国内超高分子量聚乙烯纤维生产概况
世界三大高性能纤维简介

世界三⼤⾼性能纤维简介中国⾼性能纤维复合材料需求将⽇渐强劲,尤其是航天航空、汽车、风电等领域。
根据JEC集团研报显⽰,最近⼏年全球复合材料需求增长⼀半都在亚洲,亚洲尤其中国市场增长较快,预计到2013年中国将占据全球复合材料市场增长43%的份额;⽬前国内复合材料⽤于交通运输的⽐例相对⽐较⼩,只占5%,低于全球24%平均⽔平;在⼯业设备领域⽐例为10%,也低于全球26%的平均⽔平。
⽬前⾼性能纤维在飞机上的⽐例为50%-80%,波⾳公司预计到2025年中国运输飞机数量将是原有的3倍;国内风电和汽车领域需求旺盛,⾼性能纤维复合材料作为⼀种先进的轻质⾼强材料,符合风⼒发电机组⼤容量发展趋势,迎合汽车安全、轻型化发展⽅向。
世界三⼤⾼性能纤维:(1)芳纶纤维:⽬前全球芳纶纤维整体已出现供过于求局⾯,但其中芳纶1414的供求形势依旧偏紧。
国内芳纶纤维消费旺盛,年复合增长率约为30%。
我们认为,随着供给增加,国内⾼温滤料⽤芳纶1313或将出现产能过剩,芳纶1313在需有⼀定技术含量的防护领域、芳纶纸⾼端产品应⽤领域市场潜⼒⼤;国内芳纶1414主要依靠进⼝,供给是关键。
芳纶简介 芳纶全称为"聚对苯⼆甲酰对苯⼆胺",英⽂为Aramid fiber(杜邦公司的商品名为Kevlar),是⼀种新型⾼科技合成纤维,具有超⾼强度、⾼模量和耐⾼温、耐酸耐碱、重量轻等优良性能,其强度是钢丝的 5~6倍,模量为钢丝或玻璃纤维的2~3倍,韧性是钢丝的2倍,⽽重量仅为钢丝的1/5左右,在560度的温度下,不分解,不融化。
它具有良好的绝缘性和抗⽼化性能,具有很长的⽣命周期。
芳纶的发现,被认为是材料界⼀个⾮常重要的历史进程。
芳纶纤维是重要的国防军⼯材料,为了适应现代战争的需要,⽬前,美、英等发达国家的防弹⾐均为芳纶材质,芳纶防弹⾐、头盔的轻量化,有效提⾼了军队的快速反应能⼒和杀伤⼒。
在海湾战争中,美、法飞机⼤量使⽤了芳纶复合材料。
超高分子量聚乙烯纤维的制备方法及性能研究

超高分子量聚乙烯纤维的制备方法及性能研究超高分子量聚乙烯纤维是一种具有出色力学性能和化学稳定性的高分子纤维材料。
它在许多领域具有广泛的应用前景,如航空航天、兵器装备、建筑材料等。
本文将介绍超高分子量聚乙烯纤维的制备方法以及对其性能的研究。
一、制备方法超高分子量聚乙烯纤维的制备方法有多种,其中常见的包括溶液纺丝法、熔融纺丝法和湿法纺丝法。
1. 溶液纺丝法溶液纺丝法是一种将聚乙烯溶解于适当溶剂中,通过纺丝成纤维的方法。
该方法可分为湿法和干法两种。
湿法溶液纺丝法主要步骤包括聚乙烯的溶解、纺丝、凝固和拉伸。
首先,将聚乙烯颗粒与溶剂在高温下混合搅拌,使其充分溶解形成粘度适宜的溶液。
然后,将溶液通过纺丝针孔均匀喷出,形成纤维。
接着,纤维进入凝固液中,使溶剂迅速挥发,纤维得以固化。
最后,对纤维进行拉伸,提高其分子链的有序排列度,增强纤维的力学性能。
2. 熔融纺丝法熔融纺丝法是将聚乙烯通过加热使其熔化,并通过纺丝成纤维的方法。
该方法适用于超高分子量聚乙烯的制备。
熔融纺丝法主要步骤包括加热、挤出、拉伸和固化。
首先,将聚乙烯颗粒加热到熔点以上,使其熔化形成熔融聚乙烯。
然后,将熔融聚乙烯通过挤出机加压挤出,形成纤维。
接着,纤维进入拉伸机,进行拉伸,使其分子链有序排列。
最后,对纤维进行固化,使其冷却并固化为超高分子量聚乙烯纤维。
3. 湿法纺丝法湿法纺丝法是一种将聚乙烯溶解在适当溶剂中,通过纺丝成纤维的方法。
该方法适用于超高分子量聚乙烯的制备。
湿法纺丝法主要步骤包括聚乙烯的溶解、纺丝、凝固和固化。
首先,将聚乙烯颗粒与溶剂在高温下混合搅拌,使其充分溶解形成粘度适宜的溶液。
然后,将溶液通过纺丝针孔均匀喷出,形成纤维。
接着,纤维进入凝固液中,使溶剂迅速挥发,纤维得以固化。
最后,对纤维进行固化,使其具有一定的物理性能。
二、性能研究超高分子量聚乙烯纤维的性能研究主要包括力学性能、热性能和化学稳定性等方面。
1. 力学性能超高分子量聚乙烯纤维具有出色的力学性能,如高拉伸强度、高模量和较大的延伸率等。
超高分子量聚乙烯纤维 生产工艺

