信号完整性分析

合集下载

第9章-信号完整性分析

第9章-信号完整性分析
5.Undershoot-Rising Edge(信号下冲的上升沿)
Page 14



6.Impedance(最大/最小阻抗)
最大/最小阻抗用于定义所允许电阻的最大和最小值。

7.Signal Top Value(高电平信号的最小电压值)
高电平信号的最小电压值用于定义信号在高电平状态所允许的最小电 压值。
图9-14 快捷菜单
Page 13 清华大学出版社 2015-7-10
13条信号完整性分析规则: 1.Signal Stimulus(激励信号)

激励信号是在信号完整性分析中使用的激励信号的特性。

2.Overshoot-Falling Edge(信号超调的下降边沿)
信号超调的下降边沿用于定义信号下降沿允许的最大超调值。
Page 4 清华大学出版社 2015-7-10


差的信号完整性并不是某一单一因素造成的,而是由板 级设计中多种因素共同作用引起的。大致可以归结为以 下几个方面: 系统和器件频率的上升;一般认为,当系统和器件频率 大于等于50MHz时,信号完整性问题就会越来越突出。 元器件和PCB的参数; 元器件在PCB上的布局; 高速信号的布线。

10. Flight Time-Falling Edge(下降沿的最大延迟时间)
下降沿的最大延迟时间用于定义信号下降沿的最大允许延迟时间。

11. Slope-Rising Edge(上升沿斜率)
上升沿斜率用于定义上升沿从阈值电压VT到高电平VIH的最大延迟 时间。


12. Slope-Falling Edge(下降沿斜率)
Page 3Байду номын сангаас

信号完整性常用的三种测试方法

信号完整性常用的三种测试方法

信号完整性常用的三种测试方法信号完整性是指在传输过程中信号能够保持原始形态和准确性的程度。

在现代高速通信和数字系统中,信号完整性测试是非常重要的工作,它能够帮助工程师评估信号的稳定性、确定系统的极限速率并发现信号失真的原因。

下面将介绍三种常用的信号完整性测试方法。

一、时域方法时域方法是信号完整性测试中最常见和最直观的方法之一、它通过观察信号在时间轴上的波形变化来评估信号的完整性。

时域方法可以检测和分析许多类型的信号失真,如峰值抖动、时钟漂移、时钟分布、幅度失真等。

时域方法的测试设备通常包括示波器和时域反射仪。

示波器可以显示信号的波形和振幅,通过观察波形的形状和幅度变化来判断信号完整性。

时域反射仪可以测量信号在传输线上的反射程度,从而评估传输线的特性阻抗和匹配度。

二、频域方法频域方法是另一种常用的信号完整性测试方法。

它通过将信号转换为频域表示,分析信号的频谱分布和频率响应来评估信号完整性。

频域方法可以检测和分析信号的频谱泄漏、频谱扩展、频率失真等。

频域方法的测试设备通常包括频谱分析仪和网络分析仪。

频谱分析仪可以显示信号的频谱图和功率谱密度,通过观察频谱的形状和峰值来评估信号完整性。

网络分析仪可以测量信号在不同频率下的响应和传输损耗,从而评估传输线的频率响应和衰减特性。

三、眼图方法眼图方法是一种特殊的信号完整性测试方法,它通过综合时域和频域信息来评估信号的完整性。

眼图是一种二维显示,用于观察信号在传输过程中的失真情况。

眼图可以提供信号的时钟抖动、峰值抖动、眼宽、眼深、眼高等指标。

眼图方法的测试设备通常包括高速数字示波器和信号发生器。

高速数字示波器可以捕捉信号的多个周期,并将其叠加在一起形成眼图。

通过观察眼图的形状和特征,工程师可以评估信号的稳定性和传输质量。

总结起来,时域方法、频域方法和眼图方法是常用的信号完整性测试方法。

它们各自具有独特的优势和适用范围,可以互相协作来全面评估信号的完整性。

在实际应用中,根据具体需求和测试对象的特点,选择合适的测试方法是非常重要的。

信号完整性分析与优化

信号完整性分析与优化

信号完整性分析的方法
▪ 电磁场分析
1.电磁场分析是通过求解麦克斯韦方程组来分析信号在传输过程中的电磁场分布和 耦合情况。 2.电磁场分析方法可以评估信号的电磁辐射、串扰和电磁兼容性等参数,适用于分 析和优化高速数字系统和复杂电磁环境下的信号传输性能。 3.通过电磁场分析,可以优化系统的布局和布线设计,降低电磁干扰和提高信号的 传输质量。
▪ 时钟同步技术
1.时钟同步的重要性:时钟同步对保证系统稳定性和数据传输的准确性至关重要。 2.时钟同步的方法:通过采用全局时钟、分布式时钟等方式,可以实现时钟同步。 3.时钟同步的评估:需要通过测试和仿真来评估时钟同步的效果,确保系统性能得 到提升。
▪ 信号均衡技术
1.信号均衡的作用:信号均衡可以补偿信号传输过程中的损耗和失真,提高信号质 量。 2.信号均衡的方法:通过采用线性均衡器、非线性均衡器等措施,可以实现信号均 衡。 3.信号均衡的评估:需要通过测试和仿真来评估信号均衡的效果,确保系统性能得 到提升。
时钟完整性分析
▪ 时钟抖动的分析和优化
1.时钟抖动是衡量时钟信号稳定性的重要指标。 2.通过分析时钟抖动的来源,可以采取相应的优化措施。 3.采用先进的抖动测量和分析工具可以提高优化效率。
▪ 时钟完整性的验证和测试
1.时钟完整性的验证和测试是确保系统稳定工作的重要环节。 2.采用合适的测试方法和工具可以检测出潜在的时钟问题。 3.对测试结果进行详细的分析和解释,可以为优化设计提供有价值的参考。
信号完整性的基本概念
信号完整性问题的来源
1.信号完整性问题可能来源于系统硬件、软件和环境等多个方面。 2.硬件方面的来源包括传输线效应、电源噪声、接地问题等。 3.软件方面的来源包括算法缺陷、数据处理错误等。环境方面的来源包括温度、电磁干扰等。

