蓝宝石晶体生长技术详解
蓝宝石项目晶体生长技术研究报告
蓝宝石项目晶体生长技术研究报告
引用准确,并附有相关图片与数据,由蓝宝石晶体生长研究实验室专
业工作人员为你编写。
一、研究背景
蓝宝石,又称宝石石英,是一种矿物,也是最宝贵的天然宝石之一,
具有抗热、抗紫外线和压磨强度高等优良性能,是展示财富和品位的精品,一直是各类礼物礼品中的新宠。
然而,由于蓝宝石自然产量少,价格昂贵,因此难以满足市场对它的需求。
为此,蓝宝石晶体生长技术应运而生,目前已经逐渐受到业者的重视,为保证生产质量,蓝宝石晶体生长技术也迎来了发展新机遇。
二、实验原理
蓝宝石晶体生长技术是一种由晶面构成的可以按照预先设计的模型来
生长蓝宝石晶体的技术,主要是通过在搅拌溶液中添加二氧化碳等有机物质,使溶液中的成分形成极微量的枝毛状结构,然后利用电磁波原理,在
晶体生长过程中,按照模型的设计顺序形成蓝宝石晶体。
三、实验步骤
(1)首先,我们需要准备一个完整的蓝宝石晶体生长系统,包括可
以通过晶格变化而改变晶面的晶体生长装置、用于调整液体温度的加热装置、用以控制晶面的搅拌装置、用以控制晶体形成的电磁场装置。
蓝宝石项目晶体生长技术研究报告
蓝宝石项目晶体生长技术研究报告蓝宝石是一种非常珍贵且重要的宝石,具有很高的价值和美观度。
为了满足市场需求,并提高蓝宝石的生产效率和质量,不断进行研究和开发新的晶体生长技术。
本报告将介绍蓝宝石项目晶体生长技术的研究进展。
首先,晶体生长技术是指通过控制晶体生长条件,使蓝宝石在合适的环境中快速生长。
目前,常见的蓝宝石晶体生长技术有几种,分别是六角晶体生长法、上升法和束流法。
这些技术在实践中都取得了很好的效果。
第一种技术是六角晶体生长法。
这种方法是在合适的高温和高压条件下,通过溶液中的蓝宝石种子使晶体从上部逐渐生长。
这种方法的优点是可以获得较大尺寸的蓝宝石晶体,同时还能控制其形状和质量。
然而,这种方法的缺点是生长周期较长,且由于生长过程中溶液中杂质的存在,会对晶体的纯度造成一定的影响。
第二种技术是上升法。
这种方法是通过在熔融的混合溶液中加入蓝宝石种子,然后逐渐降低温度使晶体从下部生长。
相对于六角晶体生长法,这种方法的优点是生长周期短,且晶体纯度较高。
然而,这种方法也有其缺点,即在晶体生长过程中易产生内部应力,导致晶体不稳定。
第三种技术是束流法。
这种方法是通过将精细制备的蓝宝石晶体放在真空室中,然后利用电子束照射或离子束轰击的方式促进晶体生长。
这种方法的优点是生长周期较短,同时可以控制晶体的形状和分布。
然而,这种方法的缺点是依赖于高成本的设备和技术,且需要更多的研究和改进。
总结来说,蓝宝石项目晶体生长技术的研究取得了一定的进展。
不同的生长技术各有优缺点,需要根据具体需求选择适合的方法。
未来还需要继续深入研究,提高蓝宝石晶体生长的效率和质量,以满足市场的需求。
蓝宝石晶体生长技术
整理课件
5
Al2O3分子结 构
蓝宝石晶体结构图 (其中黑点为氧离子,白点为铝离子)
整理课件
6
基本性质
蓝宝石单晶是一种简单配位型氧化物晶体,呈各向异性,属六方 晶系,晶格参数a=b=0.4758nm,c=1.299 1 nm,α=β=90°, γ=120°。
蓝宝石单晶的透光范围为0.14-6.0μm,覆盖真空紫外、可见、 近红外到中红外波段,且在3-5μm波段具有很高的光学透过率;具 有高硬度(仅次于金刚石)、高强度、高热导率、高抗热冲击品质因 子的力学及热学性能;具有耐雨水、沙尘、盐雾等腐蚀的稳定化学 性能;具有高表面平滑度、高电阻率及高介电性能。
Ti:Al2O3激光器还应用于非线性物理、太赫兹产生、时间分辨光谱 学、频标计量学、多光子显微镜及生物医学成像等基础研究方面。
Ti:Al2O3激光器在军事与工程方面也应用广泛。如激光测距、光电 干扰、红外对抗、致盲武器等军事领域,以及激光通信、海洋探测、 大气环境监测、激光手术及微加工等诸多领域。
整理课件
(1)高温超导薄膜的衬底,如Tl系薄膜TlBa2Ca2Cu3Oy、 Tl2Ba2CaCu2O8;
(2)红外光学材料的衬底,如近红外材料的碲镉汞晶体(HgCdTe), Ⅲ-Ⅴ族化合物的砷化镓(GaAs)、磷化镓(GaP)、氮化镓(GaN),Ⅱ-Ⅵ 族化合物的硫化锌(ZnS)、硒化锌(ZnSe)、碲化镉(CdTe)、氧化锌 (ZnO)、SiO2及金刚石等;
这些优良的光学、力学、热学、化学及电学性能决定了它在军事 及民用领域中的重要地位和作用。
整理课件
7
(1)化学稳定性:蓝宝石具有高度的化学稳定性,在绝大多数 化学反应过程中不会被腐蚀。
(2)机械特性:蓝宝石单晶因其高硬度和高强度,可以在温度 范围从超低温至1500℃高温之间的不同环境中保持高强度、耐磨耗 与高度的稳定性。同时是目前已知的硬度最高的氧化物晶体材料, 仅次于金刚石达莫氏9级。
浅析蓝宝石晶体生长工艺及设备
