信号完整性分析基础系列之二十四
信号完整性分析
![信号完整性分析](https://img.taocdn.com/s3/m/75b51942f68a6529647d27284b73f242336c31c6.png)
添加标题
添加标题
添加标题
添加标题
信号完整性分析在高速数字系统中 的应用
信号完整性分析在数字信号处理系 统中的应用
高速数字接口设计
应用场景:高速数字接口设计是信号完整性分析的重要应用场景之一
设计目标:保证信号传输的稳定性和可靠性
设计挑战:高速数字接口设计面临着信号传输速度、信号完整性、信号干扰等问题
建立信号完整 性分析的数学 模型
验证模型的准 确性和可靠性
优化模型,提 高分析结果的 准确性和可靠 性
仿真分析
仿真模型搭建:根 据实际电路搭建仿 真模型
仿真参数设置:设 置仿真参数,如频 率、阻抗等
仿真结果分析:分 析仿真结果,如信 号质量、时延等
仿真优化:根据仿 真结果进行优化, 如调整电路参数、 增加滤波器等
结果解读与优化建议
结果解读:根据分析结果,判断信号的完整性 优化建议:针对分析结果,提出针对性的优化方案 实施方案:根据优化建议,制定实施计划并执行 效果评估:对优化后的信号进行再次分析,评估优化效果
信号完整性分析的 应用场景
高速数字系统设计
信号完整性分析在数字电路设计中 的应用
信号完整性分析在数字通信系统中 的应用
信号完整性分析的 流程
确定分析目标
确定信号完整性分析的目标, 如提高信号传输质量、降低信 号干扰等
确定分析的范围,如系统级、 模块级、芯片级等
确定分析的指标,如信号传输 延迟、信号抖动、信号失真等
确定分析的方法,如仿真分析、 实验验证等
建立模型
确定信号完整 性分析的目标 和需求
收集和分析信 号完整性相关 的数据
添加副标题
信号完整性分析
汇报人:
信号完整性分析
![信号完整性分析](https://img.taocdn.com/s3/m/4a6cce79168884868762d673.png)
一所要面临的问题二一些有用的常识三电感电容及电阻的基础以及要注意的问题四传输线的问题以及反射等问题五有损线的损耗六差分信号和查分对的问题一所要面临的问题一单一网络的信号完整性二两个或多个网络间的串扰三电源和地分配中的轨道塌陷四来自整个系统中的电磁干扰和辐射一个重要的概念1:带宽的问题(注释2)对任意一个非理想的方波信号而言(电子系统这种波形非常常见,比如系统的时钟),该信号均可认为是由同频率的基波信号和高次谐波叠加而成。
假设一个1GHz 的时钟它是有1G 的基波加3次谐波再加5次谐波再加7次谐波组成的。
那个这个时钟信号的带宽就是7G.如果加到31次谐波了,那么这个信号的带宽就是31G。
随着叠加的谐波数越多叠加后的信号就越接近完美的方波。
换句话说那就是10%到90%上升时间越小。
可见信号的上升时间决定了信号的带宽。
这样确定系统时钟的上升时间就非常重要了。
为什么上升时间会这么重要呢?下面举例说明:大多数电路板而言会采用FR4板材,FR4板并非理想的无耗板材。
损耗的机理有两种第一导体损耗,第二介质损耗。
比损耗更为严重的是损耗对不同频率信号的损耗是不同,因为在物理上这涉及到介质充放电过程的快慢以及带来的损耗。
对一个4英寸(4000mil)的FR4传输线而言,这样的导线对8GHz的信号损耗达到能量的50%或幅值的70%.试想如果用这样的线去传导一个带宽为9G的1GHz的方波会怎样?结果就是组成这个方波的信号中九次谐波分量被严重损耗,而其他谐波分量也将不同成度的损耗。
这就导致方波的上升沿退化,比如原来上升边是50ps变成了1.5ns。
如果传输的信号频率是10MHz影响不大。
如果传输信号是500M,(2ns的周期)这下麻烦就大了去了。
下面引入带宽和上升时间的关系这是一个近似的经验上的估计:对于10%到90%上升时间来讲关系为:BW=0.35/RT(RT为10%到90%上升时间)也有一些资料给的上升时间是20%-80%上升时间。
集成电路设计与信号完整性分析
![集成电路设计与信号完整性分析](https://img.taocdn.com/s3/m/141736301611cc7931b765ce050876323112741b.png)
集成电路设计与信号完整性分析现代科技的快速发展使得集成电路(Integrated Circuit,IC)成为现代电子设备的核心部件。
集成电路设计和信号完整性分析是保证电路性能稳定和可靠性的重要环节。
本文将介绍集成电路设计的基本概念,以及信号完整性分析的方法和意义。
一、集成电路设计简介集成电路设计是指将多个电子器件、电路元件和电子系统集成到单一的芯片上的过程。
集成电路设计的目标是在给定的特定应用场景下,实现电路的功能需求,并具备正常工作所需要的性能要求。
首先,集成电路设计需要进行电路功能的规划和设计。
这包括确定电路所需的输入、输出接口,电源供应的要求,以及各个模块之间的通信和数据交互方式等。
然后,设计人员需要对电路进行逻辑设计和电路元件的选择。
逻辑设计涉及选择合适的逻辑门、存储元件等来实现电路的逻辑功能。
接下来,设计人员需要进行电路的物理设计。
物理设计包括电路的布局和布线。
布局指的是将电子组件和元件放置在芯片上的位置,以最小化电路的面积和功率消耗。
布线是指连接各个元件的导线的布置,以及导线的宽度和厚度等参数的确定。
最后,集成电路设计需要进行电路的验证和测试。
验证是指通过模拟和数字仿真等手段,检验电路是否满足预期的功能需求。
测试是指在实际工作环境中通过各种测试手段,对芯片进行功能和性能的测试。
二、信号完整性分析的方法及意义信号完整性分析是在集成电路设计过程中非常重要的一环。
它主要针对电路中信号传输过程中可能出现的干扰和损耗问题,确保信号能够在电路中正确传递和处理。
首先,信号完整性分析需要通过仿真和建模等手段,对信号的传输过程进行分析。
通过建立数学模型,仿真软件可以帮助分析人员分析信号在传输过程中可能出现的问题,例如信号的时延、功耗、噪声等。
同时,也可以通过模拟实验,验证电路设计的可行性和稳定性。
其次,信号完整性分析需要考虑电磁兼容性(Electromagnetic Compatibility,EMC)的因素。
电气工程中的信号完整性分析
![电气工程中的信号完整性分析](https://img.taocdn.com/s3/m/ef901bdd70fe910ef12d2af90242a8956aecaa09.png)
