程序二叉树习题(answer)
二叉树相关的面试题
二叉树相关的面试题一、二叉树面试题常见类型1. 二叉树的概念二叉树就是每个节点最多有两个子树的树结构,这两个子树被分别称为左子树和右子树。
比如说,我们可以想象成一棵家族树,一个爸爸最多有两个孩子,左孩子和右孩子,这就是二叉树的基本概念啦。
2. 二叉树的遍历有前序遍历、中序遍历和后序遍历哦。
前序遍历就是先访问根节点,再访问左子树,最后访问右子树。
就像我们去旅游先到一个景点的大门(根节点),然后去左边的小景点(左子树),最后去右边的小景点(右子树)。
中序遍历是先左子树,再根节点,最后右子树,这就好比先看左边的小景色,再看大门,最后看右边的小景色。
后序遍历是先左子树,再右子树,最后根节点,就像把两边小景色都看完了,最后再看大门整体的感觉。
3. 二叉树的高度计算二叉树的高度就是从根节点到叶节点最长路径上的节点数。
计算的时候要一层一层地去数,从根开始,一直到最深的叶子那里。
4. 二叉树的平衡判断一棵二叉树是平衡二叉树的话,它的左右两个子树的高度差的绝对值不超过1,并且左右子树都是平衡二叉树。
这就像两边的孩子不能长得太不均衡啦,一边特别高,一边特别矮可不行。
5. 二叉树的构建可以根据给定的遍历序列来构建二叉树。
比如说给了前序遍历和中序遍历的序列,我们就可以通过分析先确定根节点,再根据中序遍历确定左右子树,然后逐步构建出二叉树。
这就像是根据一些线索去拼凑出一个完整的图形一样有趣。
二、二叉树面试题实例1. 题目:给定一个二叉树的前序遍历序列为[1, 2, 4, 5, 3, 6, 7],中序遍历序列为[4, 2, 5, 1, 6, 3, 7],构建出这个二叉树。
解答:首先从前序遍历知道根节点是1,然后在中序遍历中找到1,1左边的[4, 2, 5]就是左子树的中序遍历,右边的[6, 3, 7]就是右子树的中序遍历。
再根据前序遍历中左子树节点的顺序[2, 4, 5],可以确定2是左子树的根节点,然后继续这样分析下去就可以构建出二叉树啦。
东北大学计算机初试历年二叉树算法题目及解答
[1996]设t为一棵二叉树的根结点地址指针,试设计一个非递归算法完成把二叉树中每个结点的左右孩子位置交换。
int swithLRChild(BiTree *t){ BiTree *stack[100] = {0};int stack_length = 0;if (NULL == t){return 0;}stack[stack_length++] = t;while (stack_length > 0){//pop stackBiTree *node = stack[stack_length - 1];stack_length -= 1;BiTree *temp = node->lchild;node->lchild = node->rchild; node->rchild = temp;if (NULL != node->rchild){ stack[stack_length++] = node->rchild;}if (NULL != node->lchild){stack[stack_length++] = node->lchild;}}return 1;}[1998]一棵高度为K且有n个结点的二叉排序树,同时又是一棵完全二叉树存于向量t中,试设计删除树中序号为i且具有左右孩子的一个结点,而不使存储量增加保证仍为二叉排序树(不一定是完全二叉树)的算法。
//存数据的位置是从1的索引开始的,避免需要访问索引为0的空间,避免需要频繁的索引转换void delNodeInSortedBiTree(int *sorted_bitree, int *last_index,int i){//因为题目中描述具有左右孩子,所以直接从左孩子的最右边叶子节点开始//分两种情况,左孩子没有右孩子,那么左孩子之后的节点都移动一个位子//左孩子存在右孩子,则从右孩子的左孩子一直走,到叶子节点停止,因为是叶子节点//就不需要移动元素了int del_node_index = 2*i;if (2*del_node_index + 1 >= *last_index){//左孩子只存在左子树sorted_bitree[i] = sorted_bitree[del_node_index];while (del_node_index*2 <= *last_index){//后面的位置都往上移动sorted_bitree[del_node_index] = sorted_bitree[2*del_node_index];del_node_index *= 2;}sorted_bitree[del_node_index] = -1;printf("last_index:%d\n", *last_index);}else{//移动到左孩子的右孩子del_node_index = del_node_index*2 + 1;while (2*del_node_index <= *last_index){del_node_index *= 2;}//因为叶子节点,所以不需要移动printf("r:%d rp:%d\n", sorted_bitree[i], sorted_bitree[del_node_index]);sorted_bitree[0] = sorted_bitree[del_node_index];sorted_bitree[del_node_index] = -1;}}[2002]对以二叉链表存储的非空二叉树,从右向左依次释放所有叶子结点,释放的同时,把结点值存放到一个向量中。
二叉树的遍历题目及答案
二叉树的遍历题目及答案1. 二叉树的基本组成部分是:根(N)、左子树(L)和右子树(R)。
因而二叉树的遍历次序有六种。
最常用的是三种:前序法(即按N L R次序),后序法(即按L R N 次序)和中序法(也称对称序法,即按L N R次序)。
