高中文科数学公式汇总

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学公式汇总(文科)

一、复数

1、复数的除法运算

2

2)()())(())((d

c i

ad bc bd ac di c di c di c bi a di c bi a +-++=-+-+=++. 2、复数z a bi =+的模||z =||a bi +

二、三角函数、三角变换、解三角形、平面向量

3、同角三角函数的基本关系式

22sin cos 1θθ+=,tan θ=

θ

θ

cos sin . 4、正弦、余弦的诱导公式

απ±k 的正弦、余弦,等于α的同名函数,前面加上把α看成锐角时该函数的符号;

απ

π±+

2

k 的正弦、余弦,等于α的余名函数,前面加上把α看成锐角时该函数的符号。

5、和角与差角公式

sin()sin cos cos sin αβαβαβ±=±;

cos()cos cos sin sin αβαβαβ±=;

tan tan tan()1tan tan αβ

αβαβ

±±=.

6、二倍角公式

sin 2sin cos ααα=.

2222cos 2cos sin 2cos 112sin ααααα=-=-=-.

22tan tan 21tan α

αα

=

-. 公式变形: ;

2

2cos 1sin ,2cos 1sin 2;

2

2cos 1cos ,2cos 1cos 22222α

αααα

ααα-=-=+=+=

7、三角函数的周期

函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期

2T π

ω

=

;函数tan()y x ωϕ=+,,2

x k k Z π

π≠+

∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω

=

. 8、 函数sin()y x ωϕ=+的周期、最值、单调区间、图象变换

9、辅助角公式

)sin(cos sin 22ϕ++=+=x b a x b x a y 其中a

b =

ϕtan 10、正弦定理

2sin sin sin a b c

R A B C

===. 11、余弦定理

2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.

12、三角形面积公式

111

sin sin sin 222

S ab C bc A ca B =

==. 13、三角形内角和定理

在△ABC 中,有()A B C C A B ππ++=⇔=-+ 14、a 与b 的数量积(或内积)

θcos ||||b a b a ⋅=⋅

15、平面向量的坐标运算

(1)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--. (2)设a =11(,)x y ,b =22(,)x y ,则b a ⋅=2121y y x x +. (3)设a =),(y x ,则22y x a +=

16、两向量的夹角公式

设a =11(,)x y ,b =22(,)x y ,且0≠b ,则

2

2

2

22

12

12121cos y x y x y y x x b

a b a +⋅++=

⋅=

θ

17、向量的平行与垂直

b a //⇔a b λ= 12210x y x y ⇔-=.

)0(≠⊥a b a ⇔0=⋅b a 12120x x y y ⇔+=.

三、函数、导数

18、函数的单调性

(1)设2121],,[x x b a x x <∈、那么

],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.

(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减

函数.

19、函数的奇偶性

对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。 奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。

20、函数)(x f y =在点0x 处的导数的几何意义

函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.

21、几种常见函数的导数

①'

C 0=;②1

')(-=n n nx

x ; ③x x cos )(sin '

=;④x x sin )(cos '

-=;

⑤a a a x

x ln )('

=;⑥x x e e =')(; ⑦a x x a ln 1)(log '

=

;⑧x

x 1)(ln '

= 22、导数的运算法则

(1)'

'

'

()u v u v ±=±. (2)'

'

'

()uv u v uv =+. (3)''

'2

()(0)u u v uv v v v -=

≠. 23、会用导数求单调区间、极值、最值

24、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.

四、不等式

25、已知y x ,都是正数,则有

xy y

x ≥+2

,当y x =时等号成立。 (1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2;

(2)若和y x +是定值s ,则当y x =时积xy 有最大值2

4

1s .

五、数列

26、数列的通项公式与前n 项的和的关系

11,

1,2

n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =++

+).

27、等差数列的通项公式

*11(1)()n a a n d dn a d n N =+-=+-∈;

28、等差数列其前n 项和公式为

1()2n n n a a s +=

1(1)2n n na d -=+211

()22

d n a d n =+-. 29、等比数列的通项公式

1*11()n n

n a a a q q n N q

-==

⋅∈; 30、等比数列前n 项的和公式为

11

(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩ 或 11,11,1

n n a a q

q q s na q -⎧≠⎪

-=⎨⎪=⎩.

相关文档
最新文档