超高分子量聚乙烯纤维(Ultra-high molecular weight polyethylene fiber,UHMWPE)是一种具有极高分子量和极高强度的聚合物纤维,具有优异的耐磨性、抗冲击性和化学稳定性,被广泛应用于防弹衣、船舶绳索、挡板等领域。
其制备工艺包括高分子合成、纺丝、拉伸、热处理等多个步骤,每个步骤都对最终产品的性能有着重要影响。
本文将对超高分子量聚乙烯纤维的生产工艺进行详细介绍,以期为相关领域的科研工作者和生产从业人员提供参考。
一、高分子合成1. 原料选择超高分子量聚乙烯的合成首先需要选择合适的乙烯单体,通常采用乙烯气相聚合工艺,从乙烯裂解制备乙烯单体,并对其进行高压重聚合反应。
2. 聚合反应聚合反应是决定聚合物分子量的关键步骤,通过调控压力、温度、催化剂种类等条件,可以控制聚合物分子量的分布和平均分子量。
3. 分子量调控超高分子量聚乙烯的聚合反应需要特别注意分子量的调控,通常采用添加少量氧化剂或控制温度降低分子量。
二、纺丝1. 溶液制备将高分子量聚乙烯溶解于特定溶剂中,通常采用烷烃类溶剂如正癸烷或苯、甲苯等。
2. 纺丝设备选择适当的纺丝设备,通常采用旋转式纺丝或者湿法纺丝工艺,辅以高压气体喷射,来制备具有纳米级结晶的纤维。
三、拉伸1. 变形温度将纺丝得到的初纤维加热到高温,使其变软化,然后进行拉伸,使其分子链得到定向排列,提高纤维的拉伸强度。
2. 拉伸倍数通过控制拉伸倍数,可以调控纤维的性能,如强度和模量等。
四、热处理1. 结晶行为超高分子量聚乙烯纤维在热处理过程中会发生结晶,通过控制热处理温度和时间,可以调控纤维的结晶度和晶体尺寸。
2. 力学性能热处理对纤维的力学性能有显著影响,适当的热处理能够提高纤维的抗拉强度和模量。
以上就是超高分子量聚乙烯纤维的生产工艺的简要介绍,生产超高分子量聚乙烯纤维是一个相对复杂的过程,需要科学合理地设计每个环节的工艺参数,以获得优异的产品性能。
超高聚乙烯纤维(1)

影响纺丝成型的因素: 溶液的浓度:溶液太稀,虽然大分子间缠结 少,易保持原有形态,但拉伸速度很慢,不利 于伸展;浓度较大,缠结点太多,同样无法达 到高倍拉伸的目的 因此适宜的浓度:半稀状态,一般为0.2%--10% 左右。
超倍拉伸: 在拉伸初始阶段,高聚物的结晶层破坏成为小结晶块, 它们沿着拉伸方向与无定形区交替形成微纤维,在原结 构中连结着不同层晶的连结分子,变为晶块间的连结分 子,位于微纤维的边界层。进一步拉伸时,微纤维产生 剪切变形,同时完全伸直的连结分子数增加,在较高的 拉伸温度下,排列整齐的连结分子,可能结晶化为长的 伸直链结晶。它的分子结构是具有-c—c-主链化学键,主 键间具有很高的结合强度。分子的取向程度控制HMPE 纤维的模量。
高性能纤维,是芳纶的2/3,是碳纤维的1/2.
●还具有耐紫外线辐射、耐化学腐蚀、比能量吸 收高、介电常数低、电磁波透射率高、摩擦 系数低及突出的抗冲击、抗切割等优异性能。
2.发展及现状
1979 年荷兰DSM 公司采用凝胶纺丝与超倍拉伸方 法在实验室制得了高强高模UHMWPE 纤维,1990 年实现工业化生产。
无纺织物类:防弹背心
复合材料类:
环氧树脂是纤维增强高聚物复合材料的主要 基体材料,也是超高模聚乙烯纤维增强复合 材料的重要基体。
聚乙烯基UHMWPE纤维增强复合材料
(2)前景及研究方向 由于UHMWPE 纤维性能优异,应用潜力巨大, 受 到了国内外的普遍关注。
UHMWPE 纤维今后研究及应用的发展趋势 为:继续研究新的纺丝方法,提高生产效率,降低 成本;提高UHMWPE 纤维的结晶度和取向度,提 高力学性能;继续研究切实可行的表面处理方法, 降低蠕变性能,扩大UHMWPE 纤维在航空航天、 光缆增强纤维、复合材料、耐压容器等方面的 应用。总之,UHMWPE 纤维是很有发展及应用 潜力的高科技纤维,加强这方面的研究工作,开创 属于我们自己知识产权的新技术、新成果,必将 对我国的国防及经济建设等方面作出大的贡献。
2024年聚乙烯纤维市场发展现状

2024年聚乙烯纤维市场发展现状引言聚乙烯纤维是一种广泛应用于纺织行业的合成纤维,具有良好的物理性能和化学稳定性。
在过去几十年中,聚乙烯纤维市场得到了快速发展,并在纺织行业中占据了重要地位。
本文将就聚乙烯纤维市场的发展现状进行详细分析和探讨。
市场规模聚乙烯纤维市场在过去几年中一直呈现出稳步增长的态势。
根据行业统计数据,聚乙烯纤维市场从20XX年至20XX年的年复合增长率约为X%。
据预测,未来几年内,聚乙烯纤维市场将继续保持稳定增长,并有望突破XX亿美元。
这主要归因于聚乙烯纤维在纺织市场中的广泛应用和不断增长的需求。
产品类型目前,聚乙烯纤维市场主要分为以下几种产品类型:1.聚乙烯短纤维:聚乙烯短纤维是聚乙烯纤维的主要产品类型之一。
由于其良好的强度和耐磨性能,聚乙烯短纤维广泛用于纺纱、针织、非织造布等行业。
2.聚乙烯长丝:聚乙烯长丝是聚乙烯纤维的另一重要产品类型。
聚乙烯长丝具有较高的强度和良好的柔软性,广泛应用于纺织面料、家居纺织品等领域。
3.聚乙烯纺丝:聚乙烯纺丝是聚乙烯纤维市场中的一种新兴产品。
聚乙烯纺丝具有高强度、高耐候性和低融点等特点,逐渐受到市场的关注。
应用领域聚乙烯纤维在纺织行业中有着广泛的应用。
以下是聚乙烯纤维的主要应用领域:1.纺织面料:聚乙烯纤维广泛用于制作运动服装、户外装备、工装等各种纺织面料。
聚乙烯纤维面料具有较好的透气性和舒适性,受到消费者的青睐。
2.家居纺织品:聚乙烯纤维也被广泛应用于家居纺织品制造,如床上用品、窗帘等。
聚乙烯纤维的柔软性和耐久性使得其成为家居纺织品的理想材料。
3.非织造布:聚乙烯纤维在非织造布行业中有着广泛的应用。
非织造布以其良好的强度和耐用性被用于农业、医疗、汽车等领域。
市场竞争状况聚乙烯纤维市场竞争激烈,主要的竞争者包括国内外纺织企业和化纤企业。
由于市场需求的不断增长,聚乙烯纤维市场竞争将变得更加激烈。
竞争者之间通过技术革新、产品升级和市场拓展等方式来获取市场份额和竞争优势。
超高分子了聚乙烯纤维 模量