浅析蓝宝石晶体生长工艺及设备蓝宝石是贵重材料,作为人工合成晶体中的一种,其机械以及光学层面的性能极优,所以应用极广。
近年半导体照明行业规模急剧膨胀,使得对蓝宝石衬底材料需求越来越大,尤其是MOCVD外延衬底方面,超过整体产量的80%。
半导体照明产业规模不断的扩张,使得其对蓝宝石的需求与日俱增,此种情况下,相关行业面临极大的发展机遇,产品具有极高的效益,市场空间比较大,使得资金源源不断的进入该行业。
本文对蓝宝石单晶所具有的性质和使用进行充分说明,尤其是单晶生长工艺方面,一种为泡生法,另一种为VHGF 法,同时分析了其制备设备,探求相关发展大势。
标签:蓝宝石;单晶;生长;工艺;设备1 蓝宝石的性质及用途蓝宝石本质是纯净氧化铝所存在的单晶形态,由Al2O3组成。
其莫氏硬度可以达到9,排名在金刚石其后。
在25℃温度的时候,其电阻率具体为1×1011Ω·cm,同时其具有极好的电绝缘性能。
其光透性极好,在机械层面的性能极好,同时具有极好的热传导性。
应用广泛,在耐磨元件以及窗口材料方面用处极大,同时在电子器件方面应用价值极高。
从电子层面来看,主要在GaN基蓝绿光LED有着极大的应用,除此之外就是射频器件,后者面向手机智造产业(主要涉及技术为蓝宝石上硅SOS)。
在2009年的时候,蓝宝石衬底约为900万片,一年后达到惊人的2700万片。
2 蓝宝石单晶生长工艺及设备2.1 焰熔法维尔纳叶(Verneuil)作为法国闻名遐迩的研究人员,在1902年提出改法,向世人展示,可以视其为蓝宝石单晶工业生长的开端。
原料选用纯净度极高的Al2O3粉末,加热使用氢氧焰,将Al2O3粉末由上到下散落,经过氢氧焰处理,被熔融,然后掉在籽晶顶部,形成蓝宝石晶体。
改法对设备的要求不高,生长极快,不过在完整性方面存在比较大的问题,应力比较大,晶体通常位错密度范围从105一直到106cm2。
适用于制造价格便宜的仪表轴承或者耐磨元件。
数种蓝宝石晶体生长方法
蓝宝石晶体的生长方法自1885年由Fremy、Feil和Wyse利用氢氧火焰熔化天然红宝石粉末与重铬酸钾而制成了当时轰动一时的“日内瓦红宝石”,迄今人工生长蓝宝石的研究已有100多年的历史。
在此期间,为了适应科学技术的发展和工业生产对于蓝宝石晶体质量、尺寸、形状的特殊要求,为了提高蓝宝石晶体的成品率、利用率以及降低成本,对蓝宝石的生长方法及其相关理论进行了大量的研究,成果显著。
至今已具有较高的技术水平和较大的生产能力,为之配套服务的晶体生长设备——单晶炉也随之得到了飞速的发展。
随着蓝宝石晶体应用市场的急剧膨胀,其设备和技术也在上世纪末取得了迅速的发展。
晶体尺寸从2吋扩大到目前的12吋。
低成本、高质量地生长大尺寸蓝宝石单晶已成为当前面临的迫切任务。
总体说来,蓝宝石晶体生长方式可划分为溶液生长、熔体生长、气相生长三种,其中熔体生长方式因具有生长速率快,纯度高和晶体完整性好等特点,而成为是制备大尺寸和特定形状晶体的最常用的晶体生长方式。
目前可用来以熔体生长方式人工生长蓝宝石晶体的方法主要有焰熔法、提拉法、区熔法、导模法、坩埚移动法、热交换法、温度梯度法、泡生法等。
而泡生法工艺生长的蓝宝石晶体约为目前市场份额的70%。
LED蓝宝石衬底晶体技术正属于一个处于正在发展的极端,由于晶体生长技术的保密性,其多数晶体生长设备都是根据客户要求按照工艺特点定做,或者采用其他晶体生长设备改造而成。
下面介绍几种国际上目前主流的蓝宝石晶体生长方法。
图9 蓝宝石晶体的生长技术发展1 凯氏长晶法(Kyropoulos method)简称KY法,中国大陆称之为泡生法。
泡生法是Kyropoulos于1926年首先提出并用于晶体的生长,此后相当长的一段时间内,该方法都是用于大尺寸卤族晶体、氢氧化物和碳酸盐等晶体的制备与研究。
上世纪六七十年代,经前苏联的Musatov改进,将此方法应用于蓝宝石单晶的制备。
该方法生长的单晶,外型通常为梨形,晶体直径可以生长到比坩锅内径小10~30mm的尺寸。
CZ法蓝宝石晶体生长工艺研究
200mm 蓝宝石晶体生长工艺研究-CZ 法晶体生长工艺主要分为引晶、缩颈、放肩、晶体生长、退火、冷却四个过程。
晶体生长过程中均匀缓慢的提拉晶体 ,晶体不与坩埚壁接触 ,避免了晶体生长过程中的寄生成核。
实验分析与讨论实验发现晶体有开裂及线形的散射颗粒。
晶体开裂取决于温度梯度、生长速率等生长工艺参数 ;线形散射颗粒则取决于温场、功率控制及炉膛的洁净度等工艺条件。
3. 1 生长速率对晶体开裂的影响根据界面稳定条件分别为界面附近熔体和晶体中的温度梯度, Kl,ks 分别为熔体和晶体的热导率 , L 为结晶潜热 ,ρ为晶体密度。
从 (3)中可以看出晶体的最大生长速率取决于晶体中温度梯度的大小 ,要提高晶体的生长速率 ,必须加大晶体中的温度梯度 ,但是 ,晶体中温度梯度太大 ,将会增加热应力 ,引起位错密度增加 ,甚至导致晶体开裂。