这三种方法相互之间有关联。
若已知一棵二叉树的前序序列是BEFCGDH,中序序列是FEBGCHD,则它的后序序列必是 F E G H D C B 。
解:法1:先由已知条件画图,再后序遍历得到结果;法2:不画图也能快速得出后序序列,只要找到根的位置特征。
由前序先确定root,由中序先确定左子树。
例如,前序遍历BEFCGDH中,根结点在最前面,是B;则后序遍历中B一定在最后面。
法3:递归计算。
如B在前序序列中第一,中序中在中间(可知左右子树上有哪些元素),则在后序中必为最后。
如法对B的左右子树同样处理,则问题得解。
2.给定二叉树的两种遍历序列,分别是:前序遍历序列:D,A,C,E,B,H,F,G,I;中序遍历序列:D,C,B,E,H,A,G,I,F,试画出二叉树B,并简述由任意二叉树B的前序遍历序列和中序遍历序列求二叉树B的思想方法。
解:方法是:由前序先确定root,由中序可确定root的左、右子树。
然后由其左子树的元素集合和右子树的集合对应前序遍历序列中的元素集合,可继续确定root的左右孩子。
将他们分别作为新的root,不断递归,则所有元素都将被唯一确定,问题得解。
3、当一棵二叉树的前序序列和中序序列分别是HGEDBFCA和EGBDHFAC时,其后序序列必是A. BDEAGFHCB. EBDGACFHC. HGFEDCBAD. HFGDEABC答案:B4. 已知一棵二叉树的前序遍历为ABDECF,中序遍历为DBEAFC,则对该树进行后序遍历得到的序列为______。
A.DEBAFCB.DEFBCAC.DEBCFAD.DEBFCA[解析] 由二叉树前序遍历序列和中序遍历序列可以唯一确定一棵二叉树。
数据结构二叉树习题含答案
第6章树和二叉树1.选择题(1)把一棵树转换为二叉树后,这棵二叉树的形态是()。
A.唯一的B.有多种C.有多种,但根结点都没有左孩子D.有多种,但根结点都没有右孩子(2)由3 个结点可以构造出多少种不同的二叉树?()A.2 B.3 C.4 D.5(3)一棵完全二叉树上有1001个结点,其中叶子结点的个数是()。
A.250 B. 500 C.254 D.501(4)一个具有1025个结点的二叉树的高h为()。
A.11 B.10 C.11至1025之间 D.10至1024之间(5)深度为h的满m叉树的第k层有()个结点。
(1=<k=<h)A.m k-1 B.m k-1 C.m h-1 D.m h-1(6)利用二叉链表存储树,则根结点的右指针是()。
A.指向最左孩子 B.指向最右孩子 C.空 D.非空(7)对二叉树的结点从1开始进行连续编号,要求每个结点的编号大于其左、右孩子的编号,同一结点的左右孩子中,其左孩子的编号小于其右孩子的编号,可采用()遍历实现编号。
A.先序 B. 中序 C. 后序 D. 从根开始按层次遍历(8)若二叉树采用二叉链表存储结构,要交换其所有分支结点左、右子树的位置,利用()遍历方法最合适。
A.前序 B.中序 C.后序 D.按层次(9)在下列存储形式中,()不是树的存储形式?A.双亲表示法 B.孩子链表表示法 C.孩子兄弟表示法D.顺序存储表示法(10)一棵非空的二叉树的先序遍历序列与后序遍历序列正好相反,则该二叉树一定满足()。
A.所有的结点均无左孩子B.所有的结点均无右孩子C.只有一个叶子结点 D.是任意一棵二叉树(11)某二叉树的前序序列和后序序列正好相反,则该二叉树一定是()的二叉树。
A.空或只有一个结点 B.任一结点无左子树C.高度等于其结点数 D.任一结点无右子树(12)若X是二叉中序线索树中一个有左孩子的结点,且X不为根,则X的前驱为()。
A.X的双亲 B.X的右子树中最左的结点C.X的左子树中最右结点 D.X的左子树中最右叶结点(13)引入二叉线索树的目的是()。
二叉树练习题答案
一、下面是有关二叉树的叙述,请判断正误(∨)1. 若二叉树用二叉链表作存贮结构,则在n个结点的二叉树链表中只有n—1个非空指针域。
( X )2.二叉树中每个结点的两棵子树的高度差等于1。
(∨)3.二叉树中每个结点的两棵子树是有序的。
( X )4.二叉树中每个结点有两棵非空子树或有两棵空子树。
( X)5.二叉树中所有结点个数是2k-1-1,其中k是树的深度。
( X )6.二叉树中所有结点,如果不存在非空左子树,则不存在非空右子树。
( X )7.对于一棵非空二叉树,它的根结点作为第一层,则它的第i层上最多能有2i-1个结点。
(∨)8.用二叉链表法存储包含n个结点的二叉树,结点的2n个指针区域中有n+1个为空指针。
( X )9. 具有12个结点的完全二叉树有5个度为2的结点。
二、填空1.由3个结点所构成的二叉树有 5 种形态。
2. 一棵深度为6的满二叉树有 26-33 个分支结点和 32 个叶子。
3.一棵具有257个结点的完全二叉树,它的深度为 9 。
4. 设一棵完全二叉树具有1000个结点,则此完全二叉树有500 个叶子结点,有 499 个度为2的结点,有 1 个结点只有非空左子树,有 0 个结点只有非空右子树。
(分析:完全二叉树中三种节点个数n0,n1,n2,其中n1为0或1;n0=n2+1;总节点个数N=n0+n1+n2=n0+n1+n0-1=2*n0-1+n1.由此推出当完全二叉树中节点个数为偶数时n1为1,否则为0,则可计算本题)5. 二叉树的基本组成部分是:根(N)、左子树(L)和右子树(R)。
因而二叉树的遍历次序有六种。
最常用的是三种:前序法(即按N L R次序),后序法(即按 LRN 次序)和中序法(也称对称序法,即按L N R次序)。
这三种方法相互之间有关联。
若已知一棵二叉树的前序序列是BEFCGDH,中序序列是FEBGCHD,则它的后序序列必是 FEGHDCB 。
6. 用5个权值{3, 2, 4, 5, 1}构造的哈夫曼(Huffman)树的带权路径长度是 (1+2)*3+3*2+(4+5)*2= 33 。
