双轮自平衡车设计报告

合集下载

两轮自平衡小车实习报告

两轮自平衡小车实习报告

实习报告:两轮自平衡小车设计与实现一、实习背景及目的随着科技的发展,机器人技术在各领域中的应用越来越广泛。

两轮自平衡小车作为一种具有自平衡能力的新型轮式车,能够在工业生产、安防系统、智能家居、物流网等领域发挥重要作用。

本次实习旨在学习和掌握两轮自平衡小车的设计原理和技术,培养实际动手能力和创新能力。

二、实习内容与过程1. 理论研究在实习开始阶段,我们对两轮自平衡小车的基本原理进行了深入研究。

通过查阅相关资料,了解了两轮自平衡小车的运动学模型、控制算法以及硬件系统设计等方面的知识。

2. 硬件设计根据实习要求,我们设计了两轮自平衡小车的硬件系统。

主要包括STM32单片机、陀螺仪、蓝牙模块、电机驱动模块、电源管理模块等。

在设计过程中,我们充分考虑了系统的稳定性和可靠性,选择了合适的硬件组件,并完成了各模块之间的电路连接。

3. 软件设计在软件设计阶段,我们采用了PID控制算法,实现了直立控制、速度控制和方向控制等功能。

通过编写程序,使得两轮自平衡小车能够在一定时间内自助站立并保持平衡。

同时,利用蓝牙模块实现了手机APP远程控制功能,方便用户对小车进行操作和控制。

4. 系统调试与优化在系统调试阶段,我们通过对小车的实际运行情况进行观察和分析,不断调整PID 参数,优化控制策略,提高了小车的平衡控制精度和稳定性。

同时,针对小车在实际运行中可能遇到的各种问题,我们采取了相应的措施,保证了系统的可靠性和安全性。

三、实习成果与总结通过本次实习,我们成功设计和实现了两轮自平衡小车。

小车具备了自平衡能力,能够在不同地形环境中灵活运动。

同时,通过手机APP远程控制功能,用户可以方便地对小车进行操作和控制。

总结:本次实习让我们深入了解了两轮自平衡小车的设计原理和技术,锻炼了实际动手能力和创新能力。

通过实习,我们掌握了PID控制算法在实际控制系统中的应用,学会了如何优化系统参数,提高了系统的控制精度和稳定性。

同时,我们也认识到在实际设计和实现过程中,需要充分考虑系统的可靠性和安全性,以满足实际应用需求。

两轮平衡小车实习报告

两轮平衡小车实习报告

两轮平衡小车实习报告一、前言随着科技的不断发展,机器人技术逐渐应用于各个领域,其中两轮平衡小车作为一种具有自平衡能力的新型轮式车,引起了广泛的关注。

本次实习报告主要介绍了两轮平衡小车的原理、设计及实际操作过程。

二、两轮平衡小车原理两轮平衡小车主要由控制系统、传感器、执行器等部分组成。

其工作原理是通过传感器实时检测车体姿态,将车体姿态信息传输给控制系统,控制系统根据车体姿态信息计算出相应的控制策略,并通过执行器实现对车轮的动态调整,使小车保持平衡。

三、两轮平衡小车设计1.硬件设计本次设计的两轮平衡小车采用STM32单片机作为控制核心,配备有MPU6050传感器用于姿态检测,使用TB6612FNG电机驱动模块实现车轮的控制。

此外,还使用了OLED显示屏用于显示实时数据。

2.软件设计在软件设计方面,主要采用了PID控制算法来实现车体的平衡控制。

首先,对MPU6050传感器采集到的数据进行处理,计算出车体的倾角;然后,根据倾角信息计算出控制电压,通过TB6612FNG电机驱动模块对车轮进行控制,以保持车体的平衡。