电气工程中的信号完整性分析在当今高度数字化和信息化的时代,电气工程领域的发展日新月异。
从智能手机到超级计算机,从医疗设备到航空航天系统,电子设备在我们的生活中无处不在。
而在这些复杂的电子系统中,信号完整性成为了确保设备性能稳定、可靠运行的关键因素。
信号完整性,简单来说,就是指信号在传输过程中保持其准确性、完整性和及时性的能力。
如果信号在传输过程中出现失真、衰减、反射、串扰等问题,就可能导致系统性能下降、误码率增加、甚至系统故障。
因此,对电气工程中的信号完整性进行深入分析和研究具有极其重要的意义。
首先,让我们来了解一下信号完整性问题产生的原因。
信号在传输线上传播时,会遇到各种阻抗不匹配的情况。
比如,当信号从驱动源输出,经过传输线到达负载时,如果驱动源的输出阻抗、传输线的特性阻抗和负载的输入阻抗不匹配,就会引起信号的反射。
反射的信号会与原信号叠加,导致信号波形失真。
此外,相邻传输线之间的电磁耦合会产生串扰,使得相邻信号之间相互干扰。
同时,传输线的损耗会导致信号的衰减,从而影响信号的强度和质量。
为了分析信号完整性问题,我们需要一些重要的工具和技术。
时域反射计(TDR)就是其中之一。
TDR 可以通过向传输线发送一个快速上升的脉冲,并测量反射回来的脉冲,来确定传输线中的阻抗不连续点和故障位置。
另一个常用的工具是示波器,它可以直观地显示信号的波形,帮助我们观察信号的失真、噪声等问题。
此外,还有一些仿真软件,如ADS、HFSS 等,可以在设计阶段对电路进行建模和仿真,预测可能出现的信号完整性问题,并提前采取优化措施。
在实际的电气工程应用中,信号完整性问题在高速数字电路中尤为突出。
随着数字信号的频率不断提高,信号的上升时间和下降时间变得越来越短,这对信号传输的要求也越来越高。
例如,在计算机主板上,高速的总线信号需要在严格的时序要求下进行传输,如果出现信号完整性问题,可能会导致数据传输错误,影响计算机的性能。
在通信系统中,高速的射频信号也需要保持良好的完整性,以确保信号的质量和传输距离。
高速数字电路设计中的信号完整性分析
![高速数字电路设计中的信号完整性分析](https://img.taocdn.com/s3/m/9729d33f03768e9951e79b89680203d8ce2f6a21.png)
高速数字电路设计中的信号完整性分析在高速数字电路设计中,信号完整性分析是非常重要的一环。
信号完整性分析旨在确保信号在电路中能够准确、稳定地传输,从而避免信号失真或干扰,保证电路的性能和可靠性。
首先,我们需要了解信号完整性分析的基本概念。
信号完整性是指在一个电路中,信号从发送端到接收端能够保持原有的形态和正确的数值。
在高速数字电路设计中,信号往往受到许多因素的影响,如传输线特性、阻抗、反射、串扰等,这些因素都有可能导致信号失真。
因此,对信号完整性的分析和优化至关重要。
在进行信号完整性分析时,我们需要首先考虑传输线的特性。
传输线的特性包括传输速度、阻抗匹配、传输延迟等,这些特性直接影响信号传输的稳定性和速度。
通过对传输线的建模和仿真分析,可以帮助我们了解传输线对信号的影响,从而优化电路设计。
另外,阻抗匹配也是信号完整性分析中的重要内容。
当信号源和负载的阻抗不匹配时,会导致信号的反射和衰减,从而降低信号的质量和稳定性。
因此,在设计电路时,需要确保信号源和负载的阻抗能够有效匹配,以减少信号的失真和干扰。
此外,信号完整性分析还需要考虑信号的传输延迟和时序关系。
在高速数字电路中,信号传输的延迟会对数据的同步和稳定性产生影响。
通过时序分析和延迟优化,可以更好地控制信号的传输速度和有效减少时序误差。
最后,在进行信号完整性分析时,还需要考虑信号的功耗和信噪比。
功耗会影响电路的工作效率和稳定性,信噪比则会影响信号和噪声的比值,从而影响信号的准确性和清晰度。
因此,在设计电路时,需要综合考虑功耗和信噪比等因素,以实现信号的高质量传输。
总的来说,信号完整性分析是保证高速数字电路性能和可靠性的重要步骤。
通过对传输线特性、阻抗匹配、传输延迟、功耗和信噪比等方面的分析和优化,可以更好地保证信号在电路中的准确传输,避免信号失真和干扰,从而提高电路的性能和可靠性。
希望以上内容对您有所帮助。
信号完整性分析基础
![信号完整性分析基础](https://img.taocdn.com/s3/m/040f8475168884868762d626.png)
• SI的重要性
随着高频数字电路的不断发展,SI问题变得越 来越引人注目,数字电路的频率越高,出现SI 问题的可能性就越大,对设计工程师来说,他 的挑战也就越大。
SI简介 • SI的内容
信号完整性它包含两方面的内容,一是独立信 号的质量,另一个是时序。我们在电子设计的 过程中不得不考虑两个问题:信号有没有按时 到达目的地?信号达到目的地后它的质量如何? 所以我们做信号完整性分析的目的就是确认高 频数字传输的可靠性。
负占空比的定义及测试方法
负占空比是指信号的低电平保持时间占真个周期时间的比例
高电平保持时间的定义及测试方法
高电平保持时间是指信号从低到高跳变完成后信号持续的时间
低电平保持时间的定义及测试方法
低电平保持时间是指信号从高到低跳变完成后信号持续的时间
周期的定义及测试方法
周期是指有固定周期信号连续完成逻辑0和逻辑1跳变所需时间
SI简介 • 理想逻辑电压波形
在数字系统中,信号以逻辑‘0’或者‘1’的方 式从一个器件传输到另外一个器件,信号到底是 ‘0’还是‘1’一般来说它们都是有一个参考电 平的。在接收端的输入门里面,如果信号的电压 超过高电平参考电压Vih,则该信号被识别为高逻 辑;如果信号的电压低于低电平的参考电压Vil, 则该信号就被识别为低逻辑。我们下面这个图就 是一个理想的信号。
信号产生基本原理
晶振符号和等效电路
信号产生基本原理
谐振频率
从石英晶体谐振器的等效电路可知,它有两个谐振频率, 即(1)当L、C、R支路发生串联谐振时,它的等效阻抗 最小(等于R)。串联揩振频率用fs表示,石英晶体对于 串联揩振频率fs呈纯阻性,(2)当频率高于fs时L、C、R 支路呈感性,可与电容C。发生并联谐振,其并联频用fd 表示。根据石英晶体的等效电路,可定性画出它的抗— 频率特性曲线如上图所示。可见当频率低于串联谐振频 率fs或者频率高于并联揩振频率fd时,石英晶体呈容性。 仅在fs<f<fd极窄的范围内,石英晶体呈感性。
