:选D 当x ,y ,z 都大于零时,代数式的值为4,所以4∈M .当x ,y ,z 都小于零时,代数式的值为-4,所以-4∈M .当x ,y ,z 有两个为正,一个为负时,或两个为负,一个为正时,代数式的值为0.所以0∈M .综上知选D.3.集合{x ∈N *|x -3<2}的另一种表示法是( ) A .{0,1,2,3,4} B .{1,2,3,4} C .{0,1,2,3,4,5}D .{1,2,3,4,5}解析:选B ∵x -3<2,x ∈N *, ∴x <5,x ∈N *, ∴x =1,2,3,4.4.已知集合A ={x |x =2m -1,m ∈Z},B ={x |x =2n ,n ∈Z},且x 1,x 2∈A ,x 3∈B ,则下列判断不正确的是( )A .x 1·x 2∈AB .x 2·x 3∈BC .x 1+x 2∈BD .x 1+x 2+x 3∈A 解析:选D 集合A 表示奇数集,B 表示偶数集, ∴x 1,x 2是奇数,x 3是偶数,∴x 1+x 2+x 3应为偶数,即D 是错误的.5.设P ={1,2,3,4},Q ={4,5,6,7,8},定义P *Q ={(a ,b )|a ∈P ,b ∈Q ,a ≠b },则P *Q 中元素的个数为( )A .4B .5C .19D .20解析:选C 由题意知集合P *Q 的元素为点,当a =1时,集合P *Q 的元素为:(1,4),(1,5),(1,6),(1,7),(1,8)共5个元素.同样当a =2,3时,集合P *Q 的元素个数都为5个,当a =4时,集合P *Q 中元素为:(4,5),(4,6),(4,7),(4,8)共4个.因此P *Q 中元素的个数为19.二、填空题6.若集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则a -b =________.解析:由题意知a ≠0,a +b =0,b =1,则a =-1, 所以a -b =-2. 答案:-27.已知集合A ={x |2x +a >0},且1∉A ,则实数a 的取值范围是________. 解析:∵1∉{x |2x +a >0}, ∴2×1+a ≤0,即a ≤-2. 答案:{a |a ≤-2}8.已知-5∈{x |x 2-ax -5=0},则集合{x |x 2-4x -a =0}中所有元素之和为________. 解析:由-5∈{x |x 2-ax -5=0},得(-5)2-a ×(-5)-5=0,所以a =-4,所以{x |x 2-4x +4=0}={2},所以集合中所有元素之和为2.答案:2 三、解答题9.已知集合A ={a +3,(a +1)2,a 2+2a +2},若1∈A ,求实数a 的值. 解:①若a +3=1,则a =-2,此时A ={1,1,2},不符合集合中元素的互异性,舍去. ②若(a +1)2=1,则a =0或a =-2. 当a =0时,A ={3,1,2},满足题意; 当a =-2时,由①知不符合条件,故舍去. ③若a 2+2a +2=1,则a =-1, 此时A ={2,0,1},满足题意. 综上所述,实数a 的值为-1或0. 10.用适当的方法表示下列集合: (1)比5大3的数;(2)方程x 2+y 2-4x +6y +13=0的解集;(3)二次函数y =x 2-10的图象上的所有点组成的集合. 解:(1)比5大3的数显然是8,故可表示为{8}. (2)方程x 2+y 2-4x +6y +13=0可化为(x -2)2+(y +3)2=0,∴⎩⎪⎨⎪⎧x =2,y =-3,∴方程的解集为{(2,-3)}.(3)“二次函数y =x 2-10的图象上的所有点”用描述法表示为{(x ,y )|y =x 2-10}.11.(1)已知集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈N ⎪⎪61+x ∈Z,求M ; (2)已知集合C =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫⎪⎪61+x ∈Z x ∈N ,求C .