PCB设计中的信号完整性分析方法

PCB设计中的信号完整性分析方法

PCB设计中的信号完整性分析方法PCB设计是现代电子产品开发中不可或缺的一环。

而信号完整性是保证电子产品性能和可靠性的重要因素之一。

本文将介绍PCB设计中常用的信号完整性分析方法。

一、信号完整性的重要性信号完整性是指信号在电路板上的传输过程中,能够保持其原有的波形、速度和幅度,没有失真、噪声或者延迟。

信号完整性的不良会导致各种问题,如时钟偏移、串扰、干扰等,从而影响整个系统的性能和稳定性。

二、信号完整性分析方法1. 布线规则设计在PCB设计过程中,通过合理的布线规则设计可以减少信号的串扰和耦合。

比如,避免信号线之间的交叉、保持适当的距离、分层布线等。

2. 传输线理论传输线理论是用于分析高速信号传输的一种方法。

通过建立传输线模型,可以预测信号在传输过程中的行为。

在信号完整性分析中,可以使用传输线理论对信号的波形、传播时间和幅度进行分析。

3. 电磁仿真电磁仿真是一种基于数值计算的信号完整性分析方法。

通过建立PCB的电磁场模型,可以确定信号在电路板上的传播路径和互连耦合情况。

常用的电磁仿真软件包括HFSS、ADS等。

4. 时域分析时域分析是一种基于时间的信号完整性分析方法。

通过观察信号的波形和过渡边沿,可以判断信号是否出现失真、震荡或者反射等问题。

常用的时域分析工具包括示波器、逻辑分析仪等。

5. 频域分析频域分析是一种基于频率的信号完整性分析方法。

通过对信号的频谱进行分析,可以判断信号是否出现带宽限制、谐振或者频率响应不平坦等问题。

常用的频域分析工具包括频谱分析仪、网络分析仪等。

6. 时序分析时序分析是一种基于时钟的信号完整性分析方法。

通过分析信号在时钟边沿触发的时间关系,可以判断信号的稳定性和时钟偏移情况。

常用的时序分析工具包括时序分析仪、时钟提取软件等。

三、信号完整性验证流程针对PCB设计中的信号完整性问题,通常可以采用以下的验证流程:1. 设计规则检查(DRC):通过软件工具检查布线是否符合设计规则,是否存在潜在的信号完整性问题。

现代通信系统中的信号完整性分析

现代通信系统中的信号完整性分析

现代通信系统中的信号完整性分析在当今高度数字化和信息化的时代,通信系统的性能和可靠性对于我们的日常生活和工作至关重要。

无论是手机通信、互联网数据传输,还是卫星通信、广播电视等领域,都依赖于高效、准确的信号传输。

而在这一过程中,信号完整性成为了一个关键的因素,它直接影响着通信的质量和稳定性。

信号完整性,简单来说,就是指信号在传输过程中保持其原有特性和质量的能力。

如果信号在传输过程中出现失真、衰减、反射、串扰等问题,就会导致通信系统的性能下降,甚至出现通信故障。

那么,是什么原因导致了这些信号完整性问题的出现呢?首先,传输线的特性是影响信号完整性的一个重要因素。

在现代通信系统中,信号通常通过各种传输线进行传输,如电缆、微带线、双绞线等。

这些传输线具有一定的电阻、电感和电容特性,当信号在其中传输时,会产生信号的衰减和失真。

特别是在高速传输的情况下,传输线的寄生参数会对信号产生更大的影响。

其次,信号的反射也是一个常见的问题。

当信号在传输线的终端遇到不匹配的阻抗时,就会发生反射。

反射信号会与原信号叠加,导致信号的波形发生畸变,从而影响信号的完整性。

为了减少反射,通常需要在传输线的终端进行阻抗匹配,以确保信号能够顺利传输。

串扰也是影响信号完整性的一个重要因素。

在通信系统中,往往存在着多条并行的传输线,当信号在其中一条传输线上传输时,会通过电磁场的耦合在相邻的传输线上产生干扰信号,这就是串扰。

串扰会导致信号的噪声增加,降低信号的质量。

为了减少串扰,需要合理地设计传输线的布局和间距。

除了上述因素外,电源噪声、时钟抖动等也会对信号完整性产生影响。

电源噪声会导致信号的电压波动,从而影响信号的准确性;时钟抖动则会导致时钟信号的不稳定,影响整个系统的同步性能。

为了分析和解决信号完整性问题,工程师们通常采用一系列的方法和技术。

其中,仿真分析是一种常用的手段。

通过建立通信系统的模型,利用专业的仿真软件对信号的传输过程进行模拟,可以预测可能出现的信号完整性问题,并采取相应的措施进行优化。

信号完整性分析

信号完整性分析

添加标题
添加标题
添加标题
添加标题
信号完整性分析在高速数字系统中 的应用
信号完整性分析在数字信号处理系 统中的应用
高速数字接口设计
应用场景:高速数字接口设计是信号完整性分析的重要应用场景之一
设计目标:保证信号传输的稳定性和可靠性
设计挑战:高速数字接口设计面临着信号传输速度、信号完整性、信号干扰等问题
建立信号完整 性分析的数学 模型
验证模型的准 确性和可靠性
优化模型,提 高分析结果的 准确性和可靠 性
仿真分析
仿真模型搭建:根 据实际电路搭建仿 真模型
仿真参数设置:设 置仿真参数,如频 率、阻抗等
仿真结果分析:分 析仿真结果,如信 号质量、时延等
仿真优化:根据仿 真结果进行优化, 如调整电路参数、 增加滤波器等
结果解读与优化建议
结果解读:根据分析结果,判断信号的完整性 优化建议:针对分析结果,提出针对性的优化方案 实施方案:根据优化建议,制定实施计划并执行 效果评估:对优化后的信号进行再次分析,评估优化效果
信号完整性分析的 应用场景
高速数字系统设计
信号完整性分析在数字电路设计中 的应用
信号完整性分析在数字通信系统中 的应用
信号完整性分析的 流程
确定分析目标
确定信号完整性分析的目标, 如提高信号传输质量、降低信 号干扰等
确定分析的范围,如系统级、 模块级、芯片级等
确定分析的指标,如信号传输 延迟、信号抖动、信号失真等
确定分析的方法,如仿真分析、 实验验证等
建立模型
确定信号完整 性分析的目标 和需求
收集和分析信 号完整性相关 的数据
添加副标题
信号完整性分析
汇报人:

信号完整性分析

信号完整性分析

一所要面临的问题二一些有用的常识三电感电容及电阻的基础以及要注意的问题四传输线的问题以及反射等问题五有损线的损耗六差分信号和查分对的问题一所要面临的问题一单一网络的信号完整性二两个或多个网络间的串扰三电源和地分配中的轨道塌陷四来自整个系统中的电磁干扰和辐射一个重要的概念1:带宽的问题(注释2)对任意一个非理想的方波信号而言(电子系统这种波形非常常见,比如系统的时钟),该信号均可认为是由同频率的基波信号和高次谐波叠加而成。