集成电路设计中的信号完整性
![集成电路设计中的信号完整性](https://img.taocdn.com/s3/m/27cd71b19a89680203d8ce2f0066f5335a8167fb.png)
集成电路设计中的信号完整性集成电路(IC)设计是现代电子工程的核心。
随着技术的进步,集成电路的复杂性不断增加,这给信号完整性(SI)带来了更大的挑战。
信号完整性是指信号在传输过程中保持其完整性和正确性的能力。
在集成电路设计中,信号完整性是一个至关重要的因素,因为它直接影响到系统的性能和可靠性。
信号完整性问题的产生信号完整性问题的产生主要是由于集成电路中的传输线路特性以及电磁干扰。
传输线路的特性会导致信号在传输过程中发生失真,而电磁干扰则会引起信号的噪声。
这些失真和噪声会影响到信号的质量和性能。
传输线路特性集成电路中的传输线路主要包括导线和连接器。
这些传输线路的特性会影响信号的传输。
例如,导线的电阻会导致信号的延迟,而导线的电感会导致信号的衰减。
此外,传输线路的阻抗不匹配也会引起信号的反射和衰减。
电磁干扰电磁干扰是指外部电磁场对信号的影响。
在集成电路中,电磁干扰主要来自于电源线、信号线和其他电子元件。
电磁干扰会引起信号的噪声,从而影响信号的质量和性能。
信号完整性分析的方法为了确保信号完整性,集成电路设计人员需要进行信号完整性分析。
信号完整性分析主要包括时域分析和频域分析两种方法。
时域分析时域分析是一种基于时间的方法,用于分析信号在时间上的行为。
时域分析的主要工具是示波器和信号分析仪。
通过时域分析,设计人员可以观察信号的波形,从而确定信号是否发生了失真或噪声。
频域分析频域分析是一种基于频率的方法,用于分析信号在频率上的行为。
频域分析的主要工具是频谱分析仪。
通过频域分析,设计人员可以确定信号的频率成分,从而确定信号是否受到了电磁干扰。
信号完整性设计原则为了确保信号完整性,集成电路设计人员需要遵循一些基本的设计原则。
最小化导线长度导线长度是影响信号传输延迟和衰减的主要因素。
因此,设计人员应该尽量减少导线的长度,以降低信号传输的延迟和衰减。
匹配阻抗为了减少信号的反射和衰减,设计人员应该确保传输线路的阻抗与信号源和负载的阻抗相匹配。
信号完整性分析
![信号完整性分析](https://img.taocdn.com/s3/m/f0f8b96be518964bcf847c44.png)
16
信号完整性分析规则设置
1、激励信号规则(Signal Stimulus)规则
设置激励信号的种类,包括3种选项:“Constant Level”表示激励信号 为某个常数电平;“Single Pulse”表示激励信号为单脉冲信号; “Periodic Pulse”表示激励信号为周期性脉冲信号 设置激励信号的初始电 平,仅对“Single Pulse”和“Periodic Pulse”有效,设置初始 电平为低电平选择Low Level,设置初始电平 为高电平选择High Level。
22
信号完整性分析规则设置
7、信号高电平(Signal Top Value)规则:信号高电 平定义了线路上信号在高电平状态下所允许的最小 稳定电压值,即信号上位值的最小电压,系统默认 单位是伏特。
23
信号完整性分析规则设置
8、信号基值(Signal Base Value)规则:信号基值与 信号高电平是相对应的。它定义了线路上信号在低 电平状态下所允许的最大稳定电压值,也即信号的 最大基值,系统默认单位是伏特。
10
常见的信号完整性问题
4、接地反弹
接地反弹是指由于电路中较大的电流涌动,在电源与 接地平面间产生大量噪声的现象。如大量芯片同步切 换时,会产生一个较大的瞬态电流从芯片与电流平面 间流过,芯片封装与电源间的寄生电感、电容和电阻 会引发电流噪声,使得零电位平面上产生较大的电压 波动(可能高达2V),足以造成其他元件误动作。 由于接地平面的分割(分为数字接地、模拟接地和屏 蔽接地等),可能引起数字信号传到模拟接地区域时, 会产生接地平面回流反弹。同样,电源平面分割也可 能出现类似危害。负载容性的增大、阻性的减少、寄 生参数的增大、切换速度的增高,以及同步切换数目 的增加,都可能导致接地反弹的增加。
信号完整性分析基础知识
![信号完整性分析基础知识](https://img.taocdn.com/s3/m/768dddcdb9f3f90f76c61ba0.png)
摘要如果您刚刚接触信号完整性分析,或者需要温习这方面的基础知识,那么本白皮书将是您的最佳选择。
在介绍基础知识之前,本白皮书首先回答一个最基本的问题“我需要了解哪些信息”?在基础知识部分,我们首先学习关键网络的识别和分析。
接着讨论传输线,以及因快速边缘率信号所产生的高频噪声引起的各种问题。
最后,我们将了解阻抗的概念,并在阻抗和信号完整性的背景下展开讨论。
现在,让我们从零开始学习信号完整性基础知识。
在开始任何类型的仿真或分析之前,您必须做好哪些准备工作,了解哪些信息呢?您的设计中可能包含成千上万个网络,需要全部进行仿真吗?恐怕不是—您没有足够的时间完成这项工作,事实上也完全没有必要。
因此,您要做的第一件事是确定您的关注对象—设计中究竟哪些是“关键”网络,如何识别这些“关键”网络?关键网络乍一看,“什么是关键网络”,答案似乎并不复杂。
我听到过各种各样的答案,譬如“时钟网络”、“高频网络”、“所有网络都很关键”、“频率超过100 MHz 的网络”,诸如此类,不胜枚举。
这些回答固然有一定的可取之处,但数字印刷电路板有一项您必须考虑的标志性网络特征,即边缘率和走线长度之间的关系。
些网络可能导致信号完整性 (SI) 或电磁干扰(EMI) 方面的问题时,您需要了解开关信号的速度,以确定是否需要首先关注该网络。
当今的硅工艺已纵深扩展至次微米空间,器件的物理特性决定了信号的边缘率越来越快。
归根到底,这意味着您的设计中可能存在问题的网络数量将远远超出您最初的设想。
因此,我们需要一些标准来识别关键网络。
那么,我们应该在哪里寻找这些信息来判断我们的分析对象呢?数据表提供了最快捷的器件管脚特性参考资料。
您可以在这些文档中找到电压摆幅、转换速率/开关时间、输入阻抗以及其他大量信息。
然后,您需要将这些开关数据与走线长度进行比较,确定是否存在问题。
这听起来有些复杂,甚至可能相当繁琐(如果必须手动完成此工作,的确如此)。
这时,您需要使用工具来提供帮助。
信号完整性分析基础