四、两轮平衡小车实际操作过程1.调试过程在实际操作过程中,首先需要对小车进行调试。

通过调整小车的重心位置,使其能够稳定站立。

调试过程中,发现小车在高速运动时容易失去平衡,通过减小驱动电压,提高小车的稳定性。

2.平衡控制实现在平衡控制实现方面,通过实时检测车体姿态,并根据姿态信息计算出控制电压,实现对车轮的控制。

在实际操作中,发现小车在平衡状态下运行平稳,能够实现前进、后退、转向等基本功能。

3.避障功能实现为了提高小车的实用性,我们为其添加了避障功能。

通过使用HC-SR04超声波传感器,实时检测小车前方的障碍物距离,并在检测到障碍物时,自动调整小车方向,实现避障。

五、总结通过本次实习,我们对两轮平衡小车的原理、设计及实际操作过程有了深入的了解。

两轮平衡小车作为一种具有自平衡能力的新型轮式车,具有占地面积小、转弯灵活等优点,其在未来的应用前景广阔。

两轮独立驱动电动平衡车设计

两轮独立驱动电动平衡车设计

两轮独立驱动电动平衡车的设计摘要两轮电动平衡车是一种能够载人直立行走的交通工具,依靠电能提供动力。

它突破了传统意义上的车的概念,其特点是:两个车轮共轴放置,差动式运动,零半径转向,依照倒立摆的原理达到动态平衡。

近年来国内外的研究方向主要是两轮平衡机器人的控制系统,针对其机械结构的研究却较少,有关平衡车机械结构的文献更少。

本文总结了国内外相关领域的研究成果,在此基础上对平衡车的平衡原理进行了介绍,建立了平衡车的动力学模型,并对平衡车的机械结构进行了设计。

所做的具体工作如下:(1)先介绍平衡车姿态测量的传感器以及为减少传感器的测量误差所常用的方法。

然后对平衡所需的驱动力矩进行了推导,为后续的机械结构设计提供理论依据。

(2)设计平衡车的机械结构。

本文所设计的平衡车由车轮、悬架、车架和操纵杆四部分组成。

轮毂电机和减速器集成在车轮内部,提高了电动车的动力性能和工作效率。

操纵杆用来控制平衡车的转向和车速。

(3)对平衡车进行动力学分析,建立了平衡车的三维动力学模型。

模型建立过程中的大部分计算由数学软件Mathematica进行。

关键词 平衡车;驱动力矩;机械结构;动力学模型;AbstractTwo‐wheeled self‐balancing electric vehicle is a way to walk upright manned vehicles , rely on electricity to power. Self‐balancing vehicle breaking the concept of vehicle in the traditional sense, it is characterized by two wheels that in one line , differential movement , zero turning radius and in accordance with the principle of inverted pendulum dynamic equilibrium. In recent years, research at home and abroad are mainly on two balancing robot control system, studies of its mechanical structure has less literature ,studies on self‐balancing vehicle’s mechanical structure even less. This paper summarizes the research results in related fields, then the principle of balancing of the vehicle was introduced,a dynamic model of the vehicle was derived,and the mechanical structure of the vehicle was designed. Specific works are as follows:(1)Describing the self‐balancing vehicle attitude measurement sensor and a method to reduce the measurement error of the sensor common .Then the required drive torque has been derived to provide a theoretical basis for the subsequent mechanical design .(2) Mechanical design of the vehicle. The vehicle is designed in this paper combined by four parts, means wheels, suspensions, frame and lever. Wheels motor and reducer integrated in the wheels inside , improve dynamic performance and efficiency of the vehicle. Joystick to control the balance of the car 's steering and speed.(3) The self‐balancing vehicle dynamics analysis, three‐dimensional dynamic model of the balance of the vehicle was derived. Most of calculations in the modeling process done by the mathematical calculation software Mathematica.Keywords: Self‐balancing vehicle; Driving torque; Mechinics structure; Dynamic model目录第1章 绪论 (1)1.1 研究的目的及意义 (1)1.2 国内外研究现状 (2)1.2.1 国外研究现状 (2)1.2.2 国内研究现状 (3)1.3 论文主要内容 (4)第2章 平衡车的平衡原理 (6)2.1 简介 (6)2.2 平衡车的姿态测量和平衡控制 (7)2.2.1 平衡车的姿态测量 (7)2.2.2 平衡车的平衡控制 (10)2.3 平衡车行驶时所需的驱动力矩 (11)2.3.1 平衡车要克服的行驶阻力 (11)2.3.2 平衡车保持平衡所需的驱动力矩 (15)2.4 本章小结 (17)第3章 平衡车的机械结构设计 (18)3.1 平衡车总体方案 (18)3.2 车轮设计 (20)3.2.1 车轮结构方案设计 (20)3.2.2 车轮详细设计 (23)3.3 悬架设计 (34)3.4 车架和操纵杆设计 (36)3.5 平衡车各部件的装配 (38)3.6 本章小结 (38)第4章 平衡车的动力学模型 (40)第5章 总结 (48)致谢 (49)参考文献 (50)第1章 绪论1.1 研究的目的及意义随着我国工业水平的提高,近年来汽车产业迅速发展。