超高分子了聚乙烯纤维模量全文共四篇示例,供读者参考第一篇示例:超高分子量聚乙烯纤维(Ultra-high molecular weight polyethylene fiber,简称UHMWPE fiber)是一种优质、高性能的合成纤维材料,具有很高的强度和模量,被广泛应用于军事、航空航天、汽车、运动器材和防护用品等领域。
本文将从超高分子量聚乙烯纤维的特性、制备工艺、结构特征及其模量等方面展开讨论。
一、超高分子量聚乙烯纤维的特性超高分子量聚乙烯纤维具有以下特点:1. 超高的分子量:UHMWPE纤维的平均分子量可达到100万至5000万之间,是普通聚乙烯的数百倍。
2. 高强度:UHMWPE纤维的拉伸强度非常高,比强度可达到3.5GPa以上。
3. 高模量:UHMWPE纤维的模量在200-500GPa之间,是普通钢材的2-6倍。
4. 低密度:UHMWPE纤维的密度仅为0.97g/cm³,是水的0.9倍,比钢铁轻很多。
5. 良好的耐磨性和抗冲击性:UHMWPE纤维具有出色的耐磨性和抗冲击性,适用于制作抗弹、防弹、防割等功能性产品。
6. 耐化学腐蚀:UHMWPE纤维对酸碱、溶剂等化学物质的侵蚀能力很强,具有优异的耐化学腐蚀性。
7. 耐高温性能:UHMWPE纤维的熔点高达137℃,短期耐高温性能良好。
UHMWPE纤维是通过高聚物溶液纺丝、拉丝拉伸、热固化和表面处理等工艺制备而成的。
其主要制备工艺包括以下几个环节:1. 高聚物合成:通过聚合反应合成高分子量的聚乙烯。
2. 溶液纺丝:将高分子量聚乙烯溶解在适量的溶剂中,形成高浓度均匀的聚合物溶液。
3. 拉丝拉伸:在高温高压下,通过机械和热力作用将聚合物溶液均匀拉丝成纤维。
4. 热固化:将拉丝后的纤维在高温下热固化,使其分子链结晶得以完善,提高纤维的强度和模量。
5. 表面处理:对纤维表面进行化学处理或物理处理,改善纤维的表面性能,增强其与其他材料的结合力。
[整理版]高强高膜聚乙烯纤维
![[整理版]高强高膜聚乙烯纤维](https://img.taocdn.com/s3/m/1dcdf938443610661ed9ad51f01dc281e43a5654.png)
高强高膜聚乙烯纤维的性能及其应用摘要:高强高模聚乙烯纤维是新兴的高分子纤维,与碳纤维、芳伦并列为三大高性能纤维,其性能优异,已在广泛应用于各个领域。
对此,本文对该纤维进行介绍,了高强聚乙烯纤维的性能及其应用发展。
1 高强高膜聚氯乙烯纤维的定义高强高模聚乙烯纤维(也称为超高分子量聚乙烯纤维,英文Ultr a High Molecular Weight Polyeth ylen e Fiber,简称UHMWPE),是上世纪80年代初研制成功的高性能有机纤维,它是当今世界三大高科技纤维(碳纤维、芳伦、高强高模聚乙烯纤维)之一,是一种具有高度取向直链结构的纤维。
2.高强高膜聚乙烯纤维生产工艺方法UHMWPE 纤维的生产采用凝胶纺丝(又称冻胶纺丝) 方法进行。
现有的生产工艺可以分为两大类, 一类以DSM 和东洋纺为代表的干法纺丝法,另一类以Hon eywell 为代表的湿法纺丝法。
两者的主要区别是采用了不同的溶剂和后续工艺。
DSM工艺采用十氢萘溶剂。
十氢萘易挥发,可以采用干法纺丝, 省去了其后的萃取工段; Hon ey well 采用石蜡油溶剂,需要后续的萃取工段,用第2溶剂( 萃取剂) 将第1溶剂萃取出来。
Hon ey well 等公司采用的石蜡油( par affin oil) , 又称矿物油( min er al oil) 或者白油( whit e oil)。
一般为沸点高于350的烃类混合物。
国内现有的生产厂家大多数都采用石蜡油为溶剂的湿法纺丝工艺。
3. 高强高膜聚乙烯纤维的性能超高分子聚乙烯纤维具有高取向度,高结晶度,微纤沿拉伸方向排列规整度高,使用电子显微镜还能够观察到“串晶”结构。
这些结构赋予其良好的机械性能: 沿纤维轴向方向,纤维具有很高的耐拉伸性,比强度,比模量都较高; 即使在很低的温度下,该纤维仍能够保持柔软,有研究表明,即使在- 150℃的条件下,纤维也无脆化点。
3.1 耐高能辐射性能超高分子量聚乙烯纤维在受到高能辐射,如电子射线或γ射线的照射时,分子链会发生断裂,纤维强度会降低。
超高分子量聚乙烯.pptx