考虑热效应对晶体开裂的影响 ,这时允许的最大热应力为 (1)(2)从 (3)、(4)式中可以看出 :晶体中允许的最大热应力 (或热应变 )与生长极限速率成正比。
故 ,为得到高质量完整的晶体 ,通常生长速率低于极限生长速率。
否则 ,由于晶体生长速率过快 ,将会引起高的热应力 ,引起位错密度增加 ,晶体结构完整性变差 ,导致晶体开裂。
另一方面我们可以看出 ,实际上在保证晶体中温度梯度稳定的条件下 ,适当减少熔体中的轴向温度梯度也可以增大晶体生长速率。
蓝宝石晶体具有较大的导热系数 ,在适当的较小的轴向温度梯度温场以及在保证径向温度合理的条件下 ,更有利于凸生长界面的形成 ,也就相对提高了晶体生长速率。
本实验 ,在生长 A l2O3晶体的过程中 ,采取分段生长晶体 ,以保持恒定的结晶速率与晶体等径。
生长速率为 2. 5~3. 0mm /h,此速率对 A l2O3晶体开裂基本上没有影响。
3. 2 热效应对晶体开裂的影响在晶体生长过程中 ,由于温场不合理 ,温度梯度过大 ,冷却速率过快等都会使晶体产生热应力 ,产生相对形变 ,造成晶体开裂。
蓝宝石长晶
一、蓝宝石生长1.1 蓝宝石生长方法1.1.1 焰熔法Verneuil (flame fusion)最早是1885年由弗雷米(E. Fremy)、弗尔(E. Feil)和乌泽(Wyse)一起,利用氢氧火焰熔化天然的红宝石粉末与重铬酸钾而制成了当时轰动一时的“ 日内瓦红宝石”。
后来于1902年弗雷米的助手法国的化学家维尔纳叶(Verneuil)改进并发展这一技术使之能进行商业化生产。
因此,这种方法又被称为维尔纳叶法。
1)基本原理焰熔法是从熔体中生长单晶体的方法。
其原料的粉末在通过高温的氢氧火焰后熔化,熔滴在下落过程中冷却并在种晶上固结逐渐生长形成晶体。
2)合成装置与条件、过程焰熔法的粗略的说是利用氢及氧气在燃烧过程中产生高温,使一种疏松的原料粉末通过氢氧焰撒下焰融,并落在一个冷却的结晶杆上结成单晶。
下图是焰熔生长原料及设备简图。
这个方法可以简述如下。
图中锤打机构的小锤7按一定频率敲打料筒,产生振动,使料筒中疏松的粉料不断通过筛网6,同时,由进气口送进的氧气,也帮助往下送粉料。
氢经入口流进,在喷口和氧气一起混合燃烧。
粉料在经过高温火焰被熔融而落在一个温度较低的结晶杆2上结成晶体了。
炉体4设有观察窗。
可由望远镜8观看结晶状况。
为保持晶体的结晶层在炉内先后维持同一水平,在生长较长晶体的结晶过程中,同时设置下降机构1,把结晶杆2缓缓下移。
焰熔法合成装置由供料系统、燃烧系统和生长系统组成,合成过程是在维尔纳叶炉中进行的。
A.供料系统原料:成分因合成品的不同而变化。
原料的粉末经过充分拌匀,放入料筒。
如果合成红宝石,则需要Al2O粉末和少量的 Cr2O3参杂,Cr2O3用作致色剂,添加量为 1-3%。
三氧化3二铝可由铝铵矾加热获得。
料筒:圆筒,用来装原料,底部有筛孔。
料筒中部贯通有一根震动装置使粉末少量、等量、周期性地从筛孔漏出。
震荡器:驱动震动棒震动,使料筒不断抖动,以便原料的粉末能从筛孔漏出。
B.燃烧系统氧气管:从料筒一侧释放,与原料粉末一同下降;氢气管:在火焰上方喷嘴处与氧气混合燃烧。
HEM法蓝宝石生长
晶體生長程序:
1.先加熱熔化坩堝內的原 料,使熔 體溫度保持略 高於熔點5~10℃ 2.堝底的晶種,逐漸生長出充滿整 個坩堝的大塊單晶
HEM爐體 示意圖
晶碇與坩堝
HEM爐體 實體圖
熱交換器法優缺點
優點:
1.固/液界面位於坩堝內,且沒有拉伸的動作, 不易受到外力干擾。 2.藉由改變坩堝的外形就能改變晶體的形狀。 3.能夠分別控制熔區及固化區之溫度梯度。 4.可減少浮力對流之影響。 5.可直接在爐內進行退火減少晶體內之熱應 力。 6.易於生長大尺寸晶體。
晶體生長技術—HEM
熱交換法(Heat-Exchanger Method) 1947年美國開始使用 熱交換器法來生產 大直徑藍寶石單晶
熱交換器法(HEM)基本原理
利用熱交換器來帶走熱量,使得晶體生 長區內形成 一下冷上熱縱向溫度梯度 藉由控制熱交換器內氣體流量的大小及 改變加熱功率的大小來控制此一溫度梯 度,藉此達成坩堝內溶液由下慢慢向上 凝固成晶體的目的
缺點:
1.不適於生長強烈腐蝕坩堝的材料。 2.生產過程會引入較大內應力。 3.氦氣價格昂貴。 4.氣流的流量難以精確控制。
蓝宝石晶体生长技术
蓝宝石晶体生长技术蓝宝石是一种非常珍贵的宝石,其具有高度的透明度和魅力的蓝色光泽。
然而,天然蓝宝石的价格昂贵且稀缺,因此科技界提出了人工合成蓝宝石的方法。
本文将介绍蓝宝石晶体的生长技术。
高温高压生长法是较为传统的一种方法。
它模拟了地球内部的高温高压环境,利用合适的矿物质和金属盐在高温高压条件下进行晶体生长。
在这个过程中,先将金属盐溶解在熔剂中,然后将蓝宝石种子放置在溶液中促进晶体生长。