两轮自平衡小车毕业设计

两轮自平衡小车毕业设计

两轮自平衡小车毕业设计毕业设计题目:两轮自平衡小车设计一、毕业设计背景与意义目前,智能机器人技术已经在各个领域得到广泛的应用,其中自平衡小车是一种非常具有代表性的机器人。

自平衡小车能够通过自身的控制系统来保持平衡姿态,并能够实现各种转向和动作。

因此,自平衡小车不仅能够广泛应用于工业生产中,还可以成为搬运、巡逻和助力等领域的优秀协助工具。

本毕业设计的目标是设计和实现一种能够自动控制、实现平衡的两轮自平衡小车。

通过这个设计,进一步探究并研究自平衡技术的原理及应用,增加对机器人控制系统和传感器的理解,提高对计算机控制和嵌入式系统的应用能力。

二、毕业设计的主要内容和任务1.研究和调研a)研究两轮自平衡小车的构造和原理;b)调研目前市场上相关产品,并分析其特点和存在的问题。

2.模块设计a)根据研究结果,设计自平衡小车的主要模块,包括平衡控制模块、动作控制模块和传感器模块;b)设计相关控制算法和策略,使小车能够保持平衡并能够实现转向和动作。

3.硬件搭建和调试a)根据模块设计的结果,搭建小车的硬件系统,包括选择适用的电机、陀螺仪、加速度计等;b)进行相应的调试和优化,保证小车的平衡和动作控制能力。

4.软件开发和系统集成a)开发小车的控制系统软件,包括实时控制系统和传感器数据处理等;b)将硬件系统和软件系统进行有机地集成,实现小车的平衡和动作控制。

5.实验和测试a)进行实验测试,验证设计的有效性和稳定性;b)进行相关的性能测试和比较研究。

三、设计预期成果1.自平衡小车的系统设计和实现,能够平衡姿态并能够实现转向和动作控制;2.控制系统软件的开发和优化,实现小车的实时控制和数据处理;3.相关模块和算法的设计和实现,如平衡控制模块和动作控制模块;4.实验和测试结果的总结和分析;5.毕业设计报告的撰写。

四、设计周期和工作安排1.阶段1:研究和调研阶段(1周)2.阶段2:模块设计阶段(2周)3.阶段3:硬件搭建和调试阶段(2周)4.阶段4:软件开发和系统集成阶段(2周)5.阶段5:实验和测试阶段(1周)6.阶段6:总结和报告撰写阶段(2周)五、预期解决的关键问题和技术难点1.小车平衡控制算法的设计和优化;2.小车动作控制算法的设计和优化;3.小车硬件系统与软件系统的有效集成;4.多个传感器数据的处理和融合。