![信号完整性分析基础](https://img.taocdn.com/s3/m/a684251ea8114431b90dd888.png)
时间参数的定义及测试方法
• 时间参数包括:上升时间,下降时间,正 占空比,负占空比,高电平宽度,低电平宽 度,周期,频率,延迟
上升时间的定义及测试方法
上升时间是指信号从逻辑‘0’跳变到逻辑‘1’时所花费的时间; • 低频信号的上升时间测量
上升时间的定义及测试方法
上升时间是指信号从逻辑‘0’跳变到逻辑‘1’时所花费的时间; 高频信号的上升时间测量
衡量时序的参数
• 衡量时序的参数主要有四个:建立时间,保持 时间,传输延迟,相位偏移。数据是否按时到达 逻辑器件就跟时序里面的相位偏移和传输延迟有 关系,当数据波形的质量有问题时通常会直接影 响到信号的建立时间或者保持时间。因此任何模 块的通信信号都必须在保证信号质量的基础上再 保证时序的恰倒好处。
峰峰值的定义及测试方法平均值是指所捕获波形里面所有点幅度的平均值平均值的定义及测试方法周期平均值是指所捕获波形里面所指定一个周期里所有点幅度的平均值周期平均值的定义及测试方法正过冲是指高电平处的过冲值单位为v或mv或者用百分正过冲的定义及测试方法负过冲的定义及测试方法负过冲是指低电平处的过冲值单位为v或mv或者用百分比表正欠冲的定义及测试方法正欠冲是指高电平处的欠冲值单位为v或mv或者用百分比表负欠冲是指低电平处的欠冲值单位为v或mv或者用百分比表负欠冲的定义及测试方法时间参数的定义及测试方法时间参数包括
正过冲的定义及测试方法
正过冲是指高电平处的过冲值,单位为V或mV或者用百分 比表
负过冲的定义及测试方法
负过冲是指低电平处的过冲值,单位为V或mV或者用百分比表
正欠冲的定义及测试方法
正欠冲是指高电平处的欠冲值,单位为V或mV或者用百分比表
负欠冲的定义及测试方法
负欠冲是指低电平处的欠冲值,单位为V或mV或者用百分比表
信号完整性分析
![信号完整性分析](https://img.taocdn.com/s3/m/fdfcb450178884868762caaedd3383c4ba4cb45e.png)
信号完整性分析《信号完整性分析》作者以实践专家的视角提出了造成信号完整性问题的根源,特别给出了在设计前期阶段的问题解决方案。
这是面向电子工业界的设计工程师和产品负责人的一本具有实用价值的参考书,其目的在于帮助他们在信号完整性问题出现之前能提前发现并及早加以解决,同时也可作为相关专业本科生及研究生的教学指导用书。
作品目录第1章信号完整性分析概论1.1 信号完整性的含义1.2 单一网络的信号质量1.3 串扰1.4 轨道塌陷噪声1.5 电磁干扰1.6 信号完整性的两个重要推论1.7 电子产品的趋势1.8 新设计方法学的必要性1.9 一种新的产品设计方法学1.10 仿真1.11 模型和建模1.12 通过计算创建电路模型1.13 三种测量技术1.14 测量的作用1.15 小结第2章时域与频域2.1 时域2.2 频域中的正弦波2.3 频域中解决问题的捷径2.4 正弦波特征2.5 傅里叶变换2.6 重复信号的频谱2.7 理想方波的频谱2.8 从频域到时域2.9 带宽对上升时间的影响2.10 带宽及上升时间2.11 “有效的”含义2.12 实际信号的带宽2.13 带宽和时钟频率2.14 测量的带宽2.15 模型的带宽2.16 互连线的带宽2.17 小结第3章阻抗和电气模型3.1 用阻抗描述信号完整性3.2 阻抗的含义3.3 实际和理想的电路元件3.4 时域中理想电阻的阻抗3.5 时域中理想电容的阻抗3.6 时域中理想电感的阻抗3.7 频域中的阻抗3.8 等效电气电路模型3.9 电路理论和SPICE3.10 建模简介3.11 小结第4章电阻的物理基础4.1 将物理设计转化为电气性能4.2 互连线电阻的最佳近似4.3 体电阻率4.4 单位长度电阻4.5 方块电阻4.6 小结第5章电容的物理基础5.1 电容中的电流流动5.2 球面电容5.3 平行板近似5.4 介电常数5.5 电源、地平面和去耦电容5.6 单位长度电容5.7 二维场求解器5.8 有效介电常数5.9 小结第6章电感的物理基础6.1 电感的含义6.2 电感定律之一:电流周围将形成闭合磁力线圈6.3 电感定律之二:电感是导体上流过单位安培电流时,导体周围磁力线圈的韦伯值6.4 自感和互感6.5 电感定律之三:当导体周围的磁力线圈匝数变化时,导体两端将产生感应电压6.6 局部电感6.7 有效电感、总电感或净电感及地弹6.8 回路自感和回路互感6.9 电源分布系统和回路电感6.10 单位面积的回路电感6.11 平面和过孔接触孔的回路电感6.12 具有出砂孔区域的平面回路电感……第7章传输线的物理基础第8章传输线与反射第9章有损线、上升边退化和材料特性第10章传输线的串扰第11章差分对与差分阻抗附录A 100条使信号完整性问题最小化的通用设计原则附录B 100条估计信号完整性效应的经验法则附录C 参考文献附录D 术语表心得体会1.信号完整性分析概论1.1信号完整性的含义广义上来说,信号完整形式指,在高速产品设计中由互连线引起的所有的问题。
电子设计中的信号完整性分析
![电子设计中的信号完整性分析](https://img.taocdn.com/s3/m/bc6c7d4e0640be1e650e52ea551810a6f524c8eb.png)
电子设计中的信号完整性分析在电子设计过程中,信号完整性分析是非常重要的一部分。
信号完整性是指在信号传输过程中保持信号的准确性、稳定性和可靠性,确保信号不会失真或受到干扰。
在现代高速电子设备和系统中,信号完整性分析变得尤为关键,因为高速信号传输会受到许多因素的影响,如信号衰减、延迟、串扰和反射等问题。
信号完整性分析最常见的方法之一是使用传输线理论。
在高速信号传输中,信号被视为在传输线上传输的电磁波,传输线上的阻抗、衰减、延迟等参数都会影响信号的传输质量。
因此,通过对传输线的参数进行建模和仿真,可以帮助设计工程师分析和优化信号的传输性能。
另外,时域分析和频域分析也是信号完整性分析的重要工具。
时域分析可以用来研究信号在时间轴上的波形变化,包括上升时间、下降时间、峰值电压等参数;而频域分析则可以用来研究信号在频率域上的频谱信息,包括频率响应、谐波失真等参数。
通过时域分析和频域分析,设计工程师可以更全面地了解信号的特性和传输过程中可能出现的问题。