解:(1)∵x ∈N ,61+x∈Z , ∴1+x 应为6的正约数. ∴1+x =1,2,3,6,即x =0,1,2,5. ∴M ={0,1,2,5}. (2)∵61+x∈Z ,且x ∈N , ∴1+x 应为6的正约数,∴1+x =1,2,3,6,此时61+x 分别为6,3,2,1,∴C ={6,3,2,1}.12.若集合A =⎩⎨⎧⎭⎬⎫(x ,y )⎩⎪⎨⎪⎧y =kx 2-2x -1,y =0有且只有一个元素,试求出实数k 的值,并用列举法表示集合A .解:当k =0时,方程组⎩⎪⎨⎪⎧ y =kx 2-2x -1,y =0可化为⎩⎪⎨⎪⎧y =-2x -1,y =0,解得⎩⎪⎨⎪⎧x =-12,y =0,此时集合A 为-12,0;当k ≠0时,要使集合A 有且只有一个元素,则方程kx 2-2x -1=0有且只有一个根,所以⎩⎪⎨⎪⎧k ≠0,Δ=(-2)2+4k =0,解得k =-1,代入⎩⎪⎨⎪⎧y =kx 2-2x -1,y =0中得⎩⎪⎨⎪⎧y =-x 2-2x -1,y =0, 解得⎩⎪⎨⎪⎧x =-1,y =0,即A ={(-1,0)}.综上可知,当k =0时,A =⎩⎨⎧⎭⎬⎫⎝⎛⎭⎫-12,0;当k =-1时,A ={(-1,0)}.1.1.2集合间的基本关系子集[提出问题]具有北京市东城区户口的人组成集合A,具有北京市户口的人组成集合B. 问题1:集合A中元素与集合B有关系吗?提示:有关系,集合A中每一个元素都属于集合B.问题2:集合A与集合B有什么关系?提示:集合B包含集合A.[导入新知]子集的概念定义一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集记法与读法记作A⊆B(或B⊇A),读作“A含于B”(或“B包含A”)图示结论(1)任何一个集合是它本身的子集,即A⊆A.(2)对于集合A,B,C,若A⊆B,且B⊆C,则A⊆C[化解疑难]对子集概念的理解(1)集合A是集合B的子集的含义是:集合A中的任何一个元素都是集合B中的元素,即由x∈A能推出x∈B.例如{0,1}⊆{-1,0,1},则0∈{0,1},0∈{-1,0,1}.(2)如果集合A中存在着不是集合B的元素,那么集合A不包含于B,或B不包含A,此时记作A B或B⊉A.(3)注意符号“∈”与“⊆”的区别:“⊆”只用于集合与集合之间,如{0}⊆N,而不能写成{0}∈N;“∈”只能用于元素与集合之间,如0∈N,而不能写成0⊆N.集合相等[提出问题]设A={x|x是有三条边相等的三角形},B={x|x是等边三角形}.问题1:三边相等的三角形是何三角形?提示:等边三角形.问题2:两集合中的元素相同吗?提示:相同.问题3:A是B的子集吗?B是A的子集吗?提示:是.是.[导入新知]集合相等的概念如果集合A是集合B的子集(A⊆B),且集合B是集合A的子集(B⊆A),此时,集合A 与集合B中的元素是一样的,因此,集合A与集合B相等,记作A=B.[化解疑难]对两集合相等的认识(1)若A⊆B,且B⊆A,则A=B;反之,如果A=B,则A⊆B,且B⊆A.这就给出了证明两个集合相等的方法,即欲证A=B,只需证A⊆B与B⊆A同时成立即可.(2)若两集合相等,则两集合所含元素完全相同,与元素排列顺序无关.真子集[提出问题]给出下列集合:A={a,b,c},B={a,b,c,d,e}.问题1:集合A与集合B有什么关系?提示:A⊆B.问题2:集合B中的元素与集合A有什么关系?提示:集合B中的元素a,b,c都在集合A中,但元素d,e不在集合A中.[导入新知]真子集的概念定义如果集合A⊆B,但存在元素x∈B,且x∉A,我们称集合A 是集合B的真子集。
人教版(新教材)高中数学第一册(必修1)精品课件1:5.2.1 三角函数的概念(一)
答案
(1)34或-34
(2) -1123
5 13
-152
[方法总结] 求任意角的三角函数值的两种方法 方法一:根据定义,寻求角的终边与单位圆的交点 P 的坐标,然后利用定义得出 该角的正弦、余弦、正切值. 方法二:第一步,取点:在角 α 的终边上任取一点 P(x,y),(点 P 与原点不重合); 第二步,计算 r:r=|OP|= x2+y2; 第三步,求值:由 sin α=yr,cos α=xr,tan α=xy(x≠0)求值. 在运用上述方法解题时,要注意分类讨论思想的运用.