十氢萘
烷烃类
UHMWPE理想的溶剂, 低温下溶解,冻胶丝 可不经萃取直接牵伸
价格昂贵,我国 目前无大量生产
价格便宜
馏程高,需增加 萃取工艺,使用 关键为如何降低 溶剂在纤维成品 中的含量。
杭州翔盛高强第纤9维页材/共料21股页份有限公司
2.超高分子量聚乙烯纤维生产原理
2.2 丝条纺制
双螺杆挤出机
螺杆挤出机的作用为物料的传输-搅拌-加热-加压,将 UHMWPE大分子链解缠,赋予大分子链间适当的缠结点密度。
UHMWPE具有优异的冲击能吸收性,噪声阻尼性能很好,具有优良的 消音效果。
杭州翔盛高强第纤1维4页材/共料2股1页份有限公司
3.超高分子量聚乙烯纤维的性能
3.6、耐低温性 UHMWPE具有优异的耐低温性,在液氦温度(-269℃)下仍具有延展
性,因而能够用作核工业的耐低温部件。 3.7、卫生无毒性
UHMWPE有极低的摩擦因数(0.05~0.11),故自润滑性优异。当它 以滑动或转动形式工作时,比钢和黄铜加润滑油后的润滑性还要好。因此, 在摩擦学领域UHMWPE被誉为成本/性能非常理想的摩擦材料。 3.4、耐化学药品性
UHMWPE具有优良的耐化学药品性,除强氧化性酸液外,在一定温度 和浓度范围内能耐各种腐蚀性介质(酸、碱、盐)及有机介质(荼溶剂除 外)。在20℃和80℃的80种有机溶剂中浸渍30d,外表无任何反常现象,其 它物理性能也几乎没有变化。 3.5、冲击能吸收性
医疗
网和各种织物:防弹背心和衣服、
Title in
军he事re
Title in
he船re舶
防切割手套等,其中防弹衣的防弹 效果优于芳纶。超高分子量聚乙烯 纤维织成不同纤度的绳索,取代了
超高聚乙烯纤维

在拉伸初期结晶度随拉伸倍数的增加呈直线上 升,当拉伸倍数达到一定值时,随拉伸倍数的 增加,结晶度增长减慢并趋于平衡。
11
取向度与结晶度相似,在拉伸初期,取向度迅 速提高,对提高纤维的强度和模量起主要作用, 但是达到一定拉伸倍数时,取向度趋于平衡值, 但纤维的强度仍在提高,这可能是由于取向度 不变,而晶区与非情趣的序态结构更完整所致。
剂,经共混造粒后采用熔纺技术制成初生纤维, 再在溶剂汽油中萃取,经不同拉伸倍数制成拉 伸样品。
采用熔融纺技术,可使UHMWPE含量大大增加, 有利于提高生产效率,降低对密度为0.97,具有很 高的轴向性能,比拉伸强度和比刚度高。 优良的耐冲击性能:Tg低热塑性纤维,韧性好 在塑性形变过程中能吸收能量,高应变率和低 温下具有良好的力学性能。 良好的抗湿性、抗化学腐蚀性能 优越的耐磨性能 良好的电绝缘和耐光性能 耐切割性能
大。 要求:降低分子之间的缠结点密度
6
凝胶纺丝- 超倍拉伸法 原理:把超高分子量的聚乙烯( PE)溶解于溶剂(十氢
化萘等)制成浓度为2 %~10 %的纺丝液,从喷丝孔喷 出,低温下凝固成含有大量溶剂的凝胶状丝条,被形象 的称作凝胶纺丝,再对凝胶状丝条除去溶剂后进行超 倍热拉伸,得到了高强高模PE 纤维。 目的:在于使相互缠结的UHMWPE 分子在溶剂中舒展 解缠,纺成直径为几个厘米的凝胶状丝条,分子的这种 舒展解缠状态在凝胶状丝条中得以保持,然后经过数 百倍的多级拉伸得到纤度为200dtex~5000dtex 的高强 高模UHMWPE 纤维。
29
UHMWPE纤维和蠕变性能好的纤维(如碳纤 维、芳纶纤维)混杂,将能明显的改善蠕变 性能。
25
(2)UHMWPE纤维表面处理
UHMWPE 纤维大分子链上为无极性基团— CH2 —,取向度高,纤维表面平滑,使UHMWPE 纤 维与树脂基体粘接性差,限制了UHMWPE 纤维 在复合材料等方面的应用。因此对UHMWPE 纤维的表面进行改性处理,提高其和树脂基体的 粘接性能,扩大在复合材料中的应用一直是 UHMWPE 研究热点。
超高分子量聚乙烯纤维的防弹性能及应用前景

超高分子量聚乙烯纤维的防弹性能及应用前景超高分子量聚乙烯(Ultra-High Molecular Weight Polyethylene,简称UHMWPE)纤维是一种具有出色防弹性能的新型材料。
它具有轻质、高强度、高模量、耐腐蚀等优良性能,被广泛应用于防弹领域。
本文将就超高分子量聚乙烯纤维的防弹性能及应用前景进行探讨。
一、超高分子量聚乙烯纤维的防弹性能超高分子量聚乙烯纤维的防弹性能卓越,首先是因为其具有很高的分子量和晶体度。
UHMWPE纤维的分子量一般在200万到6000万之间,分子结构形态规整,分子链长度较长,使得其具有很高的拉伸强度和模量。
其次,UHMWPE纤维具有较高的晶体度,晶胞中有许多相互平行的多个高分子链排列,从而形成了规整的结晶区域。
这些规整的结晶区域对防弹能力的提升起到了关键的作用。
UHMWPE纤维的防弹性能还与其纤维的微观结构有关。
纤维的微观结构决定了其在承受外部冲击时的应变和形变方式。
研究表明,UHMWPE纤维具有良好的能量吸收和分散冲击力的能力。
当弹道击中UHMWPE纤维时,其纤维会逐渐变形并形成大量的链节滑移,从而将冲击力传递给整个纤维。
这种形变和滑移使得纤维能够吸收很多的能量,有效地提高了防弹能力。
二、超高分子量聚乙烯纤维的应用前景基于其优越的防弹性能,超高分子量聚乙烯纤维在军事、警用、航空航天等领域具有广阔的应用前景。
1. 防弹装备领域:超高分子量聚乙烯纤维可用于制造防弹衣、防刺服、防弹头盔等个人防护装备。
相比传统材料,UHMWPE纤维制成的防弹装备质量轻、柔软度高,同时具备较高的防护等级,提供了更好的防护性能。
2. 军用车辆装甲:超高分子量聚乙烯纤维可以与其他材料复合,制成军用车辆装甲板。
这种装甲板具有轻质化和高防护性能,有效提高了军用车辆的安全性。
3. 航空航天领域:由于超高分子量聚乙烯纤维具有轻质、高强度的特点,因此可以应用于航空航天领域的制造。
例如,可以用UHMWPE 纤维制造飞行员防弹衣,在保证飞行员安全的同时,减轻了其负重。
超分子量聚乙烯生产工艺及加工成型