假设一个1GHz 的时钟它是有1G 的基波加3次谐波再加5次谐波再加7次谐波组成的。

那个这个时钟信号的带宽就是7G.如果加到31次谐波了,那么这个信号的带宽就是31G。

随着叠加的谐波数越多叠加后的信号就越接近完美的方波。

换句话说那就是10%到90%上升时间越小。

可见信号的上升时间决定了信号的带宽。

这样确定系统时钟的上升时间就非常重要了。

为什么上升时间会这么重要呢?下面举例说明:大多数电路板而言会采用FR4板材,FR4板并非理想的无耗板材。

损耗的机理有两种第一导体损耗,第二介质损耗。

比损耗更为严重的是损耗对不同频率信号的损耗是不同,因为在物理上这涉及到介质充放电过程的快慢以及带来的损耗。

对一个4英寸(4000mil)的FR4传输线而言,这样的导线对8GHz的信号损耗达到能量的50%或幅值的70%.试想如果用这样的线去传导一个带宽为9G的1GHz的方波会怎样?结果就是组成这个方波的信号中九次谐波分量被严重损耗,而其他谐波分量也将不同成度的损耗。

这就导致方波的上升沿退化,比如原来上升边是50ps变成了1.5ns。

如果传输的信号频率是10MHz影响不大。

如果传输信号是500M,(2ns的周期)这下麻烦就大了去了。

下面引入带宽和上升时间的关系这是一个近似的经验上的估计:对于10%到90%上升时间来讲关系为:BW=0.35/RT(RT为10%到90%上升时间)也有一些资料给的上升时间是20%-80%上升时间。