除了传输线建模和时频域分析,设计工程师还可以通过仿真软件进行信号完整性分析。
仿真软件可以模拟不同信号在设计电路中的传输过程,帮助工程师快速找出潜在的问题并优化设计方案。
通过仿真软件,设计工程师可以对不同参数进行调整,如传输线长度、阻抗匹配、信号的波形和频谱,以达到最佳的信号完整性。
此外,设计工程师在进行信号完整性分析时还需要考虑一些其他因素,如接地设计、功率分配、EMI(电磁干扰)和ESD(静电放电)等。
这些因素都可能会对信号的传输过程造成影响,设计工程师需要综合考虑这些因素,以保证信号的可靠传输和稳定性。
总的来说,在电子设计中的信号完整性分析是保证高速电子系统可靠性和稳定性的关键步骤。
通过传输线建模、时频域分析、仿真软件以及综合考虑其他因素,设计工程师可以找出潜在的问题并优化设计方案,确保信号的准确传输和稳定性,从而提高电子系统的性能和可靠性。
通过不断学习和应用信号完整性分析的方法,设计工程师可以更好地应对日益复杂的电子系统设计挑战,推动电子科技的发展。
信号完整性分析
![信号完整性分析](https://img.taocdn.com/s3/m/e0e926ce5acfa1c7ab00cc5c.png)
信号完整性分析
信号完整性背景
信号完整性问题引起人们的注意,最早起源于一次奇怪的设计失败现象。
当时,美国硅谷一家著名的影像探测系统制造商早在7 年前就已经成功设计、制造并上市的产品,却在最近从生产线下线的产品中出现了问题,新产品无法正常运行,这是个20MHz 的系统设计,似乎无须考虑高速设计方面的问题,更为让产品设计工程师们困惑的是新产品没有任何设计上的修改,甚至采用的元器件型号也与原始设计的要求一致,唯一的区别是IC 制造技术的进步,新采购的电子元器件实现了小型化、快速化。
新的器件工艺技术使得新生产的每一个芯片都成为高速器件,也正是这些高速器件应用中的信号完整性问题导致了系统的失败。
随着集成电路(IC)开关速度的提高,信号的上升和下降时间迅速缩减,不管信号频率如何,系统都将成为高速系统并且会出现各种各样的信号完整性问题。
在高速PCB 系统设计方面信号完整性问题主要体现为:工作频率的提高和信号上升/下降时间的缩短,会使系统的时序余量减小甚至出现时序方面的问题;传输线效应导致信号在传输过程中的噪声容限、单调性甚至逻辑错误;信号间的串扰随着信号沿的时间减少而加剧;以及当信号沿的时间接近0.5ns 及以下时,电源系统的稳定性下降和出现电磁干扰问题。
信号完整性分析基础
![信号完整性分析基础](https://img.taocdn.com/s3/m/520ff922c281e53a5802ff9b.png)
周期均方根值的定义及测试方法
周期均方根值是指整个捕获波形上指定一个周期内所有点幅度 的均方根值,其单位为V或者mV;
最大值的定义及测试方法
最大值是指所捕获波形里面振幅最大点所处位置的电压值, 单位为V或者mV;
最小值的定义及测试方法
SI简介 • 理想逻辑电压波形
SI简介 • 接收端的实际波形
SI简介
• 数据采样及时序例子
数据越是复杂,里面就包含很多的二进制码,这些 二进制码将组成一连串的波形,而不是简单的一个 方波。接收端的器件就需要采样这些波形以便获取 相关的二进制信息。数字采样的过程通常是通过时 钟信号的上升沿或者下降沿来触发的,我们下面这 个图就是个简单的例子。
SI简介
• 理想逻辑电压波形
在数字系统中,信号以逻辑‘0’或者‘1’的方 式从一个器件传输到另外一个器件,信号到底是 ‘0’还是‘1’一般来说它们都是有一个参考电 平的。在接收端的输入门里面,如果信号的电压 超过高电平参考电压Vih,则该信号被识别为高逻 辑;如果信号的电压低于低电平的参考电压Vil, 则该信号就被识别为低逻辑。我们下面这个图就 是一个理想的信号。
SI 简介 • 数据采样及时序例子
SI简介 • 数据采样及时序例子
从这个图里面我们可以清楚地看到数据必须准 时到达逻辑门而且在接收端期间开始锁存前必 须确定它们的逻辑状态。任何数据的延迟或者 失真都会导致数据传输的失败。失败有两种可 能:一个是因为接收端根本就无法识别数据; 另一个是接收端虽然识别了数据,但数据因 为失真而导致错误。
时间参数的定义及测试方法
• 时间参数包括:上升时间,下降时间,正 占空比,负占空比,高电平宽度,低电平宽 度,周期,频率,延迟
信号完整性分析
![信号完整性分析](https://img.taocdn.com/s3/m/c187d4db5022aaea998f0f3b.png)
信号完整性是指在信号线上的信号质量。
当电路中信号能以要求的时序和电压幅度到达接收端时,该电路就有很好的信号完整性;当信号不能正常响应或者信号质量不能使系统长期稳定工作时,就出现了信号完整性问题。
板级信号完整性主要表现为延迟、反射、串扰、同步切换噪声、过冲和下冲、地弹、振铃和EMI(Electro Magnetic Interference)即电磁干扰等几方面。
延迟是指信号在PCB板上以有限的速度传输,信号从发送端发出到达接收端,其间存在一个传输延迟。
信号的延迟会对系统的时序产生影响,过长的延迟可导致时序混乱,由于本系统采用多块电路板级联结构设计,信号在单块PCB上的延时可以忽略,但在板级间通过接插件的传输,尤其是顶层板到底层板的信号传输,需要通过中间两块板,信号的走线路程相对很长,时间的延迟不可忽略。
为此,系统选用性能良好尤其电气特性良好的接插件,同时考虑关键控制信号要尽可能减少传输路程,布局布线时优先考虑。
反射是在传输线上的回波,信号经过传输线将一部分功率传给负载的同时,由于阻抗不匹配,有一部分能量反射回源端。
如果阻抗匹配(源端阻抗、传输线阻抗与负载阻抗相等),信号全部传给负载,反射不会发生。
减小和消除反射的方法是根据传输线的特性阻抗在其发送端或接收端进行终端阻抗匹配,从而使源反射系数或负载反射系数为零。
具体做法是在靠近源端的地方串联进去一几十欧姆的电阻,该方法简单有效,消耗功率小。
串扰是指当信号在传输线上传播时,因电磁耦合对相邻的传输线产生不期望的电压噪声干扰。
过大的串扰可能引发电路的误触发,导致系统无法正常工作。
串扰是由电磁耦合形成的,根据容性耦合和感性耦合的不同,产生的干扰有互容串扰和互感串扰。
互容串扰是信号线间的容性耦合,当信号线在一定长度上靠得比较近的时候就会发生,客服的方法有两种,适当减少两根走线间的并行距离和在两根走线间穿插地线。