超分子量聚乙烯生产工艺及加工成型学院(系)化工与环境学院专业:化学工程与技术学生姓名_________________学号期:2015-11摘要本文探讨了超分子量聚乙烯的一些特点以及制备方法O 关键词聚乙烯,超分子量,制备目录摘要 ................................................................ 第]章绪论.........................................................1.1.研究背景.................................................1.2.超高分子量聚乙烯简介.....................................1.3.超高分子量聚乙烯特点..................................... 第2章超高分子聚乙烯的制备.....................................2.1. 制备方法................................................. 第3章结论 ..................................................... 参考文献 ............................................................第1章绪论1・1 •研究背景超高分子量聚乙烯(U HMW — P E )塑料合金具有优异的物理和机械性能,能替代金属在离心泵和轴承等机械领域中的广泛应用。
超高分子量聚乙烯的分子量对其物理机械性能有着很大影响。
超高分子量聚乙烯(UHMWPE) 是一种性能卓越的工程塑料,同众多的聚合材料相比,具有其它工程塑料所无法比拟的耐冲击性、耐磨损性、耐化学药品性、耐低温性、耐应力开裂性、抗粘附能力,优良的电绝缘性、自润滑性及安全卫生等性能,可以代替碳钢、不锈钢、青铜等材料广泛地应用于体育、纺织、采矿、化工、包装、建筑、机械、电气、医疗等领域。
国内外聚乙烯的生产技术、产品开发现状及趋势

国内外聚乙烯的生产技术、产品开发现状及趋势-3近年来,国内石化企业逐渐加深了对专用料生产开发工作落后于国外同行的认识,各大型石化企业都开始投入大量精力在自己企业已有装置上的技术革新工作,试图改善目前产品品种单一,质量不尽如人意的局面。
利用技术革新手段发挥生产装置在某些或某一个方面的领先优势,以此来开拓市场、求得生存,增加企业的生产经营效益。
三国内聚乙烯市场的特点 1. 市场容量大,发展快,自给率低随着国内塑料加工业的迅速发展,我国对PE近年来,国内石化企业逐渐加深了对专用料生产开发工作落后于国外同行的认识,各大型石化企业都开始投入大量精力在自己企业已有装置上的技术革新工作,试图改善目前产品品种单一,质量不尽如人意的局面。
利用技术革新手段发挥生产装置在某些或某一个方面的领先优势,以此来开拓市场、求得生存,增加企业的生产经营效益。
三国内聚乙烯市场的特点1. 市场容量大,发展快,自给率低随着国内塑料加工业的迅速发展,我国对PE的需求也大幅度增长。
相对巨大的市场容量,我国PE的生产能力还远远不能满足市场的需求,自给率一直仅在50%左右,只好进口大量国外产品来满足国内需求。
2. 薄膜制品为PE最大的消费市场由于其优越的性能,PE一直被广泛应用于薄膜制品这一领域,尤其是包装薄膜。
PE的另外两个应用领域为注塑制品和中空制品。
3. 加工制品将逐渐向中高档方向发展在调查中,我们发现产品向中高档方向发展己成为一种趋势。
一些高档产品(如燃气管材、缠绕膜、大型中空制品等)的产量正在逐渐提高;而一些中低档产品,如编织袋、普通包装薄膜等,也正在调整其产品结构,以逐渐缩小其低档制品的生产比例,增加其中档制品的生产比例。
4. 下游塑料加工厂家使用国产料的比例逐渐提高近年来,由于国内石化企业在不断调整产品结构和提高产品质量上了大量的工作,使得国产料不但品种更为繁多,而且产品质量也得到了较大改善,加工厂家使用国产料的比例因此逐渐上升。
国内外高性能聚乙烯醇纤维技术进展

国内外高性能聚乙烯醇纤维技术进展目前,柔性链聚合物所制成的高强度高模量纤维的典型代表为超高相对分子质量聚乙烯(UHMW-PE)纤维、超高相对分子质量聚乙烯醇(UHMW-PVA)纤维。
目前,制得PVA 纤维的最高模量为115GPa,但迄今为止商用PVA纤维的最高强度仅为2.5GPa左右。
PVA可以形成分子内和分子间氢键,使其熔点高达245℃,高于PE纤维。
PVA要达到100GPa的高模量,仅需20倍的超拉伸,而PE纤维则需要200-300倍的超拉伸。
作为理想的石棉、玻璃纤维取代品以及在国防军工中的防弹材料的应用,高强高模的PVA纤维的技术发展很快,其经济效益与社会效益正在被不断的发掘之中。
目前,国内外开发高强高模PVA纤维主要从以下三方面进行:制备UHMW-PVA;制备高立构规整度的PVA;利用新型纺丝工艺技术制备高性能的PVA纤维。
高性能PVA纤维的强度在很大程度上依赖于其相对分子质量的大小,聚合度越大,其纤维的强度就越大。
目前,由超导氧化物和PVA混合物制备超导纤维用的PVA纤维材料需要平均聚合度为(3.3-12.1)×10(3-上标),若小于2.45×103或者大于16×103则不能用于纺丝。
而常规方法由醋酸乙烯(VAC)经自由基聚合方法制得的PVA聚合度不高。
目前,制备PVA的工艺方法主要是采用自由基聚合。
自由基聚合中影响聚合度的因素主要有引发剂的种类及用量、聚合温度、实施方法等。
采用光引发、辐射引发、氧化还原引发体系和偶氮二异庚腈(ADMVN)低温高活性引发剂制备高相对分子质量的PVA中,光引发、辐射引发制得的PVA的平均聚合度最高,一般都能超出10×103,而氧化还原体系和其它低温引发剂引发的产物的平均聚合度在(3-10)×103,但是辐射引发存在不易工业化,投资过大等不利条件;而氧化还原体系是引发剂体系研究最为活跃的领域,达到的平均聚合度也相对较高,工业化也比较容易,但其缺点是易使聚合产物变色,影响到最终产品在市场中的应用。
超高分子量聚乙烯纤维项目可行性研究报告新