两轮自平衡小车设计报告

两轮自平衡小车设计报告

两轮自平衡小车设计报告设计报告:两轮自平衡小车一、引言二、设计理念本设计希望实现一个简洁、稳定和高效的两轮自平衡小车。

考虑到小车需要快速响应外界环境变化,并迅速做出平衡调整,因此采用了传感器、控制器和执行机构相结合的设计思路。

通过传感器获取小车倾斜角度和加速度等数据,通过控制器对采集的数据进行处理和判断,并通过执行机构实时调整车身的倾斜角度,以实现平衡行走。

三、原理四、硬件结构1.车身结构:车身由两个电机、一个控制器、一个电池和一个平衡摆杆组成。

2.电机:采用直流无刷电机,具有较高的转速和输出功率。

3.控制器:采用单片机控制模块,能够对传感器数据进行处理和判断,并输出控制信号给电机。

4.传感器:主要包括陀螺仪、加速度计和倾斜传感器,用于感知小车的倾斜角度和加速度等数据。

5.电池:提供小车的电力供应,保证小车正常运行。

五、软件控制小车的软件控制主要包括数据处理和判断、控制信号生成和输出三个方面。

1.数据处理和判断:通过获取的传感器数据,包括倾斜角度和加速度等信息,根据预设的控制算法进行数据处理和判断。

2.控制信号生成:根据处理和判断得出的结果,生成相应的控制信号。

控制信号包括电机的转动方向和速度。

3.控制信号输出:将生成的控制信号输出给电机,实现倒立摆的平衡。

六、小车性能测试为了验证小车的设计和功能是否符合预期,进行了多项性能测试。

1.平衡行走测试:将小车放在平坦的地面上,通过传感器检测到小车的当前倾斜角度并进行调整,实现小车的自平衡行走。

2.转向测试:在平衡行走的基础上,通过控制信号调整两个电机的速度差,从而实现小车的转向。

3.避障测试:在平衡行走和转向的基础上,添加超声波传感器等避障装置,实现小车的避障功能。

七、总结通过本设计报告的详细介绍,我们可以看出两轮自平衡小车具备平衡行走、转向和避障等功能,为用户提供了一个稳定、高效的移动平台。

未来,我们将进一步优化小车的设计和控制算法,提高小车的性能和应用范围。

毕业设计(论文)-两轮自平衡小车的设计

毕业设计(论文)-两轮自平衡小车的设计

Key Words: Two-Wheel Self-Balance; Gyroscope; Gesture detection; Kalman filter; Data fusion
II


1.绪论·························································································································· 1
2.系统原理分析·········································································································· 5
2.1 控制系统要求分析··············································································································· 5 2.2 平衡控制原理分析··············································································································· 5 2.3 自平衡小车数学模型··········································································································· 6 2.3.1 两轮自平衡小车受力分析···························································································· 6 2.3.2 自平衡小车运动微分方程···························································································· 9 2.4 PID 控制器设计··················································································································10 2.4.1 PID 控制器原理···········································································································10 2.4.2 PID 控制器设计···········································································································11 2.5 姿态检测系统····················································································································· 12 2.5.1 陀螺仪·························································································································· 12 2.5.2 加速度计······················································································································ 13 2.5.3 基于卡尔曼滤波的数据融合······················································································ 14 2.6 本章小结····························································································································· 16

双轮自平衡小车项目设计报告

双轮自平衡小车项目设计报告

电子与信息工程学院项目设计报告项目名称双轮自平衡小车设计专业电子信息科学与技术目录一自平衡小车的总体方案设计 (4)1、自平衡小车的设计方案 (4)2、自平衡小车的总体框图 (4)二系统的具体设计与实现 (5)1、单片机控制模块 (5)2、陀螺仪加速度计模块 (5)3、光码盘测速模块 (7)4、稳压模块 (8)5、电机驱动模块 (9)6、LCD1602显示模块 (12)三软件系统设计 (18)1、设计思想 (18)(1)PID技术 (18)(2)应用现状 (18)(3)PID调节规律 (19)(4)极点配置 (20)(5)极点配置条件 (20)(6)极点配置控制器 (23)2、程序流程图 (24)3、程序代码 (25)摘要随着科技进步,生活水平的提高,人们追求智能与舒适的愿望也日益强烈。

从而催生了许多智能化的产品。

如智能电视、智能小车等。

如何实现小车的小车的自动快捷驾驶,也成为人们心中的向往与疑问,基于这种趋势与需求,着眼于实际情况。

本文介绍了基于STC90C51单片机的自平衡小车系统的设计。

系统基于陀螺仪等传感器,利用PID平衡算法,对小车的速度倾斜角度平衡状态来进行检测,并通过单片机来控制电机来实现双轮小车自如平衡地运动。

从而实现小车智能自主控制的目的。

关键词:STC90C51 自平衡PID算法该自平衡小车,采用STC90C51单片机和各种传感器的组合,构成了自平衡小车系统。

其系统主要由以下几个部分组成:单片机控制系统、陀螺仪加速度检测模块、光码盘测速模块、稳压模块、电机驱动模块、LCD1602显示模块组成。

本设计的自平衡小车工作原理:给小车通电,平衡放在地上,当小车开始倾斜时,陀螺仪及时地采集的小车倾斜角度数据传给单片机,而加速度计将车子倾斜的瞬时加速度采集后也传给单片机,同时,光码测速仪也将车子的实时速度采集后传给单片机。

单片机系统收集到以上三组数据,对数据进行量化处理后,在PID 平衡算法的控制下,控制电机及时地做出前进或后退或加速或减速的反应,使车子在一个小角度范围内做平衡地来回摆动,以保持车子的不倒。

两轮自平衡小车设计

两轮自平衡小车设计

两轮自平衡小车设计一、任务要求图1两轮自平衡车两轮自平衡车结构原理如图1所示,主控制器(DSP)通过采集陀螺仪和加速度传感器得到位置信号,通过控制电机的正反转实现保持小车站立。