互感串扰是由布线时产生的环路引起的,克服的办法是在布线时避免环路的出现。
信号完整性分析
![信号完整性分析](https://img.taocdn.com/s3/m/f00471f051e2524de518964bcf84b9d528ea2c14.png)
信号完整性分析信号完整性分析是一种信号传输效率的重要部分,尤其是在网络技术发展快速的今天,它越来越受到重视。
信号完整性分析是研究电气、电子、光学、磁学信号完整性状态的过程,可以帮助分辨信号的有效和无效,提高数据传输的可靠性,帮助解决科技发展中存在的一些技术问题。
信号完整性分析通常包括对信号传输效率的质量检测、时延检测和比特误码率检测三种检测项目。
首先,在信号传输效率的质量检测中,一般是检查传输信号的模拟量,电源和电场的强度等,以及收发端的工作状态等,其检测结果可以直接反映出信号传输效率的水平。
其次,在时延检测项目中,通常是检查收发端传输信号之间的时间差和时间关系,以及数据传输周期,其检测结果可以反映出网络中信号传输的延迟情况。
最后,在比特误码率检测项目中,一般是检查网络数据传输中比特误码率的情况,其检测结果可以反映出网络数据传输的质量情况,并帮助提高数据传输的可靠性。
为了实现信号完整性分析,一般常用的技术手段有时域反射技术、频域反射技术和时频域反射技术等。
时域反射技术是以时域为特征参数,使用特定的精密仪器测量信号传输状态,以判断电线是否损坏,其优点是可以在短信号情况下,迅速准确地判断出当前的信号状态,而且安全、快捷、经济。
频域反射技术是以频域为特征参数,使用专业的检测仪器,根据传输信号的频率和幅度,对网络的信号完整性进行检测,其优点是可以检测出高频信号的变化,并且可以迅速地检出信号是否受到破坏。
时频域反射技术是利用时间和频率域上的改变,以及信号传输过程中的调制参数等,进行信号完整性检测,其优点是能够在路径衰减和多径效应影响较大的情况下,也能获得准确的检测结果。
信号完整性分析在网络技术发展中,起到了重要的作用,它不仅有助于提高数据传输的稳定性和可靠性,而且可以帮助解决传输中的一些暂时性问题,让信号传输更加顺畅。
然而,在信号完整性分析领域,也存在一些需要完善的地方。
例如,由于信号的传输深度、速度等因素的影响,仍存在比特误码率较高的情况;此外,也存在着传输过程中存在延时的情况,因此,在信号完整性分析方面仍需要持续改进和完善技术。
信号完整性分析
![信号完整性分析](https://img.taocdn.com/s3/m/e36cf1d0fbb069dc5022aaea998fcc22bcd1437d.png)
信号完整性分析信号完整性分析是电路和系统设计中的一个重要方面,它是一种检测电路的可靠性的手段,可以帮助设计者发现潜在的问题,并在设计过程中提出优化建议。
信号完整性分析可以帮助确定信号的完整性,以及信号在整个电路和系统中是否能够按照设计要求传输。
信号完整性分析是一种新兴的分析技术,它可以在电路或系统设计中进行准确定量测量分析,以识别导致信号完整性问题的潜在因素。
在这种分析中,将占用电路元件名称、电特性、信号完整性参数等形成数据库,以预测整体系统的信号完整性。
信号完整性分析的主要内容包括信号传输,电源稳定性,系统集成和信号干扰。
在信号传输方面,主要考虑信号路径中阻抗不匹配、过载、相位差和调制等问题;电源稳定性方面,要考虑电路稳定性、电源类型和电压噪声等;系统集成方面,考虑的是两个系统的连接以及多种子系统之间的兼容性;信号干扰方面,要考虑的是环境中的干扰和其他系统的干扰。
有一些软件可用于对信号完整性进行分析,这些软件可以从电路参数和设计要求出发,根据用户定义的模型进行分析,从而决定电路是否能够满足信号完整性要求。
此外,信号完整性分析可以用于验证复杂系统的功能,确保系统符合设计要求。
它还可以用于设计高性能、低噪声的高精度性能电路,以及确定可靠性要求。
信号完整性分析是一项先进的数字设计技术,它可以帮助电路设计者们发现潜在的问题,分析信号传输过程中所发生的可能问题,从而为设计提供有效的指导。
它能够有助于提升电路设计的性能,帮助设计者更好地为用户提供优质的产品,从而提升市场竞争力。
因此,信号完整性分析是电路和系统设计中不可或缺的一部分,它可以有效帮助电路设计者识别可能存在的问题,并在设计过程中提供有效的指导,从而确保电路和系统能够满足用户的要求。
信号完整性分析
![信号完整性分析](https://img.taocdn.com/s3/m/5d7e20aa846a561252d380eb6294dd88d0d23dcd.png)
信号完整性分析信号完整性分析是一项重要的工程学领域,它涉及到信号传输的可靠性和准确性。
在信息传递的过程中,信号会受到各种干扰和衰减,因此确保信号的完整性对于正确地接收和解读信息至关重要。
本文将介绍信号完整性分析的基本概念、方法和应用。
信号完整性分析是一种通过模拟和仿真来评估信号传输过程中所遇到的问题和挑战的方法。
在进行信号完整性分析时,通常需要考虑传输线路的特性、干扰源、噪声和电磁兼容性等因素。
通过对这些因素进行建模和分析,可以预测信号的衰减、失真和延迟,进而优化信号传输系统的设计。
信号完整性分析的基本方法之一是建立传输线路的数学模型。
传输线路可以是电线、导线、电缆或光纤等,而其特性包括传输速度、电阻、电感和电容等。
通过将这些特性纳入传输线路模型,可以计算得到信号在传输过程中的衰减和失真情况。
另一种常用的信号完整性分析方法是时域和频域分析。
时域分析关注信号在时间轴上的变化情况,可用于研究信号的波形、幅度和时延等特性。
频域分析将信号转换为频率域,利用傅里叶变换等工具可以获取信号的频谱分布和频率响应等信息。
通过时域和频域分析,可以全面了解信号的特性,从而优化信号传输系统的设计和调整。
信号完整性分析在通信、电子、计算机和电路设计等领域都有广泛的应用。
在高速传输系统中,如高速网络、数据中心和处理器之间的连接,信号完整性分析能够帮助设计人员解决信号衰减、串扰和时钟抖动等问题,确保高频信号的准确传输。
在电子设备设计中,信号完整性分析可以评估电路板布局和信号线路的设计,提前发现信号干扰和时延问题,并进行相应的优化。
随着智能电子产品的发展和应用场景的增多,对于信号完整性分析的需求也越来越高。
例如,手机和平板电脑等移动设备需要在有限的传输资源下实现高速数据传输,而车载电子系统需要能够稳定传输大量的音视频数据。