电气工程中的信号完整性分析

电气工程中的信号完整性分析

电气工程中的信号完整性分析在当今高度数字化和信息化的时代,电气工程领域的发展日新月异。

从智能手机到超级计算机,从医疗设备到航空航天系统,电子设备在我们的生活中无处不在。

而在这些复杂的电子系统中,信号完整性成为了确保设备性能稳定、可靠运行的关键因素。

信号完整性,简单来说,就是指信号在传输过程中保持其准确性、完整性和及时性的能力。

如果信号在传输过程中出现失真、衰减、反射、串扰等问题,就可能导致系统性能下降、误码率增加、甚至系统故障。

因此,对电气工程中的信号完整性进行深入分析和研究具有极其重要的意义。

首先,让我们来了解一下信号完整性问题产生的原因。

信号在传输线上传播时,会遇到各种阻抗不匹配的情况。

比如,当信号从驱动源输出,经过传输线到达负载时,如果驱动源的输出阻抗、传输线的特性阻抗和负载的输入阻抗不匹配,就会引起信号的反射。

反射的信号会与原信号叠加,导致信号波形失真。

此外,相邻传输线之间的电磁耦合会产生串扰,使得相邻信号之间相互干扰。

同时,传输线的损耗会导致信号的衰减,从而影响信号的强度和质量。

为了分析信号完整性问题,我们需要一些重要的工具和技术。

时域反射计(TDR)就是其中之一。

TDR 可以通过向传输线发送一个快速上升的脉冲,并测量反射回来的脉冲,来确定传输线中的阻抗不连续点和故障位置。

另一个常用的工具是示波器,它可以直观地显示信号的波形,帮助我们观察信号的失真、噪声等问题。

此外,还有一些仿真软件,如ADS、HFSS 等,可以在设计阶段对电路进行建模和仿真,预测可能出现的信号完整性问题,并提前采取优化措施。

在实际的电气工程应用中,信号完整性问题在高速数字电路中尤为突出。

随着数字信号的频率不断提高,信号的上升时间和下降时间变得越来越短,这对信号传输的要求也越来越高。

例如,在计算机主板上,高速的总线信号需要在严格的时序要求下进行传输,如果出现信号完整性问题,可能会导致数据传输错误,影响计算机的性能。

在通信系统中,高速的射频信号也需要保持良好的完整性,以确保信号的质量和传输距离。

高速数字电路设计中的信号完整性分析

高速数字电路设计中的信号完整性分析

高速数字电路设计中的信号完整性分析在高速数字电路设计中,信号完整性分析是非常重要的一环。

信号完整性分析旨在确保信号在电路中能够准确、稳定地传输,从而避免信号失真或干扰,保证电路的性能和可靠性。

首先,我们需要了解信号完整性分析的基本概念。

信号完整性是指在一个电路中,信号从发送端到接收端能够保持原有的形态和正确的数值。

在高速数字电路设计中,信号往往受到许多因素的影响,如传输线特性、阻抗、反射、串扰等,这些因素都有可能导致信号失真。

因此,对信号完整性的分析和优化至关重要。

在进行信号完整性分析时,我们需要首先考虑传输线的特性。

传输线的特性包括传输速度、阻抗匹配、传输延迟等,这些特性直接影响信号传输的稳定性和速度。

通过对传输线的建模和仿真分析,可以帮助我们了解传输线对信号的影响,从而优化电路设计。

另外,阻抗匹配也是信号完整性分析中的重要内容。

当信号源和负载的阻抗不匹配时,会导致信号的反射和衰减,从而降低信号的质量和稳定性。

因此,在设计电路时,需要确保信号源和负载的阻抗能够有效匹配,以减少信号的失真和干扰。

此外,信号完整性分析还需要考虑信号的传输延迟和时序关系。

在高速数字电路中,信号传输的延迟会对数据的同步和稳定性产生影响。

通过时序分析和延迟优化,可以更好地控制信号的传输速度和有效减少时序误差。

最后,在进行信号完整性分析时,还需要考虑信号的功耗和信噪比。

功耗会影响电路的工作效率和稳定性,信噪比则会影响信号和噪声的比值,从而影响信号的准确性和清晰度。

因此,在设计电路时,需要综合考虑功耗和信噪比等因素,以实现信号的高质量传输。

总的来说,信号完整性分析是保证高速数字电路性能和可靠性的重要步骤。

通过对传输线特性、阻抗匹配、传输延迟、功耗和信噪比等方面的分析和优化,可以更好地保证信号在电路中的准确传输,避免信号失真和干扰,从而提高电路的性能和可靠性。

希望以上内容对您有所帮助。

信号完整性分析概论

信号完整性分析概论

11.总结
7.测量无源器件和互连线的电气特性的仪器一般有三种:阻抗分 析仪、网络分析仪和时域反射仪; 8.这些仪器对减小设计风险、提高建模仿真和仿真过程精度的可 信度起着重要作用: 9.理解这些时钟信号完整性问题可以得出消除这些问题的最重要 的方法: 信号质量——信号在经过整个互连线时所感受到的阻抗应相同; 串扰——保持线条见的间隔大于最小值,并使线条与非理想返回 路径的互感最小; 轨道塌陷——使电源/地路径的阻抗和I噪声最小; 电磁干扰——使带宽以及地阻抗最小,采取屏蔽措施。
良好的屏蔽来弥补; 4.I/O接头的阻抗,特别是返回路径连接件的阻抗,会严重影响能产生辐射电流的
噪声电压,使用低阻抗连接的屏蔽电缆线是减小EMI问题的有效办法。
3.信号完整性的两个重要推论
1.随着上升边的减小,这四种问题(网络的信号质量、串扰、轨道塌 陷噪声和电磁干扰)都会变更严重。
前面所有的信号完整性问题都是以电流或电压变化速度来衡量的, 通常指的是dI/dt或dV/dt,上升边越短意味着dI/dt或dV/dt就越大。
单一网络的信号质量与信号路径和返回路径的物理特征都有很大的关系 。主要的表现就是网络中信号传输路径的阻抗发生突变,减小阻抗突变问题 的方法是让整个网络中的信号所感受到的阻抗保持不变。
信号所感受到的阻抗发生变化的情况: 1.线宽变化; 2.层变化; 3.返回路径平面上的间隙; 4.接插件; 5.分支线、T型线和桩线; 6.网络末端。
2.四类特定噪声源
4.电磁干扰EMI
EMI是指电子产品工作会对周边的其他电子产品造成干扰,EMI问题随着时 钟频率的提高而解决难度加大。
电磁干扰问题三个方面:噪声源、辐射传播路径和天线。
最常见电磁干扰源: 1.一部分差分信号转换成共模信号,最终在外部的双绞电缆线上输出; 2.电路板上的地弹在外部单端屏蔽线上产生共模电流,附加的噪声可以由内部

芯片电路设计中的信号完整性分析与优化

芯片电路设计中的信号完整性分析与优化

芯片电路设计中的信号完整性分析与优化在现代科技的发展中,芯片电路设计是至关重要的一环。

而在芯片电路设计中,信号完整性是一个关键的问题。

它涉及到信号在芯片中的传输和接收过程中是否能够保持其原有的质量和准确性。

信号完整性的分析与优化是确保芯片电路性能稳定可靠的关键步骤。

一、信号完整性分析在芯片电路设计过程中,信号完整性分析是必不可少的一步。

它可以帮助设计师了解信号在芯片内部的传输过程中可能出现的问题,提前预防并解决这些问题。

信号完整性分析主要包括以下几个方面:1. 信号传输时延:信号在芯片内传输的时间延迟会对电路的性能产生影响。

通过分析信号传输时延,可以确定信号是否能够在预定时间内到达目标位置,从而保证芯片的正常工作。

2. 信号反射:信号在传输过程中遇到过渡边沿时会发生反射现象。

这种反射会导致信号波形不稳定,进而影响芯片的工作。

通过对信号反射的分析,可以确定是否需要进行阻抗匹配等优化措施,从而保证信号的完整性。

3. 信号串扰:当多条信号在芯片内同时进行传输时,它们之间可能会产生互相干扰的现象,将导致信号的失真和噪声增加。

信号串扰的分析可以帮助设计师选择适当的信号引脚布局和引脚排列方式,以降低信号串扰的影响。

二、信号完整性优化在进行信号完整性分析的基础上,设计师可以采取一系列措施来优化信号的完整性,保证芯片的正常工作和性能稳定:1. 电源噪声抑制:电源噪声是一个常见的信号完整性问题。

它会对芯片电路的稳定性和准确性产生不利影响。

设计师可以采用滤波器、瞬态电容和电磁屏蔽等方法来抑制电源噪声的干扰,提高信号的完整性。

2. 阻抗匹配:信号传输中的阻抗不匹配会导致信号反射和波形失真。

设计师可以通过调整电阻和电容的数值,优化电路的布局来实现阻抗匹配,从而降低信号反射的发生,提高信号的完整性。

3. 信号引脚布局优化:芯片上的信号引脚布局合理与否对信号完整性起着重要作用。

设计师可以通过良好的信号引脚布局来减少信号串扰、提高信号传输速率和降低功耗。

现代电路设计中的信号完整性分析

现代电路设计中的信号完整性分析

现代电路设计中的信号完整性分析在当今高度数字化和集成化的电子世界中,电路设计的复杂性日益增加。

信号完整性已经成为确保电子系统可靠运行的关键因素之一。

简单来说,信号完整性指的是信号在传输过程中保持其准确性、完整性和时序特性的能力。

如果信号完整性出现问题,可能会导致系统性能下降、数据错误、甚至系统崩溃。

那么,为什么信号完整性在现代电路设计中如此重要呢?随着电子设备的工作频率不断提高,信号的传输速度也越来越快。

在高速情况下,信号的行为不再像在低速时那样简单和可预测。

例如,信号在传输线上可能会出现反射、串扰、衰减等现象,这些都会影响信号的质量。

反射是信号完整性中的一个常见问题。

当信号在传输线的终端遇到阻抗不匹配时,就会发生反射。

这就好像声音在一个封闭的房间里反射一样,会产生回声。

在电路中,反射会导致信号的失真和叠加,可能会引起误码或者时序错误。

串扰则是另一个需要关注的问题。

当相邻的传输线之间存在电磁场耦合时,就会发生串扰。

一条线上的信号可能会干扰到相邻线上的信号,导致信号的噪声增加,影响系统的性能。

衰减也是不可忽视的。

信号在传输过程中会因为电阻、电容和电感等因素而损失能量,导致信号的幅度减小。

如果衰减过大,可能会使接收端无法正确识别信号。

为了确保信号完整性,电路设计师需要在设计阶段就进行充分的分析和优化。

首先,要合理选择传输线的类型和参数。

不同类型的传输线,如微带线、带状线等,具有不同的特性,适用于不同的应用场景。

同时,传输线的阻抗、长度、宽度等参数也需要根据信号的频率和特性进行精心设计。

其次,布局和布线也是至关重要的。

在电路板上,元件的布局应该尽量减小信号传输的路径长度,减少反射和串扰的可能性。

布线时,要遵循一定的规则,如保持传输线之间的间距、避免直角转弯等。

电源和地的设计也会影响信号完整性。

稳定的电源供应是保证电路正常工作的基础,而良好的接地可以减少噪声和干扰。

在进行信号完整性分析时,通常会使用一些专业的工具和技术。

电子设计中的信号完整性分析

电子设计中的信号完整性分析

电子设计中的信号完整性分析在电子设计过程中,信号完整性分析是非常重要的一部分。

信号完整性是指在信号传输过程中保持信号的准确性、稳定性和可靠性,确保信号不会失真或受到干扰。

在现代高速电子设备和系统中,信号完整性分析变得尤为关键,因为高速信号传输会受到许多因素的影响,如信号衰减、延迟、串扰和反射等问题。

信号完整性分析最常见的方法之一是使用传输线理论。

在高速信号传输中,信号被视为在传输线上传输的电磁波,传输线上的阻抗、衰减、延迟等参数都会影响信号的传输质量。

因此,通过对传输线的参数进行建模和仿真,可以帮助设计工程师分析和优化信号的传输性能。

另外,时域分析和频域分析也是信号完整性分析的重要工具。

时域分析可以用来研究信号在时间轴上的波形变化,包括上升时间、下降时间、峰值电压等参数;而频域分析则可以用来研究信号在频率域上的频谱信息,包括频率响应、谐波失真等参数。