二叉树练习题及答案
一、选择题1.关于二叉树的下列说法正确的是(B )A.二叉树的度为2 B.二叉树的度可以小于2C.每一个结点的度都为2 D .至少有一个结点的度为2 2.在树中,若结点A有4个兄弟,而且B是A的双亲,则B的度为(C )A.3 B.4C.5 D .63.若一棵完全二叉树中某结点无左孩子,则该结点一定是(D )A.度为1的结点B.度为2的结点C.分支结点 D .叶子结点4.深度为k的完全二叉树至多有(C )个结点,至少有( B )个结点。
A.2k-1-1 B.2k-1C.2k-1 D .2k5.在具有200个结点的完全二叉树中,设根结点的层次编号为1,则层次编号为60的结点,其左孩子结点的层次编号为( C 2i ),右孩子结点的层次编号为( D 2i+1),双亲结点的层次编号为(60/2=30 A )。
A.30 B.60C.120 D .1216.一棵具有124个叶子结点的完全二叉树,最多有(B )个结点。
A.247 B.248C.249 D .250二、填空题1.树中任意结点允许有零个或多个孩子结点,除根结点外,其余结点有且仅有一个双亲结点。
2.若一棵树的广义表表示法为A(B(E,F),C(G(H,I,J,K),L),D(M (N))),则该树的度为 4 ,树的深度为 4 ,树中叶子结点的个数为8 。
3.若树T中度为1、2、3、4的结点个数分别为4、3、2、2,则T中叶子结点的个数为14 。
n=n0+n1+n2+n3+n4=n0+4+3+2+2=n0+11n=1+孩子=1+4+6+6+8+25n0+11=25n0=144.一棵具有n个结点的二叉树,若它有m个叶子结点,则该二叉树中度为1的结点个数是n-2m+1 。
5.深度为k(k>0)的二叉树至多有2k -1 个结点,第i层上至多有2i-1个结点。
6.已知二叉树有52个叶子结点,度为1的结点个数为30,则总结点个数为133 。
7.已知二叉树中有30个叶子结点,则二叉树的总结点个数至少是30+29+0=59 。
数据结构(树和二叉树)练习题与答案2
1、一颗二叉树的括号表示为“1(2(4,5(6,7)),3)”)。
设N代表二叉树的根,L代表根节点的左子树,R代表根节点的右子树。
若遍历后的节点序列为3,1,7,5,6,2,4,则其遍历方式是()。
A.NRLB.RLNC.LRND.RNL正确答案:D2、若二叉树(每个节点值为单个字符)的中序遍历序列是abcdef,且c为根节点,则()。
A.二叉树有两个度为0的节点B.二叉树的高度为5C.节点c有两个孩子D.以上都不对正确答案:C解析: C、从中序序列看出,节点c的左右子树均不空。
3、若知道一棵二叉树的(),便可以唯一确定该二叉树。
A.中序序列B.先序和后序序列C.中序和后序序列D.先序序列正确答案:C4、一棵二叉树的先序遍历序列为ABCDEFG,它的中序遍历序列可能是()。
A.ADCFEGB.ABCDEFGC.DACEFBGD.CABDEFG正确答案:B解析: B、当一棵二叉树所有节点的左子树为空时,先序遍历序列和中序遍历序列相同。
先序序列和中序序列可以确定一棵二叉树,这里由选项A、C和D的中序序列无法确定一棵二叉树。
5、一棵二叉树的先序遍历序列为ABCDEF,中序遍历序列为CBAEDF,则后序遍历序列为()A.FEDCBAB.CBEFDAC.CBEDFAD.不确定正确答案:B6、某棵二叉树中,X节点有左孩子Y节点,则在其先序遍历中()。
A.访问Y节点后,接着遍历Y节点的左子树,然后访问X节点B.访问X节点后,接着遍历Y节点的左子树,然后访问Y节点C.访问Y节点后立即访问X节点D.访问X节点后立即访问Y节点正确答案:D解析: D、其先序遍历序列为…XY…。
7、关于二叉树(含2个以上的节点)的先序遍历序列中,以下正确的是()。
A.先序遍历序列的最后一个节点是根节点B.先序遍历序列的最后一个节点一定是叶子节点C.以上都不对D.先序遍历序列的第一个节点一定是叶子节点正确答案:B解析: B、先序遍历过程是:NLR,最后访问的节点的L、R均为空,所以为叶子节点。
二叉树习题及答案
二叉树习题及答案1.设一棵完全二叉树共有699 个结点,则在该二叉树中的叶子结点数?1根据二叉树的第i层至多有2A(i - 1)个结点;深度为k的二叉树至多有2A k - 1 个结点(根结点的深度为1)”这个性质:因为2A9-1 < 699 < 2A10-1 , 所以这个完全二叉树的深度是10,前9 层是一个满二叉树,这样的话,前九层的结点就有2A9-1=511 个;而第九层的结点数是2A(9-1)=256 所以第十层的叶子结点数是699-511=188 个;现在来算第九层的叶子结点个数。
由于第十层的叶子结点是从第九层延伸的,所以应该去掉第九层中还有子树的结点。
因为第十层有188 个,所以应该去掉第九层中的188/2=94 个;所以,第九层的叶子结点个数是256-94=162,加上第十层有188 个,最后结果是350 个2完全二叉树:若二叉树中最多只有最下面两层的结点的度可以小于2,并且最下面一层的结点(叶结点) 都依次排列在该层最左边的位置上,这样的二叉树为完全二叉树。
比如图:完全二叉树除叶结点层外的所有结点数(叶结点层以上所有结点数)为奇数,此题中,699 是奇数,叶结点层以上的所有结点数为保证是奇数,则叶结点数必是偶数,这样我们可以立即选出答案为B!如果完全二叉树的叶结点都排满了,则是满二叉树,易得满二叉树的叶结点数是其以上所有层结点数+1 比如图:此题的其实是一棵满二叉树,我们根据以上性质,699+1=700,700/2=350,即叶结点数为350,叶结点层以上所有结点数为350-1=349。
3完全二叉树中,只存在度为2 的结点和度为0 的结点,而二叉树的性质中有一条是:nO=n2+1 ; nO指度为0的结点,即叶子结点,n2指度为2的结点,所以2n2+1=699 n2=349 ;n0=3502.在一棵二叉树上第5 层的结点数最多是多少一棵二叉树,如果每个结点都是是满的,那么会满足2A(k-1)1 。