第五章 三角函数
5.2 三角函数的概念
5.2.1 三角函数的概念(一)
课程标准
核心素养
通过对三角函数概念的学
借助单位圆理解三角函数(正 习,提升“直观想象”、
弦、余弦、正切)的定义.
“逻辑推理”、“数学运
算”的核心素养.
Байду номын сангаас目索引
课前自主预习 课堂互动探究 随堂本课小结
课前自主预习
知识点 三角函数的定义
3 3
课堂互动探究
探究一 已知角的终边上一点求三角函数值
例 1 (1)在平面直角坐标系中,角 α 的终边与单位圆交于点 A,点 A 的纵坐标为35,则 tan α=________. (2)若角 α 的终边经过点 P(5,-12),则 sin α=________,cos α= ________,tan α=________.
[跟踪训练 1] 如果 α 的终边过点 P(2sin 30°,-2cos 30°),那么
sin α 的值等于( )
A.12
B.-12
C.-
3 2
D.-
3 3
人教版(新教材)高中数学第一册(必修1)优质课件:第一课时对数函数的概念及其图象和性质
2.对数函数y=logax(a>0,且a≠1)的图象和性质 a>1
0<a<1
图象
定义域
_(__0_,_+_∞__)___ Nhomakorabea值域
___R___
性 过定点 质 函数值的
变化
过定点(__1_,__0_)_,即 x=1 时,y=0
当 0<x<1 时,__y<__0_, 当 0<x<1 时,__y_>_0_,
当 x>1 时,_y_>__0__, 当 x>1 时,__y_<_0__
单调性 在(0,+∞)上是_增__函__数___ 在(0,+∞)上是_减__函__数__
拓展深化
[微判断]
1.函数 y=logx12是对数函数.( × ) 提示 对数函数中自变量x在真数的位置上,且x>0,所以错误.
2.函数y=2log3x是对数函数.( × ) 提示 在解析式y=logax中,logax的系数必须是1,所以错误.
函数;由于⑥中log4x的系数为2,
∴⑥也不是对数函数.只有③④符合对数函数的定义. (2)由题意设 f(x)=logax(a>0 且 a≠1),则 f(4)=loga4=-2,所以 a-2=4,故 a=12,
f(x)=log1x,所以 f(8)=log18=-3.
2
2
答案 (1)B (2)-3
规律方法 判断一个函数是对数函数的方法
问题 1 考古学家一般通过提取附着在出土文物、古遗址上死亡物体的残留物,利用 t
=log5 730 1P(P 为碳 14 含量)估算出土文物或古遗址的年代 t,那么 t 是 P 的函数吗?为
2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学科教师辅导讲义A∪B={x|x∈A,或A∩B={x|x∈A,且={x|x∈U,且;A∪B=B∪A;A∪B=⊆A.;A∩B=B∩A;A∩B=考点一:集合的含义与表示例3、已知集合A 由a +2,(a +1)2,a 2+3a +3三个元素构成,且1∈A,求实数a 的值.例4、用列举法表示下列集合(1); (2)例5、现有三个实数的集合,既可以表示为,也可以表示为,则________考点二:集合间的基本关系例1、已知集合M 满足{1,2}⊆M {1,2,3,4,5},求所有满足条件的集合M.例2、已知集合{x 2,x +y,0}={x ,y x,1},求x 2 015+y 2 015的值为________.{}2A x Z x =∈≤(){},4,,M x y x y x N y N **=+=∈∈{,,1}b a a2{,,0}a a b +20142014a b +=例3、将下列两集合相等的组的序号填在横线上。
①;②③例4:已知集合A ={x|-3≤x≤4},B ={x|2m -1<x<m +1},且B ⊆A .求实数m 的取值范围.考点三:集合的运算例1、若集合M ={-1,1},N ={-2,1,0},则M ∩N =( )A .{0,-1} B .{0} C .{1} D .{-1,1}例2、若集合A ={0,1,2,3},集合B ={1,2,4},则A ∪B =( ) A .{0,1,2,3,4}B .{1,2,3,4}C .{1,2}D .{0}例3、已知全集U ={1,2,3,4,5,6,7},A ={2,4,6},B ={1,3,5,7},则A ∩(∁UB)等于( )A .{2,4,6} B .{1,3,5}C .{2,4,5}D .