通过时域分析和频域分析,设计工程师可以更全面地了解信号的特性和传输过程中可能出现的问题。

除了传输线建模和时频域分析,设计工程师还可以通过仿真软件进行信号完整性分析。

仿真软件可以模拟不同信号在设计电路中的传输过程,帮助工程师快速找出潜在的问题并优化设计方案。

通过仿真软件,设计工程师可以对不同参数进行调整,如传输线长度、阻抗匹配、信号的波形和频谱,以达到最佳的信号完整性。

此外,设计工程师在进行信号完整性分析时还需要考虑一些其他因素,如接地设计、功率分配、EMI(电磁干扰)和ESD(静电放电)等。

这些因素都可能会对信号的传输过程造成影响,设计工程师需要综合考虑这些因素,以保证信号的可靠传输和稳定性。

总的来说,在电子设计中的信号完整性分析是保证高速电子系统可靠性和稳定性的关键步骤。

通过传输线建模、时频域分析、仿真软件以及综合考虑其他因素,设计工程师可以找出潜在的问题并优化设计方案,确保信号的准确传输和稳定性,从而提高电子系统的性能和可靠性。

通过不断学习和应用信号完整性分析的方法,设计工程师可以更好地应对日益复杂的电子系统设计挑战,推动电子科技的发展。

信号完整性分析

信号完整性分析

信号完整性是指在信号线上的信号质量。

当电路中信号能以要求的时序和电压幅度到达接收端时,该电路就有很好的信号完整性;当信号不能正常响应或者信号质量不能使系统长期稳定工作时,就出现了信号完整性问题。

板级信号完整性主要表现为延迟、反射、串扰、同步切换噪声、过冲和下冲、地弹、振铃和EMI(Electro Magnetic Interference)即电磁干扰等几方面。

延迟是指信号在PCB板上以有限的速度传输,信号从发送端发出到达接收端,其间存在一个传输延迟。

信号的延迟会对系统的时序产生影响,过长的延迟可导致时序混乱,由于本系统采用多块电路板级联结构设计,信号在单块PCB上的延时可以忽略,但在板级间通过接插件的传输,尤其是顶层板到底层板的信号传输,需要通过中间两块板,信号的走线路程相对很长,时间的延迟不可忽略。