ch6习题及答案
习题6解答判断题:1.二叉树中每个结点有两个子女结点,而对一般的树则无此限制,因此二叉树是树的特殊情形。
( ╳ )2.二叉树就是结点度为2的树。
( ╳ )( (哈工大2000年研究生试题)3.二叉树中不存在度大于2的结点,当某个结点只有一棵子树时无所谓左、右子树之分。
( ╳ ) (陕西省1998年自考试题)4.当k≥1时,高度为k的二叉树至多有21 k个结点。
( ╳ )5.完全二叉树的某结点若无左孩子,则它必是叶结点。
(√)(中科院软件所1997年研究生试题)6.用一维数组存放二叉树时,总是以前序遍历顺序存储结点。
( ╳ )7.若有一个结点是某二叉树子树的中序遍历序列中的最后一个结点,则它必是该子树的前序遍历序列中的最后一个结点。
( ╳ )8.存在这样的二叉树,对它采用任何次序的遍历,结果相同。
(√)(哈工大2000年研究生试题)9.中序线索二叉树的优点之一是便于在中序下查找前驱结点和后继结点。
(√)10.将一棵树转换成二叉树后,根结点没有左子树,( ╳ )(北邮1999年研究生试题。
)11.由树转换成二叉树,其根结点的右子树总是空的。
(√)12.前序遍历森林和前序遍历与该森林对应的二叉树其结果不同。
( ╳ )13.在叶子数目和权值相同的所有二叉树中,最优二叉树一定是完全二叉树。
( ╳ )14.在哈夫曼编码中,当两个字符出现的频率相同时,其编码也相同,对于这种情况应作特殊处理。
( ╳ )15.霍夫曼树一定是满二叉树。
( ╳ )16.树的度是树内各结点的度之和。
( ╳ )17.由二叉树的结点构成的集合可以是空集合。
(√)18.一棵树中的叶子结点数一定等于与其对应的二叉树中的叶子结点数。
( ╳ )选择题:19.树最适合用来表示( C )。
A.有序数据元素 B. 无序数据元素C.元素之间具有分支层次关系的数据 D. 元素之间无联系的数据20.如果结点A有3个兄弟,而且B是A的双亲,则B的度是( D )。
数据结构树和二叉树习题(有答案)
E F D GAB/+ +* - C* 第六章树和二叉树一、选择题1.已知一算术表达式的中缀形式为 A+B*C-D/E ,后缀形式为ABC*+DE/-,其前缀形式为( )A .-A+B*C/DE B. -A+B*CD/E C .-+*ABC/DED. -+A*BC/DE【北京航空航天大学 1999 一、3 (2分)】2.算术表达式a+b*(c+d/e )转为后缀表达式后为()【中山大学 1999 一、5】A .ab+cde/*B .abcde/+*+C .abcde/*++ D.abcde*/++3. 设有一表示算术表达式的二叉树(见下图),它所表示的算术表达式是()【南京理工大学1999 一、20(2分)】A. A*B+C/(D*E)+(F-G)B. (A*B+C)/(D*E)+(F-G)C. (A*B+C)/(D*E+(F-G ))D. A*B+C/D*E+F-G4. 设树T 的度为4,其中度为1,2,3和4的结点个数分别为4,2,1,1 则T 中的叶子数为()A .5 B.6 C.7D .8【南京理工大学 2000 一、8 (1.5分)】5. 在下述结论中,正确的是()【南京理工大学 1999 一、4 (1分)】①只有一个结点的二叉树的度为0; ②二叉树的度为2;③二叉树的左右子树可任意交换;④深度为K 的完全二叉树的结点个数小于或等于深度相同的满二叉树。
A .①②③ B .②③④ C.②④D .①④6. 设森林F 对应的二叉树为B ,它有m 个结点,B 的根为p,p 的右子树结点个数为n,森林F中第一棵树的结点个数是()A .m-nB .m-n-1C .n+1D .条件不足,无法确定【南京理工大学2000 一、17(1.5分)】7. 树是结点的有限集合,它((1))根结点,记为T 。
其余结点分成为m (m>0)个((2))的集合T1,T2,…,Tm ,每个集合又都是树,此时结点T 称为Ti 的父结点,Ti 称为T 的子结点(1≤i ≤m )。
第5章树和二叉树习题答案
第5章树和⼆叉树习题答案第6章树和⼆叉树⼀.选择题(1)由3 个结点可以构造出多少种不同的⼆叉树?( D )A.2 B.3 C.4 D.5(2)⼀棵完全⼆叉树上有1001个结点,其中叶⼦结点的个数是(D )。
A.250 B. 500 C.254 D.501(3)⼀个具有1025个结点的⼆叉树的⾼h为( C )。
A.11 B.10 C.11⾄1025之间 D.10⾄1024之间(4)深度为h的满m叉树的第k层有( A )个结点。
(1=A.mk-1 B.mk-1 C.mh-1 D.mh-1(5)对⼆叉树的结点从1开始进⾏连续编号,要求每个结点的编号⼤于其左、右孩⼦的编号,同⼀结点的左右孩⼦中,其左孩⼦的编号⼩于其右孩⼦的编号,可采⽤( C )遍历实现编号。
A.先序 B. 中序 C. 后序 D. 从根开始按层次遍历(6)若⼆叉树采⽤⼆叉链表存储结构,要交换其所有分⽀结点左、右⼦树的位置,利⽤( D )遍历⽅法最合适。
A.前序 B.中序 C.后序 D.按层次(7)⼀棵⾮空的⼆叉树的先序遍历序列与后序遍历序列正好相反,则该⼆叉树⼀定满⾜( B )。
A.所有的结点均⽆左孩⼦ B.所有的结点均⽆右孩⼦C.只有⼀个叶⼦结点 D.是任意⼀棵⼆叉树(8)某⼆叉树的前序序列和后序序列正好相反,则该⼆叉树⼀定是( C )的⼆叉树。
A.空或只有⼀个结点 B.任⼀结点⽆左⼦树C.⾼度等于其结点数 D.任⼀结点⽆右⼦树(9)若X是⼆叉中序线索树中⼀个有左孩⼦的结点,且X不为根,则X的前驱为( C )。
A.X的双亲 B.X的右⼦树中最左的结点C.X的左⼦树中最右结点 D.X的左⼦树中最右叶结点(10)引⼊⼆叉线索树的⽬的是( A )。