这种方法由于需要高温高压环境,相对较难控制,但可以制备更大尺寸和更高质量的蓝宝石晶体。
化学气相沉积法是一种相对较新的技术,它采用气相材料进行晶体生长。
在这个过程中,将金属源和气相原料(如铝和气氙)连续供应到高温反应室中,使其在晶体基底上沉积,并逐渐形成完整的蓝宝石晶体层。
与HPHT法相比,化学气相沉积法更容易控制和扩展生产规模,适用于生产更薄的蓝宝石晶片。
无论采用哪种生长方法,蓝宝石晶体的质量都受到很多因素的影响。
其中,晶体的化学纯度、温度、压力、溶液成分和生长速度等因素都非常重要,直接影响着蓝宝石晶体的结构和质量。
为了获得高质量的蓝宝石晶体,科研人员还在不断研究改进这些生长技术。
例如,改变晶体生长的初始条件、优化晶体的生长环境、选择合适的基底材料等方法,都有助于提高蓝宝石晶体的质量和产率。
蓝宝石晶体的人工合成在很大程度上满足了市场对宝石的需求。
它不仅可以大量生产高质量的蓝宝石晶体,还可以根据市场和消费者需求来调整颜色、尺寸和形状。
此外,与天然蓝宝石相比,人工合成的蓝宝石更加经济实惠,也更环保可持续。
总的来说,蓝宝石晶体的生长技术是一项重要的宝石制造技术。
通过不断改进和创新,可以生产出高质量、低成本的蓝宝石晶体,满足市场需求,并为宝石行业带来巨大的发展潜力。
蓝宝石晶体生长技术回顾
蓝宝石晶体生长技术回顾引言不少群众提出意见,博主说了这多不行的,能不能告诉广大投身蓝宝石长晶事业的什么设备行?说实话,这真的是为难我了!怎么讲?举个例子吧,Ky技术设备在Mono手里还真的是Ky,但到了你手里可能就是YY了。
可能你觉得受打击了,可是没有办法啊,事实如此啊,实话听起来往往比较刺耳!本博主前面发表的《从缺陷的角度谈谈蓝宝石生长方向的选择》博文,迄今为止只有寥寥无几群众真正看出精髓所在..................................不服气群众可以留言谈谈自己了解了什么?古人云“博古通今”、“温故知新”,我觉得很有道理,技术之道也是如此。
如果没有对以往技术的熟练掌握、熟知精髓所在,没有对以往技术的总结提炼,你就不可能对一个新技术真正的掌握。
任何新技术新设备到你手里,充其量你只是一个熟练操作工而已。
还觉得不信的话,我就在这篇博文里用大家认为最古老的火焰法宝石生长的经验理论总结来给大家进行目前流行的衬底级蓝宝石晶体生长进行理论指导。
蓝宝石晶体生长技术简介焰熔法(flame fusion technique )&维尔纳叶法(Verneuil technique )1885年由弗雷米(E. Fremy )、弗尔(E. Feil )和乌泽(Wyse )一起,利用氢氧火焰熔化天然的红宝石粉末与重铬酸钾而制成了当时轰动一时的“ 日内瓦红宝石”。
后来于1902年弗雷米的助手法国的化学家维尔纳叶(Verneuil )改进并发展这一技术使之能进行商业化生产。
因此,这种方法又被称为维尔纳叶法。
弗雷米(E. Fremy)、弗尔(E. Feil)和乌泽(Wyse)这几个哥们实际上就是做假珠宝的,一群有创新精神的专业人士。
博主对两类造假者比较佩服,一类是以人造珠宝以假乱真的,一类是造假文物的。
首先、他们具有很高的专业素养;其次、他们也无关民生大计;还有利于社会财富的再分配。
至于火焰法简单的描述我就不啰嗦了,我讲讲一些你所不知道的火焰法长宝石的一些前人总结;这些总结和经验对今天的任何一种新方法长蓝宝石单晶都是有借鉴意义的。
蓝宝石长晶技术简介
藍寶石單晶生長方法介紹藍寶石單晶的長晶方法有很多種,其中最常用的主要有九種,介紹如下:1凱氏長晶法(Kyropoulos method)簡稱 KY 法,中國大陸稱之為泡生法。
其原理與柴氏拉晶法(Czochralski method)類似,先將原料加熱至熔點後熔化形成熔湯,再以單晶之晶種(Seed Crystal,又稱籽晶棒)接觸到熔湯表面,在晶種與熔湯的固液界面上開始生長和晶種相同晶體結構的單晶,晶種以極緩慢的速度往上拉升,但在晶種往上拉晶一段時間以形成晶頸,待熔湯與晶種界面的凝固速率穩定後,晶種便不再拉升,也沒有作旋轉,僅以控制冷卻速率方式來使單晶從上方逐漸往下凝固,最後凝固成一整個單晶晶碇,凱氏長晶法是利用溫度控制來生長晶體,它與柴氏拉晶法最大的差異是只拉出晶頸,晶身部分是靠著溫度變化來生長,並在拉晶頸的同時,調整加熱電壓,使熔融的原料達到最合適的長晶溫度範圍,讓生長速度達到最理想化,因而長出品質最理想的藍寶石單晶。
國外許多生長藍寶石的廠商,也是採用此方法以生長藍寶石單晶,凱氏長晶法在生長過程中,除了晶頸需拉升外,其餘只需控制溫度的變化,就可使晶體成型,少了拉升及旋轉的干擾,比較好控制製程,因而可得到較佳的品質。
所以生長的藍寶石單晶具有以下的優點: 1.高品質(光學等級)。
2.低缺陷密度。
3.大尺寸。
4.較快的生長率。
5.高產能。
6.較佳的成本效益。