为此,系统选用性能良好尤其电气特性良好的接插件,同时考虑关键控制信号要尽可能减少传输路程,布局布线时优先考虑。

反射是在传输线上的回波,信号经过传输线将一部分功率传给负载的同时,由于阻抗不匹配,有一部分能量反射回源端。

如果阻抗匹配(源端阻抗、传输线阻抗与负载阻抗相等),信号全部传给负载,反射不会发生。

减小和消除反射的方法是根据传输线的特性阻抗在其发送端或接收端进行终端阻抗匹配,从而使源反射系数或负载反射系数为零。

具体做法是在靠近源端的地方串联进去一几十欧姆的电阻,该方法简单有效,消耗功率小。

串扰是指当信号在传输线上传播时,因电磁耦合对相邻的传输线产生不期望的电压噪声干扰。

过大的串扰可能引发电路的误触发,导致系统无法正常工作。

串扰是由电磁耦合形成的,根据容性耦合和感性耦合的不同,产生的干扰有互容串扰和互感串扰。

互容串扰是信号线间的容性耦合,当信号线在一定长度上靠得比较近的时候就会发生,客服的方法有两种,适当减少两根走线间的并行距离和在两根走线间穿插地线。

互感串扰是由布线时产生的环路引起的,克服的办法是在布线时避免环路的出现。

信号完整性分析范文

信号完整性分析范文

信号完整性分析范文信号完整性分析(Signal Integrity Analysis)是指对数字电路、高速信号传输、功耗分布等进行综合考虑的电路设计步骤。

在现代电路设计中,信号完整性的问题日益凸显,尤其是在高速通信和高性能计算中的应用。

信号完整性分析的目的是要确保信号在传输过程中能够保持原有的质量,不受噪声、时钟偏移、时序失真等问题的影响。

信号完整性分析是一个复杂的过程,它涉及到多个方面的考虑和分析。

首先,需要考虑信号的传输线特性。

在高速设计中,传输线会产生反射、衰减和串扰等问题。

因此,必须对传输线的阻抗匹配、终端匹配和信号层次分割等进行精确计算和模拟,以确保传输线上的信号质量达到要求。

其次,信号完整性分析还需要考虑时钟偏移和时序失真等问题。

时钟偏移是指信号的时钟源和接收器之间存在的时间差异,会导致信号的采样时机发生偏移,进而影响到信号的稳定性和可靠性。

时序失真是指信号在传输过程中,由于信号传播速度的有限性而导致的时序错位和失真问题。

这些问题都需要通过精确的电路模拟和时序仿真来进行分析。

此外,信号完整性分析还需要考虑功耗分布和电磁干扰等问题。

功耗分布是指电路中各个模块和子电路的功率分布情况,对功耗密度的分析能够帮助设计师优化电路结构和提高效能。

而电磁干扰是指信号传输过程中由于电磁场的相互作用而产生的干扰问题,需要通过电磁模拟和电磁兼容性分析来解决。

面对复杂的信号完整性问题,现代电路设计通常采用一系列的设计和验证流程来确保信号的完整性。

首先,对电路进行设计规范和约束的制定,包括信号的最大频率、时序要求、电压幅度等。

然后,在设计阶段对电路进行仿真和分析,利用电磁场分析、传输线模型、时钟源校准等手段对信号的完整性进行评估。

最后,在芯片或电路板的制造和调试阶段,需要进行物理测量和分析,对实际的电路性能进行验证。

综上所述,信号完整性分析是现代电路设计中不可或缺的一环。

它不仅需要考虑传输线特性、时序失真等问题,还需要关注功耗分布和电磁干扰等方面的因素。

学习入门-学习入门-Altium-Designer第10章-信号完整性分析优选全文

学习入门-学习入门-Altium-Designer第10章-信号完整性分析优选全文

1.互阻抗模型 PCB上两根走线之间的互阻抗模型如图10.1.3所示。
图10.1.3 PCB上两根走线之间的互阻抗模型
2. 电容耦合产生的串扰(容性串扰)
所有两相邻导线之间都存在电容。当在一条线(攻击线或主
动线)加上一个脉冲信号(vs)时,脉冲信号会通过电容Cm
向另一条线(受害线或被动线)耦合一个窄脉冲。也就是两
上升时间,用tr表
示。
图10.1.1 非理想的脉冲(数字)信号波形
2. 带宽(频宽)
对于高速数字电路,决定其所需之带宽(频宽)的是时钟脉冲信
号上升时间tr,而不是时钟脉冲信号的频率。对于频率相同的时 钟信号,如果它们的上升时间tr不同,所需电路的带宽(频宽)
也是不同的[24]。
带宽(频宽)与信号的上升时间tr有关。一个有价值的经验法则 ,信号的带宽(频宽)与上升时间tr的关系[51]可以用下式表示:
信号的传播速度Vp与材料的介电常数εr之间的关系如下所示:
(10.1.3)
式中:C为光速(3×108m/s);εr为材料的介电常数。
10.1.3 反射
1. 反射的产生 反射(Reflection)就是传输线上的回波,信号功率的一部分
经传输线传给负载,另一部分则向源端反射。 信号沿传输线传播时,如果阻抗匹配(源端阻抗、传输线阻
SI、PI和EMI设计紧密关联,而PDN(Power Distribution Network,电源分配网络)是 SI、PI和EMI的公共基础互连,相 互关系[22,25]如图10.1.6所示。而SI、PI和EMI协同设计是高速数字 系统设计的唯一有效途径。
图10.1.6 SI、PI和EMI与PDN的相互关系
EMI到达EMI接收器的路径。

信号完整性分析

信号完整性分析

信号完整性分析信号完整性分析是一种信号传输效率的重要部分,尤其是在网络技术发展快速的今天,它越来越受到重视。

信号完整性分析是研究电气、电子、光学、磁学信号完整性状态的过程,可以帮助分辨信号的有效和无效,提高数据传输的可靠性,帮助解决科技发展中存在的一些技术问题。

信号完整性分析通常包括对信号传输效率的质量检测、时延检测和比特误码率检测三种检测项目。

首先,在信号传输效率的质量检测中,一般是检查传输信号的模拟量,电源和电场的强度等,以及收发端的工作状态等,其检测结果可以直接反映出信号传输效率的水平。

其次,在时延检测项目中,通常是检查收发端传输信号之间的时间差和时间关系,以及数据传输周期,其检测结果可以反映出网络中信号传输的延迟情况。

最后,在比特误码率检测项目中,一般是检查网络数据传输中比特误码率的情况,其检测结果可以反映出网络数据传输的质量情况,并帮助提高数据传输的可靠性。

为了实现信号完整性分析,一般常用的技术手段有时域反射技术、频域反射技术和时频域反射技术等。

时域反射技术是以时域为特征参数,使用特定的精密仪器测量信号传输状态,以判断电线是否损坏,其优点是可以在短信号情况下,迅速准确地判断出当前的信号状态,而且安全、快捷、经济。

频域反射技术是以频域为特征参数,使用专业的检测仪器,根据传输信号的频率和幅度,对网络的信号完整性进行检测,其优点是可以检测出高频信号的变化,并且可以迅速地检出信号是否受到破坏。

时频域反射技术是利用时间和频率域上的改变,以及信号传输过程中的调制参数等,进行信号完整性检测,其优点是能够在路径衰减和多径效应影响较大的情况下,也能获得准确的检测结果。

信号完整性分析在网络技术发展中,起到了重要的作用,它不仅有助于提高数据传输的稳定性和可靠性,而且可以帮助解决传输中的一些暂时性问题,让信号传输更加顺畅。

然而,在信号完整性分析领域,也存在一些需要完善的地方。

例如,由于信号的传输深度、速度等因素的影响,仍存在比特误码率较高的情况;此外,也存在着传输过程中存在延时的情况,因此,在信号完整性分析方面仍需要持续改进和完善技术。

信号完整性分析

信号完整性分析

信号完整性分析信号完整性分析是电路和系统设计中的一个重要方面,它是一种检测电路的可靠性的手段,可以帮助设计者发现潜在的问题,并在设计过程中提出优化建议。

信号完整性分析可以帮助确定信号的完整性,以及信号在整个电路和系统中是否能够按照设计要求传输。

信号完整性分析是一种新兴的分析技术,它可以在电路或系统设计中进行准确定量测量分析,以识别导致信号完整性问题的潜在因素。

在这种分析中,将占用电路元件名称、电特性、信号完整性参数等形成数据库,以预测整体系统的信号完整性。

信号完整性分析的主要内容包括信号传输,电源稳定性,系统集成和信号干扰。

在信号传输方面,主要考虑信号路径中阻抗不匹配、过载、相位差和调制等问题;电源稳定性方面,要考虑电路稳定性、电源类型和电压噪声等;系统集成方面,考虑的是两个系统的连接以及多种子系统之间的兼容性;信号干扰方面,要考虑的是环境中的干扰和其他系统的干扰。

有一些软件可用于对信号完整性进行分析,这些软件可以从电路参数和设计要求出发,根据用户定义的模型进行分析,从而决定电路是否能够满足信号完整性要求。

此外,信号完整性分析可以用于验证复杂系统的功能,确保系统符合设计要求。

它还可以用于设计高性能、低噪声的高精度性能电路,以及确定可靠性要求。

信号完整性分析是一项先进的数字设计技术,它可以帮助电路设计者们发现潜在的问题,分析信号传输过程中所发生的可能问题,从而为设计提供有效的指导。

它能够有助于提升电路设计的性能,帮助设计者更好地为用户提供优质的产品,从而提升市场竞争力。

因此,信号完整性分析是电路和系统设计中不可或缺的一部分,它可以有效帮助电路设计者识别可能存在的问题,并在设计过程中提供有效的指导,从而确保电路和系统能够满足用户的要求。