A.加快查找结点的前驱或后继的速度 B.为了能在⼆叉树中⽅便的进⾏插⼊与删除C.为了能⽅便的找到双亲 D.使⼆叉树的遍历结果唯⼀⼆.简答题(1)试找出满⾜下列条件的⼆叉树①先序序列与后序序列相同②中序序列与后序序列相同③先序序列与中序序列相同④中序序列与层次遍历序列相同答:(1)若先序序列与后序序列相同,则或为空树,或为只有根结点的⼆叉树(2)若中序序列与后序序列相同,则或为空树,或为任⼀结点⾄多只有左⼦树的⼆叉树.(3)若先序序列与中序序列相同,则或为空树,或为任⼀结点⾄多只有右⼦树的⼆叉树.(4)若中序序列与层次遍历序列相同,则或为空树,或为任⼀结点⾄多只有右⼦树的⼆叉树2. 试写出如图所⽰的⼆叉树分别按先序、中序、后序遍历时得到的结点序列。
练习题6
while (front!=rear)//队不空循环
{front++;
p=qu[front].s;//出队一个结点*p,它在qu中的下标为front
if (p->data==x)//找到值为x的结点
{printf("从根结点到%c结点的路径: ",p->data);
解:先序遍历树中结点的递归算法如下:
void PreOrder1(ElemType A[],int i,int n)
{if (i<n)
if (A[i]!='#')//不为空结点时
{printf("%c ",A[i]);//访问根结点
PreOrder1(A,2*i,n);//遍历左子树
PreOrder1(A,2*i+1,n);//遍历右子树
return h;
else
{l=Level(bt->lchild,x,h+1);//在左子树中查找
if (l!=0)
return l;
else//在左子树中未找到,再在右子树中查找
return(Level(bt->rchild,x,h+1));
}
}
上机实验题
假设一棵二叉树采用二叉链存储结构,其中所有结点值均不相同。设计一个算法求从根结点到值为x的结点的路径。并用相关数据进行测试。
图8.3一棵二叉树
(6)如果一棵哈夫曼树T有n0个叶子结点,那么,树T有多少个结点?要求给出求解过程。
答:一棵哈夫曼树中只有度为2和0的结点,没有度为1的结点,由非空二叉树的性质1可知,n0=n2+1,即n2=n0-1,则总结点数n=n0+n2=2n0-1。
数据结构第六章树和二叉树习题及答案
习题六树和二叉树一、单项选择题1.以下说法错误的是 ( )A.树形结构的特点是一个结点可以有多个直接前趋B.线性结构中的一个结点至多只有一个直接后继C.树形结构可以表达(组织)更复杂的数据D.树(及一切树形结构)是一种"分支层次"结构E.任何只含一个结点的集合是一棵树2.下列说法中正确的是 ( )A.任何一棵二叉树中至少有一个结点的度为2B.任何一棵二叉树中每个结点的度都为2C.任何一棵二叉树中的度肯定等于2D.任何一棵二叉树中的度可以小于23.讨论树、森林和二叉树的关系,目的是为了()A.借助二叉树上的运算方法去实现对树的一些运算B.将树、森林按二叉树的存储方式进行存储C.将树、森林转换成二叉树D.体现一种技巧,没有什么实际意义4.树最适合用来表示 ( )A.有序数据元素 B.无序数据元素C.元素之间具有分支层次关系的数据 D.元素之间无联系的数据5.若一棵二叉树具有10个度为2的结点,5个度为1的结点,则度为0的结点个数是()A.9 B.11 C.15 D.不确定6.设森林F中有三棵树,第一,第二,第三棵树的结点个数分别为M1,M2和M3。
与森林F 对应的二叉树根结点的右子树上的结点个数是()。
A.M1 B.M1+M2 C.M3 D.M2+M37.一棵完全二叉树上有1001个结点,其中叶子结点的个数是()A. 250 B. 500 C.254 D.505 E.以上答案都不对8. 设给定权值总数有n 个,其哈夫曼树的结点总数为( )A.不确定 B.2n C.2n+1 D.2n-19.二叉树的第I层上最多含有结点数为()A.2I B. 2I-1-1 C. 2I-1 D.2I -110.一棵二叉树高度为h,所有结点的度或为0,或为2,则这棵二叉树最少有( )结点A.2h B.2h-1 C.2h+1 D.h+111. 利用二叉链表存储树,则根结点的右指针是()。
A.指向最左孩子 B.指向最右孩子 C.空 D.非空12.已知一棵二叉树的前序遍历结果为ABCDEF,中序遍历结果为CBAEDF,则后序遍历的结果为()。
数据结构树和二叉树习题及答案
数据结构树和二叉树习题及答案集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#习题六树和二叉树一、单项选择题1.以下说法错误的是 ( )A.树形结构的特点是一个结点可以有多个直接前趋B.线性结构中的一个结点至多只有一个直接后继C.树形结构可以表达(组织)更复杂的数据D.树(及一切树形结构)是一种"分支层次"结构E.任何只含一个结点的集合是一棵树2.下列说法中正确的是 ( )A.任何一棵二叉树中至少有一个结点的度为2B.任何一棵二叉树中每个结点的度都为2C.任何一棵二叉树中的度肯定等于2D.任何一棵二叉树中的度可以小于23.讨论树、森林和二叉树的关系,目的是为了()A.借助二叉树上的运算方法去实现对树的一些运算B.将树、森林按二叉树的存储方式进行存储C.将树、森林转换成二叉树D.体现一种技巧,没有什么实际意义4.树最适合用来表示 ( )A.有序数据元素 B.无序数据元素C.元素之间具有分支层次关系的数据 D.元素之间无联系的数据5.若一棵二叉树具有10个度为2的结点,5个度为1的结点,则度为0的结点个数是()A.9 B.11 C.15 D.不确定6.设森林F中有三棵树,第一,第二,第三棵树的结点个数分别为M1,M2和M3。
与森林F对应的二叉树根结点的右子树上的结点个数是()。