{2,5}例4、全集U ={不大于15的正奇数},M ∩N ={5,15},∁U(M ∪N)={3,13},(∁UM)∩N ={9,11},求M.{}(){}2,,21,P x x n n Z Q x x n n Z ==∈==-∈{}{}21,,21,P x x n n NQ x x n n N **==-∈==+∈{}()2110,,2nP x x x Q x x n Z ⎧⎫+-⎪⎪=-===∈⎨⎬⎪⎪⎩⎭4、下列集合中,只有一个子集的集合是( )A .{x|x +3=3}B .{(x ,y)|y 2=-x 2,x 、y ∈R}C .{x|x 2≤0}D .{x|x 2-x +1=0}5、已知集合A ={0,1},B ={-1,0,a +3},且A ⊆B ,则a =( )A .1B .0C .-2D .-36、满足条件M ∪{1}={1,2,3}的集合M 的个数是( )A .4B .3C .2D .17、如果U ={1,2,3,4,5},M ={1,2,3},N ={2,3,5},那么(∁U M)∩N=( )A .∅B .{1,3}C .{1}D .{5}8、满足不等式的合数组成的集合为。
9、用另一种方法表示下列集合:(1) 。
(2) 。
11219x <+<11325,,,,32537⎧⎫⎨⎬⎩⎭={}3绝对值不大于的整数=课后反击1、若集合A含有两个元素0,1,则( )A.1∉A B.0∈AC.0∉A D.2∈A2、已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为( )A.3 B.6C.8 D.103、已知集合A={x∈R|ax2-3x+1=0,a∈R},若A中元素最多只有一个,求a的取值范围.4、集合A={x|0≤x<3且x∈N}的真子集个数是( )A.16 B.8 C.7 D.45、满足{a,b}⊆A{a,b,c,d}的集合A有________个( )A.1B.2C.3D.46、设全集U=R,集合A={x|-2≤x≤2},B={x|-1≤x≤3},则图中阴影部分表示的集合为( )A.{x|-2≤x≤3}B.{x|-1≤x≤2}C.{x|0≤x≤2}D.{x|-1≤x≤2}高考新课标1理数】设集合考点一:集合的含义与表示集合题目的方法总结:本节课我学到了学科教师辅导讲义)区间的数轴表示.区间,表示为为区间的端点,其中”(-∞考点一:函数的概念与三要素例1、设集合M ={x|0≤x≤2},N ={y|0≤y≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的是________.例2、下列各组,函数与表示同一个函数的是()A .=1,=0B .=0 ,=C .=2, =D .=3,=例3、已知函数=2-3,求:(1),,;(2);(3)若∈{0,1,2,3},求函数的值域。
例4、已知a 、b 为实数,集合M ={ba,1},N ={a,0},f :x→x 表示把M 中的元素x 映射到集合N 中仍为)(x f )(x g )(x f )(x g x )(x f x )(x g xx2)(x f x )(x g 4)(x )(x f x )(x g 93)(x )(x f x )0(f )2(f )5(f )]([x f f x例2、下列函数的定义域:① ②③④⑤考点四:求函数的值域例1、求函数 的值域例2、求函数 的值域例3、求 的值域14)(2--=x x f 2143)(2-+--=x x x x f =)(x f x11111++xx x x f -+=0)1()(373132+++-=x x y x x y -+=12[])1,0(239∈+-=x y xx13+--=x x y考点五:分段函数例1、求函数的最大值.例2、设函数, 若, 则得取值范围是( )例3、某市收水费的方法是:水费=基本费+超额费+耗损费,若每月用水量不超过最低限量am 3时,只付基本费8元及每户每月的定额耗损费c 元,若用水量超过am 3时,除了付同上的基本费和耗损费之外,超过部分每m 3付b 元的超额费,已知耗损费不超过5元该市一家庭今年一月、二月、三月份的用水量和支付费用如下表所示:月份用水量水费一月9m 39元二月15m 319元三月22m 333元根据上面表格中的数据求a ,b ,c43(0)()3(01)5(1)x x f x x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩1221(0)()(0)x x f x xx -⎧-≤⎪=⎨⎪>⎩0()1f x >0x .(1,1)A -.(1,)B -+∞.