在这些应用中,信号完整性分析为保证数据传输的稳定性和准确性提供了必要的技术支持。
总之,信号完整性分析在现代通信和电子领域中具有重要的地位和作用。
信号完整性的分析报告
![信号完整性的分析报告](https://img.taocdn.com/s3/m/836a65d380c758f5f61fb7360b4c2e3f572725a9.png)
信号完整性的分析报告关于信号完整性的分析报告篇一:信号完整性分析--信号反射信号沿传输线向前传播时,每时每刻都会感受到一个瞬态阻抗,这个阻抗可能是传输线本身的,也可能是中途或末端其他元件的。
对于信号来说,它不会区分到底是什么,信号所感受到的只有阻抗。
如果信号感受到的阻抗是恒定的,那么他就会正常向前传播,只要感受到的阻抗发生变化,不论是什么引起的(可能是中途遇到的电阻,电容,电感,过孔,PCB转角,接插件),信号都会发生反射。
那么有多少被反射回传输线的起点?衡量信号反射量的重要指标是反射系数,表示反射电压和原传输信号电压的比值。
反射系数定义为:ρ= Z2Z1。
其中:Z1为变化前的阻 Z2Z1抗,Z2为变化后的阻抗。
假设PCB线条的特性阻抗为50欧姆,传输过程中遇到一个100欧姆的贴片电阻,暂时不考虑寄生电容电感的影响,把电阻看成理想的纯电阻,那么反射系数为:ρ=100501,信号有1/3被反射回源端。
如果传输信号的电压是3.3V电压,100503 反射电压就是1.1V。
纯电阻性负载的反射是研究反射现象的基础,阻性负载的变化无非是以下四种情况:阻抗增加有限值、减小有限值、开路(阻抗变为无穷大)、短路(阻抗突然变为0)。
阻抗增加有限值:反射电压上面的例子已经计算过了。
这时,信号反射点处就会有两个电压成分,一部分是从源端传来的3.3V电压,另一部分是在反射电压1.1V,那么反射点处的电压为二者之和,即4.4V。
阻抗减小有限值:仍按上面的例子,PCB线条的特性阻抗为50欧姆,如果遇到的电阻是30欧姆,则反射系数为ρ=3050=-0.25,反射电压为3.3*(-0.25)V= -0.825V。
此时反射点电压为3.3V+3050(-0.825V)=2.475V。
开路:开路相当于阻抗无穷大,反射系数按公式计算为1。
即反射电压3.3V。
反射点处电压为6.6V。
可见,在这种极端情况下,反射点处电压翻倍了。
短路:短路时阻抗为0,电压一定为0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号完整性分析基础系列之二十四——关于抖动(上)美国力科公司深圳代表处汪进进写在前面的话抖动话题是示波器测量的最高境界,也是最风云变换的一个话题,这是因为抖动是示波器测量的诸多功能中最和“数学”相关的。
玩数学似乎是需要一定境界的。
“力科示波器是怎么测量抖动的?”,“这台示波器抖动测量准不准?”,“时钟抖动和数据抖动测量方法为什么不一样?”,“总体抖动和峰峰值抖动有什么区别? ”,“余辉方法测量抖动不是最方便吗?”,“抖动和眼图,浴盆曲线之间是什么?”,…… 关于抖动的问题层出不穷。
这么多年来,在完成了“关于触发(上)、(下)”和“关于眼图(上)、(下)”,“关于S参数(上)(下)”等三篇拙作后,我一直希望有一篇“关于抖动”的文章问世,但每每下笔又忐忑而止,怕有谬误遗毒。
今天,当我鼓起勇气来写关于抖动的时候,我需要特别说明,这是未定稿,恳请斧正。
抖动和波形余辉的关系有一种比较传统的测量抖动的方法,就是利用余辉来查看信号边沿的变化,然后再用光标测量变化的大小(如图1所示),后来更进了一步,可以利用示波器的“余辉直方图”和相关参数自动测量出余辉的变化范围,这样测量的结果就被称为“抖动”。
这个方法是在示波器还没有“测量统计”功能之前的方法,但在90年代初力科发明了测量统计功能之后,这个方法就逐渐被淘汰了。
图1 传统的抖动测量方法这种传统的方法有下面这些缺点:(1)总会引入触发抖动,因此测量的结果很不准确。
(2)只能测量某种参数的抖动,譬如触发上升沿,测量下降沿的余辉变化,反应了宽度的抖动,触发上升沿,测量相邻的上升沿的余辉变化,反应了周期的抖动。
显然还有很多类型的抖动特别是最重要的TIE抖动无法测量出来。
(3)抖动产生的因果关系的信息也无从得知。
定义抖动的四个维度和抖动相关的名词非常多:时钟抖动,数据抖动; 周期抖动,TIE抖动,相位抖动,cycle-cycle抖动; 峰峰值抖动(pk-pk jitter),有效值抖动(rms jitter);总体抖动(Tj),随机抖动(Rj),固有抖动(Dj);周期性抖动,DCD抖动,ISI抖动,数据相关性抖动; 定时抖动,基于误码率的抖动; 水平线以上的抖动和水平线以下的抖动…… 这些名词反应了定义抖动的不同维度。
回到“什么是抖动”的定义吧。
其实抖动的定义一直没有统一,这可能也是因为需要表达清楚这个概念的维度比较多的原因。
目前引用得比较多的定义是: Jitter is defined as the short-term variations of a digital signal’s significant instants from their ideal positions in time. 就是说抖动是信号在电平转换时,其边沿与理想位置之间的偏移量。
如图2所示,红色的是表示理想信号,实际信号的边沿和红色信号边沿之间的偏差就是抖动。
什么是“理想位置”,“理想位置”是怎么得到的?这是被问到后最不好回答的问题。
图2 抖动的定义我认为描述抖动离不开“四个维度”。
仅仅是说“我想测量抖动”,这是不完整的表达,我建议的一种完整的表达方式是:我想测量100万样本(一定数量样本)下的时钟抖动(或数据抖动)的周期抖动(或TIE抖动,相位抖动,cycle-cycle抖动)的峰峰值抖动和有效值抖动(或Tj,Rj,Dj)。
具体到测量方法上就是先测量被测信号的周期(或TIE,Cycle-cycle period)等参数,然后持续测量出100万个甚至更多样本,将这100万个样本下的的最大值和最小值相减即为峰峰值抖动。
但是10的12次方样本很难直接测量出来,因为需要消耗的时间太长,所以就改用数学模型预测的方法进行推导。
上面表达中涉及到抖动定义的四个维度是:1,测量抖动的样本数/误码率。
2,被测信号的类型。
分为时钟抖动和数据抖动。
3,关注的抖动参数的类型。
主要有周期抖动,TIE抖动,cycle-cycle抖动。
4,抖动测量结果的类型。