A.M1 B.M1+M2 C.M3 D.M2+M37.一棵完全二叉树上有1001个结点,其中叶子结点的个数是()A. 250 B. 500 C.254 D.505 E.以上答案都不对8. 设给定权值总数有n 个,其哈夫曼树的结点总数为( )A.不确定 B.2n C.2n+1 D.2n-19.二叉树的第I层上最多含有结点数为()A.2I B. 2I-1-1 C. 2I-1 D.2I -110.一棵二叉树高度为h,所有结点的度或为0,或为2,则这棵二叉树最少有( )结点A.2h B.2h-1 C.2h+1 D.h+111. 利用二叉链表存储树,则根结点的右指针是()。
二叉树练习
五.算法设计题 1、假设二叉树采用二叉链表的方式存储,编写一个函数判断两棵二 、假设二叉树采用二叉链表的方式存储, 叉树是否相似。 叉树是否相似。 都是空的二叉树; 所谓二叉树 t1 和 t2 相似指的是 t1 和 t2 都是空的二叉树;或者 t1 的根结点是相似的, 和 t2 的根结点是相似的,t1 的左子树和 t2 的左子树是相似的且 t1 的右子树和 t2 的右子树是相似的。(提示:可用递归实现)。 的右子树是相似的。(提示:可用递归实现)。 。(提示 函数原型为int like(BiTreeNode *t1, BiTreeNode *t2); 函数原型为
三.解答题 1.说明分别满足下列条件的二叉树各是什么? .说明分别满足下列条件的二叉树各是什么? ⑴先序遍历和中序遍历相同; 先序遍历和中序遍历相同; ⑵中序遍历和后序遍历相同; 中序遍历和后序遍历相同; ⑶先序遍历和后序遍历相同; 先序遍历和后序遍历相同;
(1)空树、只有一个根节点、右单分支二叉树 空树、只有一个根节点、 空树 (2)空树、只有一个根节点、左单分支二叉树 空树、 空树 只有一个根节点、 (3)空树、只有一个根节点 空树、 空树
a b c e d h g i j f
题每题7分 四.算法填空题(前3题每题 分,第4题10分) 算法填空题( 题每题 题 分
1.下列算法实现二叉树中序遍历的非递归算法,请在空白处填入正确的C语句或表达式。 下列算法实现二叉树中序遍历的非递归算法,请在空白处填入正确的 语句或表达式 语句或表达式。 下列算法实现二叉树中序遍历的非递归算法 void inorder(BiTreeNode *T) { BiTreeNode *stack[maxsize], *p=T; //设立栈,存放指针 设立栈, 设立栈 int top=0; //栈顶标记,top==0为空 栈顶标记, 栈顶标记 为空 do p!=NULL { while ( ) //扫描左子树,非空则进栈 扫描左子树, 扫描左子树 { stack[top]=p; top++; ; } p=p->leftChild if(top>0) { Top-; ; p=stack[top]; printf(p->data); //访问结点的值 访问结点的值 ; p=p->rightChild } } while ( p!=NULL || top!=0 ) }
ch6习题及答案
ch6习题及答案习题6解答判断题:1.二叉树中每个结点有两个子女结点,而对一般的树则无此限制,因此二叉树是树的特殊情形。
( ╳ )2.二叉树就是结点度为2的树。
( ╳ )( (哈工大2000年研究生试题)3.二叉树中不存在度大于2的结点,当某个结点只有一棵子树时无所谓左、右子树之分。
( ╳ ) (陕西省1998年自考试题)4.当k≥1时,高度为k的二叉树至多有21 k个结点。
( ╳ )5.完全二叉树的某结点若无左孩子,则它必是叶结点。
(√)(中科院软件所1997年研究生试题)6.用一维数组存放二叉树时,总是以前序遍历顺序存储结点。
( ╳ )7.若有一个结点是某二叉树子树的中序遍历序列中的最后一个结点,则它必是该子树的前序遍历序列中的最后一个结点。
( ╳ )8.存在这样的二叉树,对它采用任何次序的遍历,结果相同。
(√)(哈工大2000年研究生试题)9.中序线索二叉树的优点之一是便于在中序下查找前驱结点和后继结点。
(√)10.将一棵树转换成二叉树后,根结点没有左子树,( ╳ )(北邮1999年研究生试题。
)11.由树转换成二叉树,其根结点的右子树总是空的。
(√)12.前序遍历森林和前序遍历与该森林对应的二叉树其结果不同。
( ╳ )13.在叶子数目和权值相同的所有二叉树中,最优二叉树一定是完全二叉树。
( ╳ )14.在哈夫曼编码中,当两个字符出现的频率相同时,其编码也相同,对于这种情况应作特殊处理。
( ╳ )15.霍夫曼树一定是满二叉树。
( ╳ )16.树的度是树内各结点的度之和。
( ╳ )17.由二叉树的结点构成的集合可以是空集合。
(√)18.一棵树中的叶子结点数一定等于与其对应的二叉树中的叶子结点数。
( ╳ )选择题:19.树最适合用来表示( C )。
A.有序数据元素 B. 无序数据元素C.元素之间具有分支层次关系的数据 D. 元素之间无联系的数据20.如果结点A有3个兄弟,而且B是A的双亲,则B的度是( D )。
广州大学松田学院7数据结构复习题-树-参考答案
7数据结构复习题(二叉树)一.判断题(下列各题,正确的请在前面的括号内打√;错误的打╳)(√)(1)树结构中每个结点最多只有一个直接前驱。
(ㄨ)(2)完全二叉树一定是满二查树。
(ㄨ)(3)在中序线索二叉树中,右线索若不为空,则一定指向其双亲。
(√)(4)一棵二叉树中序遍历序列的最后一个结点,必定是该二叉树前序遍历的最后一个结点。
(√)(5)二叉树的前序遍历中,任意一个结点均处于其子女结点的前面。
(√)(6)由二叉树的前序遍历序列和中序遍历序列,可以推导出后序遍历的序列。
(√)(7)在完全二叉树中,若一个结点没有左孩子,则它必然是叶子结点。
(ㄨ)(8)在哈夫曼编码中,当两个字符出现的频率相同,其编码也相同,对于这种情况应该做特殊处理。
(ㄨ)(9)含多于两棵树的森林转换的二叉树,其根结点一定无右孩子。
(√)(10)具有n个叶子结点的哈夫曼树共有2n-1个结点。