1、通过控制两个电机正反运动,实现小车在原地站立。

2、实现小车的前进、后退、转弯、原地旋转、停止等运动;二、方案实现2.1电机选型图2直流电机两轮自平衡车由于需要时刻保持平衡,对于倾角信号做出快速响应,因此对电机转矩要求较大。

在此设计中选用国领电机生产的直流电机,其产品型号为GB37Y3530,工作电压6v-12v。

为增大转矩,电机配有1:30传动比的减速器。

2.2电机测速方案图3霍尔测速传感器在电机测速方案上主流的方案有两种,分别是光电编码器和霍尔传感器。

光电编码器测量精度由码盘刻度决定,刻度越多精度越高;霍尔传感器精度由永磁体磁极数目决定,同样是磁极对数越高精度越高。

由于两轮自平衡车工作于剧烈震动环境中,光电编码器不适应这种环境,因此选用霍尔传感器来测量速度。

电机尾部加装双通道霍尔效应编码器,AB双路输出,单路每圈脉冲16CPR,双路上下沿共输出64CPR,配合1:30的减速器传动比,可以计算出车轮转动一圈输出的脉冲数目为64X30=1920CPR,完全符合测速要求。

2.3电机驱动控制系统概述本平台电机驱动采用全桥驱动芯片L298N,内部包含4通道逻辑驱动电路,两个H-Bridge的高电压、大电流双全桥式驱动器。

本驱动桥能驱动46V、2A 以下的电机。

其输出可以同时控制两个电机的正反转,非常适合两轮自平衡车开发,其原理图如下图所示图4L298N原理图采用脉宽调制方式(即PWM,Pulse Width Modulation)来调整电机的转速和转向。

脉宽调制是通过改变发出的脉冲宽度来调节输入到电机的平均电压,即通过不同方波的平均电压不同来改变电机转速。

图5PWM脉宽调节示意2.4倾角位置采集倾角和角速度采集是两轮自平衡车控制的重点,选用MPU6050模块作为其采集模块。

双轮自平衡车设计报告

双轮自平衡车设计报告

双轮自平衡车设计报告学院…………..........班级……………………姓名………………..手机号…………………..姓名………………..手机号…………………..姓名………………..手机号…………………..目录一、双轮自平衡车原理二、总体方案三、电路和程序设计四、算法分析及参数确定过程一.双轮自平衡车原理1.控制小车平衡的直观经验来自于人们日常生活经验。

一般的人通过简单练习就可以让一个直木棒在手指尖上保持直立。

这需要两个条件:一个是托着木棒的手掌可以移动;另一个是眼睛可以观察到木棒的倾斜角度和倾斜趋势(角速度)。

通过手掌移动抵消木棒的倾斜角度和趋势,从而保持木棒的直立。

这两个条件缺一不可,让木棒保持平衡的过程实际上就是控制中的负反馈控制。

图1 木棒控制原理图2.小车的平衡和上面保持木棒平衡相比,要简单一些。

因为小车是在一维上面保持平衡的,理想状态下,小车只需沿着轮胎方向前后移动保持平衡即可。

图2 平衡小车的三种状态3.根据图2所示的平衡小车的三种状态,我们把小车偏离平衡位置的角度作为偏差;我们的目标是通过负反馈控制,让这个偏差接近于零。

用比较通俗的话描述就是:小车往前倾时车轮要往前运动,小车往后倾时车轮要往后运动,让小车保持平衡。

4.下面我们分析一下单摆模型,如图4所示。

在重力作用下,单摆受到和角度成正比,运动方向相反的回复力。

而且在空气中运动的单摆,由于受到空气的阻尼力,单摆最终会停止在垂直平衡位置。

空气的阻尼力与单摆运动速度成正比,方向相反。

图4 单摆及其运动曲线类比到我们的平衡小车,为了让小车能静止在平衡位置附近,我们不仅需要在电机上施加和倾角成正比的回复力,还需要增加和角速度成正比的阻尼力,阻尼力与运动方向相反。