超高分子量聚乙烯纤维项目可行性研究报告新一、项目背景与意义超高分子量聚乙烯纤维(Ultra-High-Molecular-Weight Polyethylene Fiber, UHMWPE Fiber)是一种高性能纤维材料,具有超强的力学性能和优异的化学稳定性,被广泛应用于航空航天、国防军工、体育器材和防护装备等领域。
随着科技的进步和市场需求的增加,UHMWPE纤维的应用前景非常广阔。
本项目拟建一条年产2000吨的超高分子量聚乙烯纤维生产线,以满足市场对高性能纤维的需求。
本报告旨在进行超高分子量聚乙烯纤维项目的可行性研究,为项目的实施提供依据。
二、市场分析1.UHMWPE纤维市场需求随着人们对个人安全和防护需求的增加,UHMWPE纤维在现代化军事、警用和安防装备中得到广泛应用。
市场需求稳定增长,尤其是在亚洲和北美市场。
2.竞争分析目前,国际上的UHMWPE纤维生产主要由美国、荷兰、日本等国家和地区的企业垄断,行业集中度较高。
国内市场上,UHMWPE纤维的供应相对不足,市场潜力巨大。
三、技术可行性分析1.UHMWPE纤维生产工艺UHMWPE纤维的生产工艺主要包括原料配方、高分子聚合、纺丝、拉丝等环节。
技术较为成熟,国内已经存在一定的生产经验和技术优势。
2.项目投资本项目拟投资1亿元,主要用于土地、厂房建设、设备采购等方面。
根据市场需求和技术水平,投资回报期在5年左右。
四、财务可行性分析1.成本分析根据市场价格和技术水平,项目生产成本约为每吨2万元。
2.收益分析假设项目正常运行,年销售收入为2亿元。
考虑生产成本和市场需求,项目预计可实现年平均利润5000万元,投资回报率可达到20%以上。
五、风险分析1.技术风险虽然UHMWPE纤维生产工艺较为成熟,但仍存在一定的技术风险,包括原料选择、工艺控制等方面。
2.市场风险随着竞争的加剧和市场环境的变化,UHMWPE纤维市场存在一定的不确定性和波动性。
六、项目实施建议1.技术优势项目应充分利用国内现有的技术优势和资源,借鉴国外先进经验,提升产品质量和生产效率。
强力纤维——高强高模聚乙烯纤维

品。
行超倍拉 伸 ,使大分子折叠链伸直 。真正在工业上
实现这 一 目标 ,就是用超高分子量 的聚乙烯进行凝 胶纺丝。凝胶 纺丝 ,就是首先把超高分子量的聚 乙 烯粉末 用石蜡或煤油等进行溶胀 、溶解 ,形成半 稀 溶液 ,然后按 湿法纺 丝的工艺流程 ,制得含有大量 溶剂的凝胶丝条 ,再将这种凝胶丝条进行超倍热拉 伸 ,用萃取剂去除溶剂 ,并 将溶剂 回收 ,经后处理 得到高强高模聚乙烯纤维。
耐光特性对比
纤维
品种
高强高模 聚 乙烯纤维与其他工业纤维的性能比
力学性能 密度
强度
模量
工业用纤维 的特性
伸长
耐光测定方法 纤维在紫外线照射 经 10 小时暴露 50
强度保
持率
纤维 品种 g c N/ e g d G 。 N/ e g d / m’ tx / P tx / G 。 % P
18 9 4年 ,荷兰 与 日本 合资建 立了 中试 工厂 。 1 9 年荷兰开始在本 国进行商品化生产 , 90 主要致力 于提高纤维的性 能规格 ,因此 ,生产装置不断地完 善 、改进 。同时 ,为克服 因纤维粘合性差给复合材
料加工带来的麻烦 ,开发 了新 的纤维加工产 品,这 是一种单 向材料 ,由平行铺设的高强高模聚 乙烯纤
3高强高模聚乙烯纤维的性能和用途
高强 ・ 高模聚乙烯纤维 ,又称 为超高 分子量 聚
维构成 ,这些纤 维被横 向绞合并采用特种聚合物粘 合剂加 以粘合 ,它 可以使人和设备 免遭高速子弹 、 炸弹碎片和类似威胁的损伤。 目前 ,除荷兰外 ,美国、 日本都可以生产高强 高模聚 乙烯纤维 。
中国及部分省市超高分子量聚乙烯纤维行业相关政策增加聚氨酯等材料品种规格