凱氏長晶法原理示意圖2柴氏拉晶法(Czochralski method)簡稱 CZ 法。
柴氏拉晶法之原理,先將原料加熱至熔點後熔化形成熔湯,再利用一單晶晶種接觸到熔湯表面,在晶種與熔湯的固液界面上因溫度差而形成過冷。
於是熔湯開始在晶種表面凝固並生長和晶種相同晶體結構的單晶。
晶種同時以極緩慢的速度往上拉升,並伴隨以一定的轉速旋轉,隨著晶種的向上拉升,熔湯逐漸凝固於晶種的液固界面上,進而形成一軸對稱的單晶晶棒。
在拉升的過程中,透過控制拉升速度的快慢的調配,分別生長晶頸(Neck)、晶冠(Shoulder)、晶身(Body)以及晶尾。
蓝宝石晶体生长方式介绍
蓝宝石晶体生长方式介绍目前可用来以熔体生长方式人工生长蓝宝石晶体的方法主要有熔焰法、提拉法、区熔法、坩埚移动法、热交换法、温度梯度法和泡生法等。
蓝宝石晶体生长方式可划分为溶液生长、熔体生长、气相生长三种,其中熔体生长方式因具有生长速率快,纯度高和晶体完整性好等特点,而成为是制备大尺寸和特定形状晶体的最常用的晶体生长方式。
但是,上述方法都存在各自的缺点和局限性,较难满足未来蓝宝石晶体的大尺寸、高质量、低成本发展需求。
例如,熔焰法、提拉法、区熔法等方法生长的晶体质量和尺寸都受到限制,难以满足光学器件的高性能要求;热交换法、温度梯度法和泡生法等方法生长的蓝宝石晶体尺寸大,质量较好,但热交换法需要大量氦气作冷却剂,温度梯度法、泡生法生长的蓝宝石晶体坯料需要进行高温退火处理,坯料的后续处理工艺比较复杂、成本高。
α-Al2O3单晶又称蓝宝石,俗称刚玉,是一种简单配位型氧化物晶体。
蓝宝石晶体具有优异的光学性能、机械性能和化学稳定性,强度高、硬度大、耐冲刷,可在接近2000℃高温的恶劣条件下工作,因而被广泛的应用于红外军事装置、卫星空间技术、高强度激光的窗口材料。
其独特的晶格结构、优异的力学性能、良好的热学性能使蓝宝石晶体成为实际应用的半导体GaN/Al2O3发光二极管(LED),大规模集成电路SOI和SOS及超导纳米结构薄膜等最为理想的衬底材料。
低成本、高质量地生长大尺寸蓝宝石单晶已成为当前面临的迫切任务蓝宝石晶体检测加工设备蓝宝石掏棒机X射线晶向测试仪金刚石线锯切割机蓝宝石掏棒机自动精密研磨抛光机AMEST-302010-11-18 15:21:55AMEST-30该设备是使用微拉旋转泡生法培育单晶蓝宝石,用这个设备长出来的蓝宝石最高质量35kg,最大直径220mm,最大长度260mm。
技术特性在熔炉中原料的最大负载:35kg熔融物最高温度:2100℃炉内最低气压:5 x 10-5pa载晶棒的运转最大路程:280mm载晶棒的运转速度:0.1-1.2mm/小时能量功耗:最大55千瓦冷却水使用:3.6立方米/小时惰性气体使用:0.18立方米/周期重量:1500kg附加参数加热方式:电阻式作业环境:真空,5 x 10-5 Pa晶棒转速(速度变化差异在0.1mm/小时的增量之内):——最低速率:0.1mm/时——最高速率:1.2mm/时晶棒的加速运动速率:最大25mm/时)晶棒运动速率维持精确性:±2%晶棒自转频率:——最低速率:0.045转/秒(3转/分钟)——最高速率:0.135转/秒(8转/分钟)加热器电压稳定的精确性——在2.6V到5V之间:±2——在5V到7V之间:±1%——在7V到11V之间:±0.1%安装要求一个符合下列微型气候参数的车间:——温度:22±5°С——相对湿度低于90%——车间10平方米以上——地面有排污管道,或者低于地面至少75mm的管道。
蓝宝石的生长方法
2010年7月7日,元鸿(山东)光电材料有限公司成功生产出第一炉89.5 kg的蓝宝石单晶,其尺寸属国内最大[21]。
2005年,韩杰才等[22]在对泡生法和提拉法改进的基础上发明了用于生长大尺寸蓝宝石单晶的方法:冷心放肩微量提拉(sapphire growth technique withmicro-pulling and shoulder-expanding at cooled center,SAPMAC)法。SAPMAC法的原理示意图及其生长的蓝宝石单晶见图6[23–24]。
热交换法
热交换法(heat exchanger method,HEM)[8]最早于1967年由美国陆军原料研究实验室的FredSchmid和Dennis Viechnicki发明,其原理示意图及其生长的蓝宝石单晶,见图7[26]。
热交换法是生长大尺寸、高质量蓝宝石最成熟的方法之一,其晶体生长方向有a轴、m轴或r轴,通常采用a轴方向[17]。梯度单晶炉是一种改装的真空石墨电阻炉(见图7a),即在真空石墨电阻炉底部插入钨钼制成的热交换器,并保证整个炉内真空密封[27]。热交换法的实质在于控制温度让熔体直接在坩埚内凝固生长单晶,其特点是依靠氦气在热交换器内的循环带走热量而使蓝宝石单晶生长[26–28]。氦气循环带热过程为:氦气从热交换器低端的中心管内向上流进,到达热交换器顶端(即坩埚底部与热交换器接触的部分)吸收坩埚底部的热量,然后在中心管外且热交换器内(热交换器是由2个同心管相套而成)区域向下从热交换器的低端流出。所用坩埚的材料是根据生长单晶材料性质决定,热交换法生 长蓝宝石单晶一般选用钼坩埚。其操作和生长过程