信号完整性分析

信号完整性分析

信号完整性分析信号完整性分析是一项重要的工程学领域,它涉及到信号传输的可靠性和准确性。

在信息传递的过程中,信号会受到各种干扰和衰减,因此确保信号的完整性对于正确地接收和解读信息至关重要。

本文将介绍信号完整性分析的基本概念、方法和应用。

信号完整性分析是一种通过模拟和仿真来评估信号传输过程中所遇到的问题和挑战的方法。

在进行信号完整性分析时,通常需要考虑传输线路的特性、干扰源、噪声和电磁兼容性等因素。

通过对这些因素进行建模和分析,可以预测信号的衰减、失真和延迟,进而优化信号传输系统的设计。

信号完整性分析的基本方法之一是建立传输线路的数学模型。

传输线路可以是电线、导线、电缆或光纤等,而其特性包括传输速度、电阻、电感和电容等。

通过将这些特性纳入传输线路模型,可以计算得到信号在传输过程中的衰减和失真情况。

另一种常用的信号完整性分析方法是时域和频域分析。

时域分析关注信号在时间轴上的变化情况,可用于研究信号的波形、幅度和时延等特性。

频域分析将信号转换为频率域,利用傅里叶变换等工具可以获取信号的频谱分布和频率响应等信息。

通过时域和频域分析,可以全面了解信号的特性,从而优化信号传输系统的设计和调整。

信号完整性分析在通信、电子、计算机和电路设计等领域都有广泛的应用。

在高速传输系统中,如高速网络、数据中心和处理器之间的连接,信号完整性分析能够帮助设计人员解决信号衰减、串扰和时钟抖动等问题,确保高频信号的准确传输。

在电子设备设计中,信号完整性分析可以评估电路板布局和信号线路的设计,提前发现信号干扰和时延问题,并进行相应的优化。

随着智能电子产品的发展和应用场景的增多,对于信号完整性分析的需求也越来越高。

例如,手机和平板电脑等移动设备需要在有限的传输资源下实现高速数据传输,而车载电子系统需要能够稳定传输大量的音视频数据。

在这些应用中,信号完整性分析为保证数据传输的稳定性和准确性提供了必要的技术支持。

总之,信号完整性分析在现代通信和电子领域中具有重要的地位和作用。

第9章-信号完整性分析

第9章-信号完整性分析

清华大学出版社
2019/4/8
9.4.1 信号完整性规则设置
•在PCB编辑环境下进行信号完整性规则的设置 在PCB编辑环境下,执行菜单命令【设计】/【规则】, 弹出【PCB规则和约束编辑器】对话框,并从该对话框中打 开【Signal Intergity】选项,如图9-13所示。在该【 Signal Intergity】选项中用户可以选择设置信号完整分 析所需要的规则。
图9-13 【PCB规则和约束编辑器】对话框
Page 12 清华大学出版社 2019/4/8
在系统默认状态下,信号完整性分析规则没有定义。 当需要进行信号完整性分析时,可以将光标移到【 Signal Intergity】选项中的某一项上,单击鼠标右键 ,弹出快捷菜单,如图9-14所示,选中【新建规则】命 令,即可建立一个新的分析规则。然后双击建立的分析 规则,即可进入规则设计对话框。
本实例要求对“C:\Program Files Altium2004\Examples\Reference Design\4 Port Serial Interface\4 Port SerialInterface.PPJPCB” 添加信号完整性模型。
Page 10 2019/4/8
清华大学出版社
9.4 信号完整性分析设定
Page 8 清华大学出版社 2019/4/8
9.2 信号完整性分析注意事项
为了得到精确的分析结果,在进行信号完整性分析 前,需要注意以下几点: 设计文件 集成电路 电源网络 设定激励源 层堆栈设置正确 每个元器件的信号完整性模型必须正确。
Page 9
清华大学出版社
2019/4/8
第9章 信号完整性分析
9.1
9.2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析近似:总是要忽略次要因素实现近似,多数情况下要注意 解析近似的准确度或精度。 数值仿真: 新的仿真工具在易用性和精度方面进步很大,但不是 万能的。能预测特性阻抗、串扰、任意截面传输线的差模阻抗; 仿真任意一种终端连接对信号完整性的可能影响。 提高直觉和创新能力,我们倡导基于数值仿真工具的 SI 研究。 仿真质量取决于元器件及互连模型(即等效电路模型)的描述质 量。一般工程师们原来熟悉门电路模型,较少接触互连线模型。 先前把互连看作是透明的理想导体。没有阻抗,也没有时延。
1.
阻抗分析仪:频域 , 正弦电流源 + 电压表
(直接测);
2. 矢量网络分析仪 (VNA) :频域 , 电压源+
电压表(间接测); 3. 时域反射仪(TDR):时域, 信号源+示波器
(间接测)。
此外,眼图则是用示波器测量串行数据传送效果的有效 手段。它不用一般的时钟来同步,而是用长周期比特流直接 做激励,在示波器的横轴上把一串串比特周期叠加在一起, 形成像人眼睛一样的波形。很多新式示波器都具有眼图工作 模式选项。 只有通过测量才能够真正极大地降低设计带来的信号完 整性问题风险。 事实上,迄今为止,还没有真正很方便的测试电子系统 与电路中信号完整性各种指标及其严重性的直接测试仪器 和测量技术。
电路图给出元器件及其互连关系。而同一个网络,电属性相 同,其互连拓扑关系可能如下:点到点;星簇 (star cluster) 是每
个器件通过长度相等的传输线连接到中心节点上;菊花链 (daisy
chain) 是一条长传输线从每个器件附近经过,器件通过短桩线连 在主传输线上。
• 点到点
• 近、远端簇
状及质量,主要包括反射和串扰。物理互连将其上面
的信号波形变差(退化),出现了非正常形变,称为信
号完整性被破坏。噪声可以转化为抖动,见DSI2.65式。
信号完整性退化是物理互连设计不当又工作在高
速环境下的直接后果。
0.1 高速的含义
现代数字电子系统正在突破 1GHz 的壁垒,芯片/PCB/ 系统的设计正在遭遇日益突出的信号完整性问题。 高于 100MHz 时钟的高频产品,被模糊地称作高速数字 芯片和系统。 严格讲: 高频不一定高速; 低频也不见得低速。 准确地说,当系统中数字信号的上升边小于 1 纳秒(ns) 时,我们才称之为高速运行。此时互连不再透明,有可能对 电路和系统造成颠覆性后果。 信号不完整, 是互连不当遭遇高速才会出现的直接结果。
正是信号完整性引出了发生在我们身边的深刻 变化。面对下列事实,需要想一想: ●为什么计算机配置中用USB2.0接口取代了打印 机并口?
●为什么新的FPGA芯片中增加了RSDS(降低摆幅
差分信令 )、 LVDS(低压差分信令 ) 模块及接口设计?
●什么样的接口更适合严酷的实时图像信号采集
与传输? 是USB还是IEEE1394?是1394a还是b?
波形外观变差,出现了非正常形状的变形,称为信号完整性