5 平衡小车直立控制原理图5.根据上面的分析,我们还可以总结得到一些调试的技巧:比例控制是引入了回复力;微分控制是引入了阻尼力,微分系数与转动惯量有关。

在小车质量一定的情况下,重心位置增高,因为需要的回复力减小,所以比例控制系数下降;转动惯量变大,所以微分控制系数增大。

两轮自平衡小车的设计与实现

两轮自平衡小车的设计与实现

两轮自平衡小车的设计与实现一、本文概述随着科技的飞速发展,智能化、自主化已经成为现代机器人技术的重要发展方向。

两轮自平衡小车作为一种典型的动态稳定控制机器人,其设计与实现技术对于推动机器人技术的进步具有重要意义。

本文旨在深入探讨两轮自平衡小车的设计理念、实现方法以及关键技术,为相关领域的研究者和爱好者提供有益的参考。

本文将首先介绍两轮自平衡小车的基本概念和原理,阐述其动态稳定控制的基本思想。

随后,将详细介绍两轮自平衡小车的硬件设计,包括电机驱动、传感器选型、控制器设计等关键部分,并阐述各部件之间的协同工作原理。

在此基础上,本文将重点探讨两轮自平衡小车的软件实现,包括平衡控制算法、运动控制算法以及人机交互界面设计等。

本文还将对两轮自平衡小车的性能优化和实际应用进行深入分析,探讨如何提高其稳定性、响应速度以及续航能力等问题。

本文将对两轮自平衡小车的发展趋势和前景进行展望,为相关领域的研究和发展提供有益的参考。

通过本文的阐述,读者可以全面了解两轮自平衡小车的设计与实现过程,掌握其关键技术和应用方法,为推动机器人技术的发展做出贡献。

二、两轮自平衡小车的基本原理两轮自平衡小车,又称作双轮自稳车或双轮倒立摆,是一种基于动态稳定技术设计的个人交通工具。

其基本原理主要涉及到力学、控制理论以及传感器技术。

两轮自平衡小车的稳定性主要依赖于其独特的力学结构。

与传统三轮或四轮的设计不同,双轮自平衡小车只有两个支撑点,这意味着它必须通过动态调整自身姿态来维持稳定。

这种动态调整的过程类似于杂技演员走钢丝,需要精确的平衡和快速的反应。

实现自平衡的关键在于控制理论的应用。

两轮自平衡小车通常搭载有先进的控制系统,该系统通过传感器实时监测小车的姿态(如倾斜角度、加速度等),并根据这些信息计算出必要的调整量。

控制系统随后会向电机发送指令,调整小车的运动状态,以保持平衡。

传感器在两轮自平衡小车中扮演着至关重要的角色。

常见的传感器包括陀螺仪、加速度计和角度传感器等。

【精品毕设】两轮平衡车的设计

【精品毕设】两轮平衡车的设计

毕业设计(论文)
题目两轮平衡车的设计
系(院)机电工程系
专业机械设计制造及其自动化
学号
指导教师
职称
二〇一四年六月二十日
独创声明
本人郑重声明:所呈交的毕业设计(论文),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议。

据我所知,除文中已经注明引用的内容外,本设计(论文)不含任何其他个人或集体已经发表或撰写过的作品成果。

对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。

本声明的法律后果由本人承担。

作者签名:
二〇一二年月日
毕业设计(论文)使用授权声明
本人完全了解滨州学院关于收集、保存、使用毕业设计(论文)的规定。

本人愿意按照学校要求提交学位论文的印刷本和电子版,同意学校保存学位论文的印刷本和电子版,或采用影印、数字化或其它复制手段保存设计(论文);同意学校在不以营利为目的的前提下,建立目录检索与阅览服务系统,公布设计(论文)的部分或全部内容,允许他人依法合理使用。

(保密论文在解密后遵守此规定)
作者签名:
二〇一二年月。

自平衡小车设计报告

自平衡小车设计报告

2012年省电子竞赛设计报告项目名称:自平衡小车姓名:连文金、林冰财、陈立镔指导老师:吴进营、苏伟达、李汪彪、何志杰日期: 2012年9月7日摘要:本组的智能小车底座采用的是网上淘宝的三轮两个电机驱动的底座,主控芯片为STC89C52,由黑白循迹采集模块对车道信息进行采集,将采集的信息传送到主控芯片,再由主控芯片发送相应的指令到电机驱动模块L298N,从而控制电机的运转模式。