蓝宝石各种生长方法
蓝宝石各种生长方法一、蓝宝石生长1.1 蓝宝石生长方法1.1.1 焰熔法Verneuil (flame fusion)最早是1885年由弗雷米(E. Fremy)、弗尔(E. Feil)和乌泽(Wyse)一起,利用氢氧火焰熔化天然的红宝石粉末与重铬酸钾而制成了当时轰动一时的“ 日内瓦红宝石”。
后来于1902年弗雷米的助手法国的化学家维尔纳叶(Verneuil)改进并发展这一技术使之能进行商业化生产。
因此,这种方法又被称为维尔纳叶法。
1)基本原理焰熔法是从熔体中生长单晶体的方法。
其原料的粉末在通过高温的氢氧火焰后熔化,熔滴在下落过程中冷却并在种晶上固结逐渐生长形成晶体。
2)合成装置与条件、过程焰熔法的粗略的说是利用氢及氧气在燃烧过程中产生高温,使一种疏松的原料粉末通过氢氧焰撒下焰融,并落在一个冷却的结晶杆上结成单晶。
下图是焰熔生长原料及设备简图。
这个方法可以简述如下。
图中锤打机构的小锤7按一定频率敲打料筒,产生振动,使料筒中疏松的粉料不断通过筛网6,同时,由进气口送进的氧气,也帮助往下送粉料。
氢经入口流进,在喷口和氧气一起混合燃烧。
粉料在经过高温火焰被熔融而落在一个温度较低的结晶杆2上结成晶体了。
炉体4设有观察窗。
可由望远镜8观看结晶状况。
为保持晶体的结晶层在炉内先后维持同一水平,在生长较长晶体的结晶过程中,同时设置下降机构1,把结晶杆2缓缓下移。
焰熔法合成装置由供料系统、燃烧系统和生长系统组成,合成过程是在维尔纳叶炉中进行的。
A.供料系统原料:成分因合成品的不同而变化。
原料的粉末经过充分拌匀,放入料筒。
如果合成红宝石,则需要Al2O粉末和少量的 Cr2O3参杂,Cr2O3用作致色剂,添加量为 1-3%。
三氧化3二铝可由铝铵矾加热获得。
料筒:圆筒,用来装原料,底部有筛孔。
料筒中部贯通有一根震动装置使粉末少量、等量、周期性地从筛孔漏出。
震荡器:驱动震动棒震动,使料筒不断抖动,以便原料的粉末能从筛孔漏出。
蓝宝石晶体生长方法(全)
晶体生长方法1. 底部籽晶法 (2)2. 冷坩埚法 (2)3. 高温高压法 (4)4. 弧熔法 (9)5. 提拉法 (9)6. 焰熔法 (12)7. 熔剂法 (14)8. 水平区熔 (16)9. 升华法 (17)10. 水热法生长晶体 (19)11. 水溶液法生长晶体 (21)12. 导向温梯法(TGT)生长蓝宝石简介 (22)1. 底部籽晶法图1 底部籽晶水冷实验装置示意图与提拉法相反,这种生长方法中坩埚上部温度高,下部温度低。
将一管子处在坩埚底部,通入水或液氮使下面冷却,晶体围绕着籽晶从坩埚底部生长2. 冷坩埚法图2 冷坩埚生长示意图人工合成氧化锆即采用冷坩埚法,因为氧化锆的熔点高(~2700℃),找不到合适的坩埚材料。
此时,用原料本身作为"坩埚"进行生长,装置如图2所示。
原料中加有引燃剂(如生长氧化锆时用的锆片),在感应线圈加热下熔融。
氧化锆在低温时不导电,到达一定温度后开始导热,因此锆片附近的原料逐渐被熔化。
同时最外层的原料不断被水冷套冷却保持较低温度,而处于凝固状态形成一层硬壳,起到坩埚的作用,硬壳内部的原料被熔化后随着装置往下降入低温区而冷却结晶。
3. 高温高压法图3 四面顶高压机(左)及六面顶高压机(右)的示意图图4 两面顶高温高压设备结构图图5 两面顶高温高压设备结构图图6 人工晶体研究院研制的6000吨压机图7 人造金刚石车间图8 六面顶高压腔及其试验件图9 钢丝缠绕高压模具图10 CVD生长金刚石薄膜的不同设计图11 南非德·拜尔公司合成的金刚石薄膜窗口图12 德·拜尔公司在1991年合成的14克拉单晶钻石温高压法可以得到几万大气压,1500℃左右的压力和温度,是生长金刚石,立方氮化硼的方法。
目前,高温高压法不但可以生长磨料级的金刚石,还可以生长克拉级的装饰性宝石金刚石。
金刚石底膜可用化学气相沉积方法在常压下生长。
4. 弧熔法图13 弧熔法示意图料堆中插入电极,在一定的电压下点火,发出电弧。
泡生法生长蓝宝石
泡生法生长蓝宝石晶体1 引言无色蓝宝石(α- Al2O3)属六方晶系,最高工作温度可以达到1900 ℃。
目前以其特殊的物理化学性质、价格优势和晶体尺寸而成为光电子和微电子产业中用量最大的无机氧化物晶体材料,尤其是在本世纪的固体光源革命中,以蓝宝石为衬底的GaN基蓝绿光LED产业的大力发展,不断推动着对蓝宝石生长技术和晶体质量的研究。
此外,由于蓝宝石晶体易于获得大尺寸单晶,而且其热噪音仅为石英玻璃的1.9倍,模式因子Q比石英玻璃高两个数量级,故以蓝宝石晶体作为干涉仪光学介质将极大地提高光学灵敏度。