二.填空题(1)在树中,一个结点所拥有的子树数称为该结点的度。
(2)度为零的结点称为叶(或叶子,或终端)结点。
(3)树中结点的最大层次称为树的深度(或高度)。
(4)对于二叉树来说,第i层上至多有2i-1个结点。
(5)深度为h的二叉树至多有2h-1 个结点。
(6)由一棵二叉树的前序序列和中序序列可唯一确定这棵二叉树。
(7)有20个结点的完全二叉树,编号为10的结点的父结点的编号是 5 。
(8)哈夫曼树是带权路径长度最小的二叉树。
(9)由二叉树的后序和中序遍历序列,可以唯一确定一棵二叉树。
(10)某二叉树的中序遍历序列为: DEBAC,后序遍历序列为:EBCAD。
则前序遍历序列为:DABEC 。
(11)设一棵二叉树结点的先序遍历序历为:ABDECFGH,中序遍历序历为:DEBAFCHG,则二叉树中叶结点是:E、F、H 。
(12)已知完全二叉树的第8层有8个结点,则其叶结点数是68 。
(13)由树转换成二叉树时,其根结点无右子树。
(14)采用二叉链表存储的n个结点的二叉树,一共有2n 个指针域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、下面是有关二叉树的叙述,请判断正误()(). 若二叉树用二叉链表作存贮结构,则在n个结点的二叉树链表中只有n—1个非空指针域。
().二叉树中每个结点的两棵子树的高度差等于1。
().二叉树中每个结点的两棵子树是有序的。
().二叉树中每个结点有两棵非空子树或有两棵空子树。
()二叉树中每个结点的关键字值大于其左非空子树(若存在的话)所有结点的关键字值,且小于其右非空子树(若存在的话)所有结点的关键字值。
(应当是二叉排序树的特点)().二叉树中所有结点个数是2k-1-1,其中k是树的深度。
(应2i-1)().二叉树中所有结点,如果不存在非空左子树,则不存在非空右子树。
().对于一棵非空二叉树,它的根结点作为第一层,则它的第i层上最多能有2i—1个结点。
(应2i-1)()用二叉链表法(link-rlink)存储包含n个结点的二叉树,结点的2n个指针区域中有n+1个为空指针。
(正确。
用二叉链表存储包含n个结点的二叉树,结点共有2n个链域。
由于二叉树中,除根结点外,每一个结点有且仅有一个双亲,所以只有n-1个结点的链域存放指向非空子女结点的指针,还有n+1个空指针。
)即有后继链接的指针仅n-1个。
(√)10.具有12个结点的完全二叉树有5个度为2的结点。
最快方法:用叶子数=[n/2]=6,再求n2=n0-1=5二、填空()1.由3个结点所构成的二叉树有5种形态。
2. 一棵深度为6的满二叉树有n1+n2=0+ n2= n0-1=31 个分支结点和26-1 =32个叶子。
注:满二叉树没有度为1的结点,所以分支结点数就是二度结点数。
3.一棵具有257个结点的完全二叉树,它的深度为9。
(注:用 log2(n) +1= 8.xx +1=94.设一棵完全二叉树有700个结点,则共有350个叶子结点。
答:最快方法:用叶子数=[n/2]=3505. 设一棵完全二叉树具有1000个结点,则此完全二叉树有500个叶子结点,有499个度为2的结点,有1个结点只有非空左子树,有0个结点只有非空右子树。
答:最快方法:用叶子数=[n/2]=500 ,n2=n0-1=499。
另外,最后一结点为2i属于左叶子,右叶子是空的,所以有1个非空左子树。
完全二叉树的特点决定不可能有左空右不空的情况,所以非空右子树数=0.6.一棵含有n个结点的k叉树,可能达到的最大深度为n,最小深度为2。
答:当k=1(单叉树)时应该最深,深度=n(层);当k=n-1(n-1叉树)时应该最浅,深度=2(层),但不包括n=0或1时的特例情况。
教材答案是“完全k叉树”,未定量。
)7.二叉树的基本组成部分是:根(N)、左子树(L)和右子树(R)。
因而二叉树的遍历次序有六种。
最常用的是三种:前序法(即按N L R次序),后序法(即按L R N次序)和中序法(也称对称序法,即按L N R次序)。
这三种方法相互之间有关联。
若已知一棵二叉树的前序序列是BEFCGDH,中序序列是FEBGCHD,则它的后序序列必是 F E G H D C B。
解:法1:先由已知条件画图,再后序遍历得到结果;法2:不画图也能快速得出后序序列,只要找到根的位置特征。
由前序先确定root,由中序先确定左子树。
例如,前序遍历BEFCGDH中,根结点在最前面,是B;则后序遍历中B一定在最后面。
法3:递归计算。
如B在前序序列中第一,中序中在中间(可知左右子树上有哪些元素),则在后序中必为最后。
如法对B的左右子树同样处理,则问题得解。
8.中序遍历的递归算法平均空间复杂度为O(n)。
答:即递归最大嵌套层数,即栈的占用单元数。
精确值应为树的深度k+1,包括叶子的空域也递归了一次。
9.用5个权值{3, 2, 4, 5, 1}构造的哈夫曼(Huffman)树的带权路径长度是33 。
解:先构造哈夫曼树,得到各叶子的路径长度之后便可求出WPL=(4+5+3)×2+(1+2)×3=33(15)(9) (6) (注:两个合并值先后不同会导致编码不同,即哈夫曼编码不唯一)4 5 3 (3) (注:合并值应排在叶子值之后)1 2(注:原题为选择题:A.32 B.33 C.34 D.15)三、单项选择题()(C)1.不含任何结点的空树。
(A)是一棵树; (B)是一棵二叉树;(C)是一棵树也是一棵二叉树; (D)既不是树也不是二叉树答:以前的标答是B,因为那时树的定义是n≥1(C)2.二叉树是非线性数据结构,所以。
(A)它不能用顺序存储结构存储; (B)它不能用链式存储结构存储;(C)顺序存储结构和链式存储结构都能存储; (D)顺序存储结构和链式存储结构都不能使用(C)3.具有n(n>0)个结点的完全二叉树的深度为。