关键词:STC89C52 L298N 色标传感器E18-F10NK 自动循迹引言:近现代,随着电子科技的迅猛发展,人们对技术也提出了更高的要求。

汽车的智能化在提高汽车的行驶安全性,操作性等方面都有巨大的优势,在一些特殊的场合下也能满足一些特殊的需要。

智能小车系统涉及到自动控制,车辆工程,计算机等多个领域,是未来汽车智能化是一个不可避免的大趋势。

本文设计的小车以STC89C52为控制核心,用色标传感器E18-F10NK作为检测元件实现小车的自动循迹前行。

一、系统设计本组智能小车的硬件主要有以STC89C52 作为核心的主控器部分、自动循迹部分、电机驱动部分。

1.1方案论证及选择:根据设计要求,可以有多种方法来实现小车的功能。

我们采用模块化思想,从各个单元电路选择入手进行整体方案的论证、比较与选择。

本方案以STC89C52作为主控芯片,通过按键进行模式的选择切换,按键一选择三轮循迹,按键二进行两轮循迹。

1.1.1模式一(三轮循迹):模式一(按键一控制):三轮循迹的时候,通过色标传感器和激光传感器进行实时的数据采集,反馈给主控芯片,主控芯片通过驱动L298来控制两路直流减速电机,从而保证路线的准确性。

引导线断开区域:由于小车是逆时针行走,考虑到惯性,五个传感器全部没有检测到,就直接一定程度上的左转,正好和惯性在一定程度上进行抵消,校正电机两轮电机的线性偏差。

直接从D区域走到E区域。

S型曲线:通过安装传感器,实地模拟所有经过的所有情况,来经过“S”型曲线。

两轮自平衡小车毕业设计

两轮自平衡小车毕业设计

两轮自平衡小车毕业设计04161120(总24页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除两轮自平衡小车的设计摘要最近这几年来,自平衡电动车的研发与商用获得了快速发展。

自平衡车具有体积小,运动十分灵活,便利,节能等特点。

本文提出了一种双轮自平衡小车的设计方案,机械结构采用了双轮双马达驱动;控制主要采用的是反馈调节,为了使车体更好的平衡,使用了PID调节方式;硬件上采用陀螺仪GY521 MPU-6050来采集车体的旋转角度以及旋转角加速度,同时采用了加速度传感器来间接测量车体旋转角度。

采用意法半导体ST 公司的低功耗控制器芯片stm32作为主控,采集上述传感器信息进行滤波,分析等操作后进而控制马达的驱动,从而达到反馈调节的闭环,实现小车的自动平衡。

系统设计,调试完成后,能够实现各个功能部件之间协调工作,在适度的干扰情形下仍然能够保持平衡。

同时,也可以使用手机上的APP通过蓝牙与小车通信控制小车的前进和后退以及转弯。

关键词:自平衡小车陀螺仪传感器滤波 APPDesign of Two-Wheel Self-Balance VehicleAbstractIn the last few years, with the development of commercial self balancing electric vehicle was developed rapidly. Self balancing vehicle has the advantages of small volume, the movement is very flexible, convenient, energy saving etc.. This paper presents a two wheeled self balancing robot design, mechanical structure adopts double motor drive; controlled mainly by the feedback regulation, in order to make the balance of the body better, with the PID regulation; hardware using gyroscope GY521 mpu-6050 to collect the rotation angle of the car body and the rotation angle acceleration. At the same time, acceleration sensor to measure indirectly body rotation angle. St, the low power consumption controller STM32 chip used as the main control, collecting the sensor information filtering, analysis backward and control motor drive, so as to achieve close loop feedback regulation, the realization of the car automatic balance. System design, debugging is completed, the coordination between the various functional components can be achieved, in the case of moderate interference can still maintain a balance. At the same time, you can also use the APP on the mobile phone with the car to control the car's forward and backward and turning.Key Words: Self balancing car gyroscope sensor filter APP目录1.绪论 0研究背景与意义 0自平衡小车的设计要点 0整体构思 0姿态检测系统 0控制算法 (1)本文主要研究目标与内容 (1)论文章节安排............................................... 错误!未定义书签。

双轮自平衡小车项目设计报告

双轮自平衡小车项目设计报告

电子与信息工程学院项目设计报告项目名称双轮自平衡小车设计专业电子信息科学与技术目录一自平衡小车的总体方案设计 (4)1、自平衡小车的设计方案 (4)2、自平衡小车的总体框图 (4)二系统的具体设计与实现 (5)1、单片机控制模块 (5)2、陀螺仪加速度计模块 (5)3、光码盘测速模块 (7)4、稳压模块 (8)5、电机驱动模块 (9)6、LCD1602显示模块 (12)三软件系统设计 (18)1、设计思想 (18)(1)PID技术 (18)(2)应用现状 (18)(3)PID调节规律 (19)(4)极点配置 (20)(5)极点配置条件 (20)(6)极点配置控制器 (23)2、程序流程图 (24)3、程序代码 (25)摘要随着科技进步,生活水平的提高,人们追求智能与舒适的愿望也日益强烈。