中国及部分省市超高分子量聚乙烯纤维行业相关政策增加聚氨酯等材料品种规格
超高分子量聚乙烯纤维,又称高强高模聚乙烯纤维,是目前世界上比强度和比模量最高的纤维,由于其具有众多的优异特性,在高性能纤维市场上,包括从海上油田的系泊绳到高性能轻质复合材料方面均显示出极大的优势,在现代化战争和航空、航天、海域防御装备等领域发挥着举足轻重的作用。
国家层面超高分子量聚乙烯纤维行业相关政策
近些年,为了促进超高分子量聚乙烯纤维行业发展,中国陆续发布了许多政策,如2022年2月工业和信息化部等部门联合发布的关于“十四五”推动石化化工行业高质量发展的指导意见实施“三品”行动,提升化工产品供给质量。
围绕新一代信息技术、生物技术、新能源、高端装备等战略性新兴产业,增加有机氟硅、聚氨酯、聚酰胺等材料品种规格,加快发展高端聚烯烃、电子化学品、工业特种气体、高性能橡塑材料、高性能纤维、生物基材料、专用润滑油脂等产品。
地方层面超高分子量聚乙烯纤维行业政策
显示,为了响应国家号召,各省市积极推动超高分子量聚乙烯纤维行业发展,如2021年9月发布的黑龙江省中长期科学
和技术发展规划(2021—2035年)中规划:开展高性能碳纤维、高性能热塑性树脂基复合材料、金属基复合材料、陶瓷基复合材料、智能复合材料、低成本复合材料、生物基复合材料等制备技术的研究与应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
国内超高分子量聚乙烯纤维生产概况 超高分子量聚乙烯纤维是一种新材料,它的应用领域很广泛,从航空航天到国防军事,再到民用绳网,都有着它广阔的应用市场和开发领域。目前国内此纤维的产业化生产,大约已有13年了。早期投产的有三家,分别在宁波、湖南、北京。三家的生产方式各有不同,产品也各有千秋。但是,由于此种纤维的自身特性和超高分子量的特点,它与一般常规化纤的生产有着很大差异。常规化纤[短纤]的总欠伸倍数一般为:几倍--20倍就可以了,而这种冻胶纤维的总欠伸倍数要100多倍,为何要拉伸这麽多倍呢?这是由于溶剂的存在,使纤维中链缠结交联点的数目减少而至。也就是说,此种纤维,它从纺丝喷丝板到产品成型需要一段漫长的过程才能实现,过程长了,环节就多了,控制起来,困难自然也就多了。它就像一条链子,不论少了哪一环,整条链子都会断裂。
在生产的每一个过程中,要严格控制纤维的外在技术指标,更要掌握、了解纤维的内在分子结构变化,看它内在结构的变化,符合不符合它在这一工段中所能达到的工艺要求。换句话说:纤维在每一道生产过程中,它的内外技术指标变化是不是人们所希望应达到的状态。所以,在生产过程中,半成品的物检、化验是不可缺少的中间控制手段。
要想生产出合格的产品,并且要达到一定的制成率,确实不易。目前,在这一领域的理论认知程度,还有待于进一步的研究提高,特别是成熟的大规模产业化生产技术,还不是十分成熟。情况不一,大体上分析:有技术问题,有设备问题,还有的是控制方法问题。当然,人员、资金问题也不能排除。 超高分子量聚乙烯纤维的生产是高科技,生产过程中每一道环节的控制,都很严谨,控制精度很高。有的工段,温度相差1度,线速度相差0.1米/分,就会产生大量毛丝及断头,造成缠辊现象,而常规化纤的生产就不需如此严格。
纤维的制作,总体上说与常规聚酯短纤的制作有相似之处。它的主要生产工序如下:原料的制备——双螺杆挤压机——纺丝箱——喷丝板——萃取——干燥——加热牵伸——卷绕成型。
原料的制备:目前,国内外原料的制备方法不一,采用的溶剂不同,含固量也不一样。所以,没有固定的统一模式,生产制作的设备差异也很大,而常规熔融纺是不加溶剂的。但不论采取那种方式,最终都能达到所需的效果。因生产是连续化的,所以原料的配比不能有波动,要求始终均匀一致。虽然含固量的提高,是提高产量的重要手段之一,但拉伸比也随之提高,整体车速都要响应加快,增加了操作难度,毛丝的产生量相比明显增多,不易把握。但,若能将含固量的百分比控制在适当的浓度内,还是可以的,要根据自身情况,量力而行。提高计量泵的转速也是提高产量的有效手段之一。
双螺杆挤压机:螺杆挤压机对物料起着输送—搅拌—加热—加压等作用。首先,进入“螺杆”之前的浆料要脱泡,不能含有水汽,物料在输送过程中,要得到充分的混练搅拌。各区的加热温度,要结合螺杆上捏合块的位置加以设定,并且要保证一定的输送压力。螺杆捏合块的设定,理论性很强,不同的组合,对物料的搅拌,会有不同的效果。
纺丝箱:它的作用主要是保温;控温;均匀的将物料分配到每一个纺丝组件。 喷丝板:由计量泵将物料挤压变为丝条,就是通过喷丝板实现的,板的孔径大小及刨面形状是它的重要技术参数,它对纤维的成型及拉伸性能的好坏,起着至关重要的作用。这一环节,可以称作生产当中的龙头之处。纺丝箱和喷丝板处的温度是统一整体考虑的,温度的设定参数,是通过观察喷出丝的熔融状态而设定的。要想控制好它,是需要有一些具体技术条件和实践经验来判断。。
萃取:主要是将丝条中大量的溶剂萃取、置换出来,从而得到“纯”度的高强度聚乙烯纤维。萃取剂的选取,厂家各有不同,生产工艺也不一样。到目前为止,很难找到一种即经济实用、安全环保,萃取效果又好,还无毒、无味的理想萃取剂[在国际上,也是一个长期不宜解决的难题]。
从纺丝到萃取这一工段中,丝条随机不断的拉伸,从外观上看,由粗变细,由半透明到半乳白,丝的可拉伸性也逐渐提高,有了一点“强度”。若从丝的内部看,原料的分子结构并无大的变化,大分子之间没有定向排列,还是处在无序状态,分子之间被大量的溶剂包裹隔离着,不能形成分子链,若分子链形不成,丝也就不可能有真正的强力。而这时的纤维内部,实际上象是一个圆管型网状体,聚乙烯的分子颗粒在其管网之中,随着纤维的不断拉伸变细,溶剂不断的析出,管网的形状也由圆到长,由梳到密,物料分子之间密度逐渐增加,大分子的排列,也由紊乱状态向部分有序状态逐步转变。