主要有峰峰值抖动,有效值抖动,总体抖动(Tj),固有抖动(Dj),随机抖动(Rj)。
抖动是关于误码率的函数我们下意识里可能会问,被测信号的抖动最坏能有多大?其实,随着观察到的测量样本数的增加,这个问题的答案也就不一样。
没有样本数的限定,这个问题没有一个收敛性的答案。
抖动是关于误码率的函数。
误码率为10e-12(10的-12次方)即表示发送端发送10e+12(10的12次方)个比特位的信号,在接收端出现误码的比特位个数是一个。
测量10e-12误码率下的抖动可以理解为测量10e+12样本下的抖动。
时钟抖动和数据抖动/水平线以上的抖动和水平线以下的抖动当我们在定义抖动具有四个维度时,特别强调被测信号的类型分为时钟抖动和数据抖动,这是否意味着两种抖动的测量方法是完全不一样的呢? 其实,我们可以将时钟信号理解为一种特别的数据。
所有用于数据抖动的测量方法理论上都可以用于测量时钟,只是因为时钟信号非常简单,是规则的010101…码型,因此,对于时钟抖动通常是通过直接测量一定数量的样本(样本数量应该是多少一般也没有统一的定义,甚至在有的时钟芯片手册中也没有说明)的参数结果,统计得出参数变化大小的pk-pk值,即为峰峰值抖动(pk-pk jitter)。
峰峰值抖动随着测量时间的增加,测量结果会变大。
峰峰值抖动的测量结果不具备重复性,因为随机抖动理论上是无限发散的。
有效值抖动(rms jitter)表示参数变化大小的标准偏差值。
我们将这种定量方法直接测量出来的抖动形象地称为“水平线以上的抖动”,因为这种抖动结果是不需要借助数学模型进行推导和预测的。
这种方法的抖动也叫“定时抖动(Timing jitter)”。
时钟抖动关注的信号参数类型主要有周期(period),TIE(Time Interval Error)和相邻周期间(Cycle-Cycle Period),对于时钟信号的单独研究,通常三种参数的抖动都需要测量。
具体这三种抖动参数的介绍,请参考胡为东的文章《抖动的分类》。
数据抖动关注的是一定误码率下的TIE抖动,现在的串行数据测量领域通常默认的都是10e-12误码率,也就是说需要测量10e+12样本,这需要示波器测量几个小时甚至几天的时间,即使象力科的第四代示波器那么快的数据处理能力也无法“硬”测量出10e+12样本的参数来作为测量结果,因此,就需要根据某种数学模型来根据当前一定数量的样本数测量的结果来“预测”10e+12的样本下的抖动结果,这种基于数学模型预测的方法测量的抖动叫“水平线以下的抖动”。
所谓抖动的风云变幻即在于一直在争论使用什么样的数学模型来预测抖动是最准确的。
很多抖动相关的文章就是在用一连串的数学公式来说明作者发现的一种新模型是更准确的,看得您云里来雾里去的。
认识TIE抖动为什么TIE抖动是作为测量数据抖动Tj的默认参数呢? 我想里引用胡为东文章《串行数据系统抖动基础》中的介绍可以帮助我们理解TIE 的重要性:“通信系统的实质是通过一段介质发送或者接收数据。
发送端TX发出不同编码形式的高速串行数据,经过一段链路传输后到达接收端RX,串行数据在传输过程中会受到各种各样的干扰,引起数据的抖动,串行数据系统工作的目的就是要尽可能的减少这些干扰的影响使得接收端能准确无误的恢复出发送端发送过来的数据。
由于接收端(一般是由D触发器构成)需要使用时钟采样来完成同步接收数据,因此时钟信号和数据信号之间的同步关系是非常重要的,即必须要满足一定的建立时间和保持时间。
因此串行数据时钟系统结构的变化最根本上是为了满足时钟与数据之间的时序关系,以便接收端能正确的接收到信号。
当数据信号的电平发生翻转后,时钟边沿与数据边沿需要一定的建立时间来锁存数据;同时,数据信号的电平需要一定的保持时间让时钟能稳定的锁存数据。
为了让建立时间和保持时间最大化,时钟最好能出现在数据比特位的中央。
但是由于数据或者时钟存在抖动,抖动较大时,无法满足建立时间和保持时间的要求,D触发器可能输出错误的数据,产生误码。
特别是在高速数字电路中,速率的增加导致建立时间和保持时间的余量越来越小,由于抖动产生误码的概率越来越高,所以,时钟和数据的抖动测试非常重要。
研究串行数据系统的抖动主要是研究时钟与串行数据的相对抖动,而不是单纯的指时钟抖动或者数据抖动。
也就是说即使时钟有很大的抖动,但是只要数据也存在同样大的抖动,则两者之间的相对抖动仍旧很小,时钟和数据之间的建立时间和保持时间也仍旧能够得到保证。
”如何将时钟和数据之间的关系联系起来呢? TIE(Time Interval Error)!TIE为作为抖动中最重要的一个参数,我们需要对它有深刻认识。
TIE定义为被测信号边沿与“参考时钟”边沿之间的时间间隔。
具体计算中是以和参考电平的交叉点的时刻来计算的,如图3所示。
TIE是在信号和参考时钟的每一个边沿都进行测量。
图3 TIE的定义产生“参考时钟”(也就是前面抖动定义中提到的“理想位置”)有几种方法,比较常用的方法是从被测信号中通过软件PLL进行恢复。
有时侯是直接定义一个理想的参考时钟,或者是在外部引入一个硬件时钟作为参考。
PLL的特性是准确测量抖动的关键所在,因为产生的参考时钟的误差将直接影响到TIE的测量结果,并进而影响到最终的抖动测量结果。
关于PLL的具体细节请参考我们信号完整分析基础系列之三《串行数据测试中的CDR》峰峰值抖动和总体抖动峰峰值抖动(pk-pk jitter)是水平线以上的抖动,是直接测量出来的。
总体抖动(Tj)是水平线以下的抖动,是通过数学模型预测出来的。
很多时候当您说要测量Tj时,我就知道您具体要测量什么了,因为这里面有几个维度是业界的默认设置:Tj通常是指测量10的12次方样本下的数据抖动的TIE抖动的峰峰值抖动(pk-pk jitter)。
前面已述,一般都默认了Tj是基于10e-12的误码率的,默认关注的抖动参数是TIE。
抖动和眼图的关系眼图在一定程度上反应了抖动的大小,眼图越“干净”,眼图展开程度越大,说明抖动值越小。
眼图的交叉位置在水平轴的区间越小,抖动越小。
在光模块行业,过去常通过眼图交叉点位置形成的余辉直方图来直接测量抖动,余辉直方图的最左到最右边的大小范围即为峰峰值抖动,如图4所示。
在HDMI测量规范中对抖动的定义中也是采用这种方法。
按前面所述,这是一种水平线以上的抖动。
交叉点的余辉直方图呈现高斯分布,说明抖动的行为主要表现为随机抖动,反之,如果余辉直方图表现为双峰分布,说明有明显的固有抖动。
图4 抖动和眼图的关系。