蓝宝石晶体已经被美国国家自然科学基金委员会作为L IGO (Laser Interferometer Gravitational Wave Observatory)计划中首选的光学材料。
因此高光学质量和大尺寸蓝宝石晶体生长技术仍然是产业界探索和研究的热点内容之一。
2 蓝宝石晶体的生长技术蓝宝石晶体的合成方法主要有焰熔法、助熔剂法和熔体法, 其中熔体法又可分为几种。
焰熔法生长的宝石晶体尺寸较小, 具有大量的镶嵌结构, 质量欠佳;助熔剂法生长的宝石晶体也很小, 且含有助熔剂阳离子, 质量也不太好;而熔体法生长的宝石晶体具有较高的纯度和完整性, 尺寸较大。
其基本原理是将晶体原料放入耐高温坩埚中加热熔化, 然后在受控条件下通过降温使熔体过冷却, 从而生长晶体。
由于降温的受控条件不同, 因此, 从熔体中生长宝石晶体的方法也稍有不同。
目前, 世界上主要的熔体法生长技术有4种晶体提拉法、导模法、热交换法和泡生法。
本文着重报道的是利用泡生法生长无色蓝宝石晶体。
2.1 晶体提拉法晶体提拉法( cr ystal pulling metho d) 由J.Czochralski 于1918 年发明, 故又称 丘克拉斯基法 , 简称Cz 提拉法, 是利用籽晶从熔体中提拉生长出晶体的方法, 能在短期内生长出高质量的单晶。
这是从熔体中生长晶体最常用的方法之一。
泡生法生长蓝宝石
❖ 晶体的生长过程是一个不断的变温过程, 晶体内的每一个部分都将随着温度的升高或 降低而趋于膨胀或收缩。但由于晶体内温度 梯度的存在,热膨胀系数的各向异性,使得 晶体内各个部分的膨胀或收缩相匀制约,不 能自由的发生,导致热应力的产生,由经典 弹性理论,对柱状晶体可推导出径向,轴向 的位移分量为:
❖ 因此,根据无色蓝宝石单晶的热导率等 性质,建立合理的温度梯度是生长完整单晶 的前提。
❖ 由此可见,选择合适的晶体生长方向是必要 ❖ 的。无色蓝宝石晶体的生长方向,结合建立的温度
梯度,生长出了高质量、大直径的单晶。
泡生法生长的高质量无色蓝宝石晶体通常可 ❖ 应用于国防工业、军工科技和尖端科学技术研究 ❖ 领域,还可用于珠宝首饰行业。
❖ 泡生法与提拉法生长晶体在技术上的区别
是: (l)晶体直径在扩肩时前者的晶体直径较
大,可生长出200 mm以上直径的蓝宝石晶体, 而后者则有些难度; (2)晶体方向前者对生长大尺寸、有方向 性的蓝宝石晶体拥有更大的优势;
❖ ( 3)晶体质量泡生法生长系统拥有适合蓝宝石 晶体生长的最佳温度梯度。在生长的过程中 或结束时,晶体不与坩埚接触,大大减少了 其应力,可获得高质量的大晶体,其缺陷密 度低于提拉法生长的晶体,
❖ 5.小心地调节加热功率,使液面温度等于熔
❖ 点,实现宝石晶体生长的缩颈一扩肩一等径生长
❖ 一收尾全过程。 整个晶体生长装置安放在一个外罩 内,以便抽真空后充入惰性气体,保持生长环境中 需要的气体和压强。通过外罩上的窗日观察晶体的 生长情况,随时调节温度,保证生长过程正常进行。
❖ 体中的温度梯度K,和K分别为熔体和晶体的 热导率;z为结晶潜热;P为晶体密度。晶体最 大生长速率取决于晶体中温度梯度的大小要 提高晶体的生长速率,必须加大温度梯度。 但温度梯度过大,又会增加晶体的热应力, 增大位错密度,甚至导致晶体开裂。
泡生法蓝宝石晶体生长热场
泡生法蓝宝石晶体生长热场建立起合适的温场是泡生法生长大尺寸、高质量蓝宝石晶体的关键。
泡生法蓝宝石晶体生长系统的温场在轴向应该存在三个区域,即低温区、梯度区、高温区。
低温区:主要用于控制热量在晶体中输运的方向和快慢,同时对生长出的晶体进行退火以消除热应力,要求低温区的温度不能太低;对于大尺寸的蓝宝石晶体一般选择在对消除晶体应力、散射、缺陷最敏感的温度附近(一般选择在1700度以上)。
梯度区:是晶体生长的前沿,即固液界面所在的位置,晶体生长的驱动力就来源于该区的温度梯度造成的局部过冷,因而也是晶体生长最重要的区域。
温度梯度决定晶体的生长速度和生长界面形状,温度梯度大,热量输运速度快,晶体生长的速度快,界面稳定性好,抗扰动能力强。
高温区:主要用于原料的融化,为了保证原料的全部融化,高温区必须高于原料的熔点温度,且为了防止较大温度引起的强大对流,高温区内温差一般不大于20度,为了得到一定程度的凸界面生长,对于高温区的径向温度分布,既要有一定的径向温度梯度,又要求径向温度分布中心对称。
在生长大直径单晶时,加强低温区的保温,控制梯度区的温度梯度和高温区的过热温度,对保证晶体不开裂,生长界面温度与熔体不局部成核结晶极为重要。
热场设计是将加热体做成一定形状,隔热屏设计成一定结构,使下部发热电阻比上部发热电阻大,下部保温性能好,上部保温性能差,从而产生一个比较均匀,下高上低的轴向温度差;同时用过特殊装置控制坩埚底部散热,产生一个中间低,两侧高的径向温度差。