(,2)(0,)C -∞-⋃+∞.(,1)(1,)D -∞-⋃+∞3、设( )A .0 B .1 C .2 D .34、函数f(x)=Error!的值域是________.5、已知f(x)的图象如图,则f(x)的解析式为________.6、若函数f(x)=xax +b(a≠0),f(2)=1,又方程f(x)=x 有唯一解,求f(x)的解析式.1232,2()((2))log (1) 2.x e x f x f f x x -⎧⎪=⎨-≥⎪⎩<,则的值为,求函数值域的各种方法:其类型依解析式的特点分可分三类:而得函数的值域根据函数的几何图形,利用数型结合的方法来求值域根据统计,一名工人组装第.已知工人组装第4件产品用时+lg考点一:函数的概念与三要素表示的函数的定义域时,常有以下几种情况:本节课我学到了学科教师辅导讲义学员编号:年级:高一课时数:3学员姓名:辅导科目:数学学科教师:授课主题第03讲---函数的基本性质(一)函数单调性的定义1、取量定大小:即设是区间上的任意两个实数,且<;2、作差定符号:即,并通过因式分解、配方、有理化等方法,向有利于判断差的符号的方向变形;3、判断定结论: 即根据定义得出结论。
(三)判断较复杂函数的单调性的几条有用的结论1、函数与函数的单调性相反2、当恒为正或恒为负时,函数与函数的单调性相反3、在公共区间内,增函数增函数增函数,增函数减函数增函数,减函数增函数减函数。
(四)复合函数单调性的判断对于函数和,如果在区间上是具有单调性,当时,,且在区间上也具有单调性,则复合函数在区间具有单调性的规律见下表:以下规律可总结为:“同增异减”。
增 ↗减 ↘增 ↗减 ↘增 ↗减 ↘增 ↗减 ↘减 ↘增 ↗(五)函数奇偶性定义1、图形描述:函数的图像关于轴对称为偶函数;函数的图像关于原点轴对称为奇函数2、定量描述:一般地,如果对于函数的定义域内任意一个,都有,则称为偶函数;如果都有,则称为奇函数;如果与同时成立,那么函21,x x 1x 2x ()()12f x f x -()y f x =-()y f x =()f x ()1y f x =()y f x =+=-=-=)(u f y =)(x g u =)(x g u =),(b a ),(b a x ∈),(n m u ∈)(u f y =),(n m ))((x g f y =),(b a )(u f y =),(n m u ∈)(x g u =),(b a x ∈))((x g f y =),(b a x ∈()f x y ⇔()f x ()f x ⇔()f x ()f x x ()()f x f x -=()f x ()()--f x f x =()f x ()()f x f x -=()()--f x f x =考点一:函数单调性f(x)=2x例3、求f(x)=x+x-1的最小值.例4、求函数f(x)=4-x-2x+1的值域.考点二:分段函数单调性例1、函数f(x)=Error!的单调递增区间是________.例2、若函数f(x)=|2x+a|的单调递增区间是[3,+∞),则a=________.例3、已知函数f(x)=Error!求f(x)的最大值、最小值.考点三:参数问题讨论例1、已知f(x)是定义在[-1,1]上的增函数,且f(x-2)<f(1-x),求x的取值范围.例2、求f(x)=x 2-2ax -1在区间[0,2]上的最大值和最小值.考点四:函数奇偶性判断例1、判断下列函数是否具有奇偶性:(1)f(x)=2x 4+3x 2; (2)f(x)=1x+x ;例2、用定义判断函数f(x)=Error!的奇偶性.例3、设a 为实数,讨论函数f(x)=x2+|x -a|+1的奇偶性.考点五:函数奇偶性应用例1、 已知函数f(x)=ax 2+23x +b 是奇函数,且f(2)=53.求实数a 、b 的值;例2、已知函数f(x)是定义在(-2,2)上的奇函数且是减函数,若f(m -1)+f(1-2m)≥0,求实数m 的取值范围.例3、已知函数f(x)与g(x)满足f(x)=2g(x)+1,且g(x)为R 上的奇函数,f(-1)=8,求f(1).考点六:函数单调性与奇偶性综合问题例1、若函数y =f(x)是奇函数,且y =f(x)在[a ,b](a>0)上是单调递增的,则y =f(x)在[-b ,-a]上的单调性如何?并证明你的结论.例2、(1)设定义在[-2,2]上的奇函数f(x)在区间[0,2]上单调递减,若f(m)+f(m -1)>0,求实数m 的取值范围.(2)若函数是定义在上的偶函数,且在区间上是增函数,又,求的取值范围。