被破坏。信号完整性问题是物理互连在高速情况下的直接结
果。
信号完整性强调信号在电路中产生正确响应的能力。
广义信号完整性(SI)泛指由各种信号、数据、电源
互连线引起的所有电压、电流不正常现象,包括:
噪声、干扰、时序抖动、数据传输等。
狭义的信号完整性,是指信号电压(电流)波形的形
0.6 用于分析的传输线模型
传输线(transmission line)是一个网络(导线),它的返回路径可 能是地、电源等。 设计高速 PCB, 要用 80%的精力关注互连, 考察传输线效应。 据统计, PCB 设计师从传输线的角度设计互连已经到 90%以上。 在设计中引入特性阻抗及匹配、反射、驻波等概念分析。 互连线本质上就是传输线。一条为信号线(Signal path),另一 条为返回线(Return path), 返回线不能理解成地线! 设计信号线, 也要设计返回线物理尺寸,让返回线靠近信号线等。 按传输线的概念看待互连,才容易用阻抗观点理解反射;用 回路互感理解串扰;用净电感理解地弹等等。
物理互连本身的电阻、电容、电感和传输线效应
影响了系统性能。 SI分析一书的作者Eric将后果归结 为四类SI问题:
• 反射(reflection); • 串扰(crosstalk); • 电源轨道塌陷(rail collapse);
• 电磁干扰(EMI)。
此种划分系一家之言!该书属入门读物,后两种
0.5 信号完整性测量技术
测量高速互连的三种主要仪器
• 阻抗分析仪;
• 矢量网络分析仪(VNA);
• 时域反射仪(TDR)。
阻抗分析仪测量电压/电流比=阻抗。 频率从 100Hz 到 40MHz。 有四个接头,一对接头产生流过被测器件(DUT)的正弦波电流, 第二对接头测量被测器件(DUT)的正弦电压。 矢量网络分析仪在频域工作。每个接头或端口发出一个正弦 电压,频率范围从几 KHz 到 50GHz,在每个频率点测量入射电 压的幅度与相位以及反射的幅度和相位。 时域反射仪(TDR)在时域工作。发射快速上升的阶跃信号,上 升边为 35ps 到 150ps,然后测量反射的瞬态幅度。
图0-4
实际互连的阻抗不匹配示例,多分支更是如此
图0-5
振铃曲线,是由于阻抗不匹配造成的反射所致
图0-6 PCB 板上单线条接有源端串接电阻40(红色) 、无源端串联端接电阻(蓝色)负载端不同的电压信号
串扰 (crosstalk) 是指在两个不同的电性能网络之间
的互作用。发出串扰的一方称为 Aggressor ,而被干
0.2 互连的范畴
所有电子产品都可以解释为元器件及其互连。说到底,都可以
看作是靠不同层次下互连“编织”成的作品。 物理互连(Interconnect )包括四个层次:芯片内连线、芯片 封装、PCB及系统互连。它们决定高速信号、数据和电源质量。 三个高密度载体为:芯片系统SOC、板级系统SOB、封装系统
高速电路与系统互连设计中 信号完整性(SI)分析
(之1-2[0]:高速互连与信号完整性 的关系)
Interconnect 设计 & SI 分析
●物理互连(Interconnect)包括:芯片内、外连接; PCB内、外连接等。 ●信号完整性(SI,Signal Integrity) ,是指信号电 压(电流)波形的完好程度。 ●高速条件下的不当互连设计破坏了信号完整 性。
• 菊花链
• 周期性加载
图0-1 单个网络的各种互连拓扑情况
图0-2
高速IEEE-1394视频采集系统
0.3 信号完整性分类
信号完整性讨论的主要对象是数字信号, 人们谈的只有数 字信号完整性,一般不说模拟信号的完整性。这是由于数字 信号的非理想退化而呈现的一种模拟效应。主要内因是非常 短的数字信号前后沿(简称前沿)包含大量丰富的高频成分。 按照通常的说法,目前信号完整性研究主要分为芯片和 PCB 两个着力点。二者原理上相通、技术上有别。 SI 的分析和测量,有时域和频域两类视点和途径。
IBIS
SI 分析中对有源器件的一种流行的模型处理方案。 IBIS( 输 入 输 出 缓 冲 接 口 特 性 , Input/output Buffer Interface Specification)模型,给出一种对 I/O buffer 快速准确 建模的方法。 IBIS 是一个描述输入/输出的 EIA/ANSI 标准: 它既包括 DC(V/I)特性曲线; 也包括瞬态(transient)(V/T)特性 曲线。许多器件供应商都有 IBIS 模型网页; HyperLynx 网 页上也可以链接到 IBIS 的主页。
●高速系统设计的瓶颈是什么?是否需要检讨我
国过去对信号完整性的研究和应用的现状?
SI 对国内是既生疏又熟悉。原先对付干扰、噪声 的“三大法宝”是:接地、滤波、屏蔽,显得非常感 性和粗放,已经严重落后。现在对SI量化和细化的研 究逐渐呈现出浓厚的热情,已经有了一定的基础。 电子设计师需要普及SI知识,了解高速电路互连的 SI机理,掌握SI分析与互连设计。 近期翻译出版四本译著:《信号完整性分析》、 《数字信号完整性》、《抖动、噪声与信号完整性》、 《芯片及系统中的电源完整性建模与设计》
图0-10 由于有损线造成的上升边退化
0.4 信号完整性分析技术
分析信号完整性分为时域和频域两种途径和手段。 时域(time domain)是对一个信号波形进行的示波器观察,它 通常用于找出管脚到管脚的时延、错位、过冲、下冲以及建立 时间。 频域 (frequency domain) 是对一个信号波形进行的频谱分析 仪观察,它通常用于波形的频谱分析,噪声抑制及 EMI 量级分 析。
SOP。
各层次真实的互连线有:芯片内各种连线及孔、压焊点、封装 引线、引脚;PCB板的线接头、线条、过孔、接插件;各种连 接电缆。此外,还涵盖各种无源元件;电阻、电容、电感;以 及介质、基板、屏蔽盒、机箱、机架等。而各个层次的器件则 另当别论。把它们看作驱动源和接收器宏模型。
图0-0
五种PCB及系统级中的互连线条形式
涉及不深。
图0-3
四种信号完整性问题图解
Eric 研究信号完整性时,将互连对系统电气性能的影响从 本质上归结为四类噪声问题:反射、串扰、电源噪声(SSN 引 起轨道塌陷)、EMI。需要创建各种互连线模型被用来分析它 对系统带来的干扰和噪声。 反射(reflection)是指传输线上有回波(echo)。 信号功率(电压 和电流)的一部分经传输线上传输到负载端,但是有一部分被 反射回来形成振铃(ringing)。 过冲(overshoot)是指第一个峰值或谷值超过设定电压;下 冲(undershoot)是指紧邻的下一个谷值或峰值超过设定电压; 振铃(ringing)就是反复出现过冲和下冲。
图0-9
PCB的EMI情况
●有损传输线引起数据完整性(DI)问题
有损传输线引起上升边退化,从而引起符号间干扰 或ISI,进而形成抖动,造成所谓的数据不完整问题。 当频率大于 1GHz 时,介质损耗的增长与频率成正
相关文档
最新文档