从35kg蓝宝石生长到50kg蓝宝石生长,投料量的增加,必然会使用直径大的热系统,以及大坩埚。
而热系统越大,其温度梯度越难控制。
所以建立新的能生长出高品质50kg蓝宝石的热场是关键。
蓝宝石生长更大程度依赖于生长炉和技术管控,当前各大长晶方式比拼的重点也在成本。
泡生法被一度卡在80kg级,并不是更大的晶体无法量产而是良率很难保证。
投入量产必将进一步降低蓝宝石厂家生产成本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、蓝宝石衬底片的加工工艺
机械 加工
机械 加工
晶体
晶棒
基片
晶体
晶棒
晶棒
基片
thanks
熔体表面有凝固浮岛的照片 (a)多边形(b)长条形
下籽晶照片
6、缩颈生长
当籽晶接触到熔体时,此时将产生一固液接口,晶颈便从籽晶接触到熔 体的固液接口处开始生长。 Kyropoulos方法生长蓝宝石单晶,需使用拉晶装置来拉晶颈部分,这个阶 段主要是判断并微调生长晶体之熔体温度。若晶颈生长速度太快,表示温 度过低,必须调高温度。若晶体生长速度太慢,或是籽晶有熔化现象,表 示温度过高,必须调降温度。由缩颈的速度来调整温度,使晶体生长温度 达到最适化。
晶生长(a)示意图,(b)实际情形照片颈
7、等径生长
当温度调整到最适化时,就停止 缩颈程序,开始生长晶身,不需要 靠拉晶装置往上提拉,只需使温度 慢慢下降,熔体就在坩埚内从籽晶 所延伸出来的单晶接口上,从上往 下慢慢凝固成一整个单晶晶碇。
8、晶体脱离坩埚 9、退火 10、冷却 11、晶体检测
晶体开始生长时期照片
泡生法(Kyropoulos method)原理示意图
泡生法的主要优点是:
1.较快的生长率(0.1—25mm/h) 2.高质量(光学等级) 3.大尺寸,无污染 4.低缺陷密度 5.高产能 6.较佳的成本效益
泡生法主要缺点是:
对生长设备的要求比较高
泡生法生长晶体的一般步骤:
1、填充原料及架设籽晶
首先称取一定重量的原料装到坩 埚内,以达到充填致密之效果。之 后,将坩埚放进炉体内加热器中央。 用耐高温钨钼合金线籽晶固定在 拉晶杆上,以利下籽晶或取出晶体 时可用拉晶装置来控制高度。
2、炉体抽真空
将炉体上盖紧密盖于炉体上 方并转紧密封螺栓。抽真空, 先开启机械泵,再启动扩散泵, 再开启炉体阀门,将炉体抽真 空。真空度达到6×10-3Pa时。
3、加热程序
当炉内真空度抽到实验所需的 压力范围时(6×10-3Pa),就开始加 热,图则为炉体加热时由窥视窗 观察炉体内部的情况,可看见未 熔化之块状原料与架设好之籽晶。
宝国(山东昌乐)主要的蓝宝石产地之一
基本结构
由三个氧原子和两个铝原子以共价键型 式结合而成,其晶体结构为六方晶格结 构,其硬度仅次于金刚石。
蓝宝石晶体结构图 (其中黑点为氧离子,白点为铝离子)
蓝宝石单晶的基本性质及应用 特性
高强度 高硬度 高熔点、高温稳定性好 化学惰性 光学性能优良
泡生法生长蓝宝石单晶
201311438 付现伟
一、蓝宝石
蓝宝石(Sapphire)是一种Al2O3的单晶,属于刚玉族矿物,三方晶 系。就颜色而言,单纯的氧化铝结晶是呈现透明无色的,晶体内含 有钛离子(Ti3+)与铁离子(Fe3+)时,会使晶体呈现蓝色,蓝宝 石由此得名。若含有Cr离子时,呈现红色,称红宝石。
应用
精密机械齿轮及耐磨耐高温部件 医用人造骨骼,人造关节,牙齿等 窗口材料及各种光学镜片 GaN 外延衬底材料 珠宝首饰
二、蓝宝石晶体生长
提世 拉界 法上 、主 导要 模的 法熔 、体 热生 交长 换方 法法 、包 泡括 生晶 法体 。
熔体法生长的蓝宝石晶 体具有生长速度快、纯度高、 完整性好、尺寸较大,目前 最常用的蓝宝石晶体生长方 法,而泡生法工艺约占目前 市场的70%。
4、原料熔化
大约加热到电压约10—10.5Volt 时,推估温度达2100℃(蓝宝石 的熔点约2040℃),可使原料完 全溶化,形成熔体。在实验过程 中,以电压值来推断温度。
炉体加热时观察到的炉体内部的情况
氧化铝原料熔化后形成熔体情形
5、下籽晶
在下籽晶前,必须先作净化籽晶的动作,净化籽晶是将籽晶底端熔化 一部分,使预定生长晶体之籽晶表面更干净,以提高晶体生长的质量 当原料完全溶化形成熔体时,必须让熔体持温一小时,确保熔体内部 温度分布均匀且温度适中,才可下籽晶,若在熔体表面有凝固浮岛存在, 则需再调整电压使凝固浮岛在一段时间内消失。
泡生法 (Kyropoulos method)
泡生法是1926年提出的,其设备是提拉设备的基础上改造的。适于生 长同成分熔化的化合物或用于生长含某种过量组份的晶体。该方法将一 根受冷的籽晶与熔体接触,籽晶以极缓慢的速度往上拉升,在籽晶往上 拉晶一段时间以形成晶颈,待熔体与籽晶界面的凝固速率稳定后,籽晶 便不再拉升,也没有作旋转,仅以控制冷却速率方式来使单晶从上方逐 渐往下凝固,最后凝固成一整个单晶晶碇。