干燥:干燥工序,主要目的是将粘于丝条上的萃取剂祛除烘干,以备牵伸之用。这道工序控制起来,看似简单,实为较难,在工艺温度及张力上稍有掌握不当,就会产生大量的并丝、疆丝现象,导致半成品丝束无法继续加工。干燥温度和干燥长度的把握是其关键所在。此工序不可小视,它直接关系到后牵伸的产品质量。 加热牵伸:超高分子量聚乙烯纤维的牵伸与常规涤纶短纤的牵伸工艺,从形式上看基本一样,但要求控制的精度大有不同。此纤维必须采取多级牵伸方式,才能达到高强、高模的特性。每一级欠牵伸过程中,分子间结构都有很大的变化。随着拉伸,大分子间由无序状向有序状,定向排列,结晶度也随之逐渐提高。只有在纤维的大分子沿纤维轴向的取向度提高,大分子链产生的数量就多,抱合力就越大,纤维的强力自然也就越高。纤维的结晶度提高,初始模量也自然提高,纤维在抗外力的作用下,伸长越小,变形量也越小。
纤维在欠伸过程中,欠伸倍数尽量要大,要让纤维有突然的拉伸变化,才更能促使大分子间的有序取向和高度结晶。纤维的内部结晶,是在高取向度形成的同时,发生结晶转变的。由于此种纤维的分子量较高,抗外力的作用强,生产上只能采取热拉伸工艺。所以,需配有较高的拉伸温度,才能实现高倍牵伸。每一级拉伸,温度不一,要根据丝条在以前工序中的状态而定,没有定数,但一定要在纤维自身能承受的温度范围以内。生产中,一般不超过摄氏温度155度。否则,会有硬丝,僵丝的产生。
卷绕成型:丝卷成型的要求:丝筒无塌边,无毛边,丝束要定长,定重。所谓定长、定重,决不是简单的指,对丝束长度、重量的要求,它的内涵很深,若能准确把握,是非常困难的。它是在要求,所有的生产工序必须很正常、很稳定,纤维的纤度只有始终均匀一致,才能有所保障。倘若谁能真正做到定长、定重的技术水平,谁就达到了高强纤维这一领域里的顶峰。
所有生产工艺的制定,都有着它的独立性,一套设备,配一套工艺。所谓“工艺”一词的含义,就是要灵活的掌握生产制造艺术。在生产实践中,工艺参数是需要随时随地的不断调整,根据纤维的生产状态,随行就市,决不可以生搬硬套。 因为,此种纤维的生产线,从筹建到产品,我们已做过几条了,所以,对行业内情况也略知一二。但由于各企业之间信息往来很少,沟通不多的原因,所以,看法、观点未必一致,只能各持己见。
在早期投产的老厂中,北京生产的纤维质量,不论在品质上,还是在制成率及稳定性上,都较比更好一些。技术管理人员的结构也比较合理,分工明确。这给纤维的产品质量奠定了一定的坚实基础。
山东有一新企业,从建厂到生产,又从生产到产品出口,仅用了一年多的时间。是目前国内发展速度最快的企业。它生产的纤维成品,主要技术指标如下:强力--32cN/dtex;断裂伸长率--2.2%;初始摸量--1300cN/dtex;其产品的制成率也比较高,属上乘.但是,与其他企业一样,仍然还存在一些纤维质量问题,特别是在产品的稳定性和一致性方面,与荷兰;美国公司相比,还是有一定的差距。
近年来,国内又有几家公司也在上此项目。有的已投产,有的正在试车,还有的正在筹建之中.这是件好事,值得推广,但要具体操作起来困难还是不少的.就看现在已生产的几家公司中,都不乏高技术人才,也都曾经先后接受过一流专家、教授的指点,企业自身也摸索、积累了很多宝贵的生产经验,但产品质量至今仍未能达到理想的状态。如果,这种纤维制作很容易的话,各厂家就不会还在受某些技术问题的烦扰。分析起来,不过是程度不同而已。这一实际情况,希望能引起再建者的高度重视,还当谨慎从事。
国内与国外的产品质量,主要差别是在产品的稳定性方面,而其他的技术指标毫不逊色,关键原因之一,是资金投入问题。因为,目前国内此种纤维的生产,还是处在发展初期,主体属于民间自发的状态,资本条件很有限,大多数人都想尽快投资回报,无力进行高一层次的研发,即使在一些主要生产设备的资金投入上,也是省了又省。机械设备的制造精度不够,电器设备的控制手段及选材不精细。这势必会给今后的产品品质,带来很大影响。
国内外建一条同样规模的生产线,资金投入比大约是:1比8。------或1比10,悬殊很大。由此看来,目前国内能将此产品做到这种程度,已数不宜。
按说这种纤维的再制品,应用领域如此宽广。国内的需求量应该很大,特别是在国防物资储备方面,更应大量使用,不可缺少。这种纤维的生产特点,就是产量较低,若在产量规模有限的情况下,一旦需求,短时间内是无法做到的。可是,现在国内却将较好的纤维大多出口了,因国际市场上的需求量更大。这一现象,若能引起有关部门的高度重视,加大对其产品的研究开发,并投入适当的资金,当为甚好。
高强聚乙烯纤维的强力、模量都很高,只是耐高温性能差,这是此物料的特性,不易改观。若通过进一步的努力,是否能用复合纺;包缠纱或表面附着耐热胶粘剂等方法,或还可将另外耐热布与其纤维布一起制成复合材料,来弥补和改善此种材料的自身不足,从而得到新功能的、适用性更强的材料,发挥出此纤维的最大利用价值,将会对国民经济、各行各业的发展,带来很多益处。
大学中的实验室条件有限,大多对可行性方面的实验,做得多一些,若要实施大规模的产业化生产,在具体技术上还不能给予完善的支持。许多问题只有在生产的过程中,才会遇到。因为,有些实验结果是在实验室条件下得出的,所以,在生产中就可能不太吻合。当条件发生变化时,性质也就要变,量变到质变,结果自然不同。再者,生产中的许多环节,在实验室是不可能遇到的,只能在生产过程中,不断的摸索,不断的提高。以往,有的大学与企业合作不少,但在力度和深度上还有欠缺。