智能车速度控制系统的设计与实现
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
智能车速度控制系统的设计与实现
引言
在智能车竞赛中,速度控制不能采用单纯的PID,而要采用能够在全加速、紧急制动和闭环控制等多种模式中平稳切换的“多模式”速度控制算法,才能根据不同的道路状况迅速准确地改变车速,实现稳定过弯。
系统硬件设计
按照竞赛要求,本文设计的智能车速度控制系统,以飞思卡尔
MC9S12DG128 单片机为核心[1],与车速检测模块、直流电机驱动模块、电源模块等一起构成了智能车速度闭环控制系统。
单片机根据赛道信息采用合理的控制算法实现对车速的控制,车速检测采用安装于车模后轴上的光电编码器,直流电机驱动采用了由四个MOS管构成的H桥电路如系统建模
一个针对实际对象的控制系统设计,首先要做的就是对执行器及系统进行建模,并标定系统的输入和输出。
为了对车速控制系统设计合适的控制器,就要对速度系统进行定阶和归一化[2]。
对此,分别设计了加速和减速模型测定实验。
通过加装在车模后轮轴上的光电编码器测量电机转速。
编码器齿轮与驱动轮的齿数比为33/76,编码器每输出一个脉冲对应智能车运动1.205mm。
车模可以通过调节加给电机的PWM波的占空比进行调速。
单片机上的PWM模块可以是8位或16位的,为了提高调速的精度,电机调速模块选用16位PWM,其占空比调节范围从0到65535,对应电机电枢电压从0%到100%的电池电压。
将车模放置在一段长直跑道上,采用开环方式给驱动电机加上不同的电压,记录车模在速度进入稳定后的速度值。
然后将所测得的电枢电压与车速进行拟合的曲线如根据实验数据可以确定车速执行器系统的零点和增益。
车速V。