(A) log2(n)(B) log2(n)(C) log2(n) +1 (D) log2(n)+1注1:x 表示不小于x的最小整数; x表示不大于x的最大整数,它们与[ ]含义不同!注2:选(A)是错误的。
例如当n为2的整数幂时就会少算一层。
似乎 log2(n) +1是对的?(A)4.把一棵树转换为二叉树后,这棵二叉树的形态是。
(A)唯一的(B)有多种(C)有多种,但根结点都没有左孩子(D)有多种,但根结点都没有右孩子5. 从供选择的答案中,选出应填入下面叙述?内的最确切的解答,把相应编号写在答卷的对应栏内。
树是结点的有限集合,它A 根结点,记为T。
其余的结点分成为m(m≥0)个 B的集合T1,T2,…,Tm,每个集合又都是树,此时结点T称为T i的父结点,T i称为T的子结点(1≤i ≤m)。
一个结点的子结点个数为该结点的 C 。
供选择的答案A:①有0个或1个②有0个或多个③有且只有1个④有1个或1个以上B: ①互不相交 ② 允许相交 ③ 允许叶结点相交 ④ 允许树枝结点相交 C : ①权 ② 维数 ③ 次数(或度) ④ 序 答案:ABC =1,1,36. 从供选择的答案中,选出应填入下面叙述 ? 内的最确切的解答,把相应编号写在答卷的对应栏内。
二叉树 A 。
在完全的二叉树中,若一个结点没有 B ,则它必定是叶结点。
每棵树都能惟一地转换成与它对应的二叉树。
由树转换成的二叉树里,一个结点N 的左子女是N 在原树里对应结点的 C ,而N 的右子女是它在原树里对应结点的 D 。
供选择的答案A : ①是特殊的树 ②不是树的特殊形式 ③是两棵树的总称 ④有是只有二个根结点的树形结构 B: ①左子结点 ② 右子结点 ③ 左子结点或者没有右子结点 ④ 兄弟C ~D : ①最左子结点 ② 最右子结点 ③ 最邻近的右兄弟 ④ 最邻近的左兄弟 ⑤ 最左的兄弟 ⑥ 最右的兄弟答案:A= B= C= D = 答案:ABCDE =2,1,1,3四、简答题()1. 一棵度为2的树与一棵二叉树有何区别?答:度为2的树从形式上看与二叉树很相似,但它的子树是无序的,而二叉树是有序的。
即,在一般树中若某结点只有一个孩子,就无需区分其左右次序,而在二叉树中即使是一个孩子也有左右之分。
2.设如下图所示的二叉树B 的存储结构为二叉链表,root 为根指针,结点结构为:(lchild,data,rchild )。
其中lchild ,rchild 分别为指向左右孩子的指针,data 为字符型,root 为根指针,试回答下列问题:1. 对下列二叉树B ,执行下列算法traversal(root),试指出其输出结果;2. 假定二叉树B 共有n 个结点,试分析算法traversal(root)的时间复杂度。
(共8分)二叉树B解:这是“先根再左再根再右”,比前序遍历多打印各结点一次,输出结果为:A B C C E E B A D F F D G G特点:①每个结点肯定都会被打印两次;②但出现的顺序不同,其规律是:凡是有左子树的结点,必间隔左子树的全部结点后再重复出现;如A ,B ,D 等结点。
反之马上就会重复出现。
如C ,E ,F ,G 等结点。
时间复杂度以访问结点的次数为主,精确值为2*n ,时间渐近度为O(n). 3.给定二叉树的两种遍历序列,分别是:前序遍历序列:D ,A ,C ,E ,B ,H ,F ,G ,I ; 中序遍历序列:D ,C ,B ,E ,H ,A ,G ,I ,F ,试画出二叉树B ,并简述由任意二叉树B 的前序遍历序列和中序遍历序列求二叉树B 的思想方法。
解:方法是:由前序先确定root ,由中序可确定root 的左、右子树。
然后由其左子树的元素集合和右子树的集合对应前序遍历序列中的元素集合,可继续确定root 的左右孩子。
将他们分别作为新的root ,不断递归,则所有元素都将被唯一确定,问题得解。
DAC FE G B H I4.给定如图所示二叉树T ,请画出与其对应的中序线索二叉树。
解:要遵循中序遍历的轨迹来画出每个前驱和后继。
中序遍历序列:55 40 25 60 28 08 33 54 28 25 3340 60 08 5455五、阅读分析题()1.试写出如图所示的二叉树分别按先序、中序、后序遍历时得到的结点序列。
答:DLR :A B D F J G K C E H I L M LDR: B F J D G K A C H E L I M LRD :J F K G D B H L M I E C A2. (P60 4-27)把如图所示的树转化成二叉树。
答:注意全部兄弟之间都要连线(包括度为2的兄弟),并注意原有连线结点一律归入左子树,新添连线结点一律归入右子树。
A BE CK F H D28 25 3340 60 08 5455 2246354L G I M J3.阅读下列算法,若有错,改正之。
4.画出和下列二叉树相应的森林。
答:注意根右边的子树肯定是森林, 而孩子结点的右子树均为兄弟。
六、算法设计题()1.编写递归算法,计算二叉树中叶子结点的数目。
解:思路:输出叶子结点比较简单,用任何一种遍历递归算法,凡是左右指针均空者,则为叶子,将其打印出来。
法一:核心部分为:DLR(liuyu *root) /*中序遍历 递归函数*/ {if(root!=NULL){if((root->lchild==NULL)&&(root->rchild==NULL)){sum++; printf("%d\n",root->data);} DLR(root->lchild);BiTree InSucc(BiTree q){//已知q 是指向中序线索二叉树上某个结点的指针, //本函数返回指向*q 的后继的指针。
r=q->rchild; //应改为r=q ; if(!r->rtag)while(!r->rtag)r=r->rchild; //应改为 while(!r->Ltag) r=r->Lchild;return r; //应改为return r->rchild ;答:这是找结点后继的程序。