从而催生了许多智能化的产品。

如智能电视、智能小车等。

如何实现小车的小车的自动快捷驾驶,也成为人们心中的向往与疑问,基于这种趋势与需求,着眼于实际情况。

本文介绍了基于STC90C51单片机的自平衡小车系统的设计。

系统基于陀螺仪等传感器,利用PID平衡算法,对小车的速度倾斜角度平衡状态来进行检测,并通过单片机来控制电机来实现双轮小车自如平衡地运动。

从而实现小车智能自主控制的目的。

关键词:STC90C51 自平衡PID算法该自平衡小车,采用STC90C51单片机和各种传感器的组合,构成了自平衡小车系统。

其系统主要由以下几个部分组成:单片机控制系统、陀螺仪加速度检测模块、光码盘测速模块、稳压模块、电机驱动模块、LCD1602显示模块组成。

本设计的自平衡小车工作原理:给小车通电,平衡放在地上,当小车开始倾斜时,陀螺仪及时地采集的小车倾斜角度数据传给单片机,而加速度计将车子倾斜的瞬时加速度采集后也传给单片机,同时,光码测速仪也将车子的实时速度采集后传给单片机。

单片机系统收集到以上三组数据,对数据进行量化处理后,在PID 平衡算法的控制下,控制电机及时地做出前进或后退或加速或减速的反应,使车子在一个小角度范围内做平衡地来回摆动,以保持车子的不倒。

两轮平衡车的设计

两轮平衡车的设计

毕业设计(论文)题目两轮平衡车的设计系(院)机电工程系专业机械设计制造及其自动化学号指导教师职称二〇一四年六月二十日独创声明本人郑重声明:所呈交的毕业设计(论文),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议。

据我所知,除文中已经注明引用的内容外,本设计(论文)不含任何其他个人或集体已经发表或撰写过的作品成果。

对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。

本声明的法律后果由本人承担。

作者签名:二〇一二年月日毕业设计(论文)使用授权声明本人完全了解滨州学院关于收集、保存、使用毕业设计(论文)的规定。

本人愿意按照学校要求提交学位论文的印刷本和电子版,同意学校保存学位论文的印刷本和电子版,或采用影印、数字化或其它复制手段保存设计(论文);同意学校在不以营利为目的的前提下,建立目录检索与阅览服务系统,公布设计(论文)的部分或全部内容,允许他人依法合理使用。

(保密论文在解密后遵守此规定)作者签名:二〇一二年月两轮平衡车的设计摘要两轮自平衡车结合了两轮同轴、独立驱动、悬架结构和倒立摆模型的自平衡原理,是一种在微处理器控制下始终保持平衡的集智能化与娱乐性于一体的新型代步工具。

整车由底盘、动力装置、控制装置和转向装置组成。

底盘采用下沉式的悬架结构,降低车身和使用者的重心减小了平衡控制难度,利用阻尼器削弱冲击力提高驾驶舒适性;控制部分由陀螺仪和加速度计作为传感器模块监测车体状态,可获得精确稳定的测量数据。

同时微处理器实时处理状态数据,进而由驱动模块控制电机转动以维持车体平衡;转向操纵杆高度可调节亦可折叠,以适应不同高度人士使用又便于运输和存放;采用电池作为动力能源,当车减速或下坡时可自动回送电能更加节能。

两轮自平衡车的基本设计理念是娱乐、经济、安全、方便、节能环保。

本车具有运动灵活、智能控制、操作简便等特点,同时它价格低廉、性价比高,娱乐性和适用性增强,弥补了传统观车辆的体积大、功耗多,不适于单人使用的缺点。

自动平衡同轴双轮电动小车系统设计

自动平衡同轴双轮电动小车系统设计

--自动平衡同轴双轮电动小车系统设计Design of Automatic Balance Coaxial Double Electric Car System学生学号:学生姓名:专业班级:指导教师:职称:起止日期:2----摘要本课题旨在研制一种自平衡同轴双轮自平衡小车。

该系统是一种两轮左右平行布置的单人电动车,像传统的倒立摆一样,本身是一个自然不稳定体,必须施加强有力的控制手段才能使之稳定。

由于它的行为与火箭飞行以及两足机器人行走有很大的相似性,因而对其进行研究具有重要的理论和实践意义。

系统以姿态传感器(陀螺仪、加速度计)来检测侧身所处的俯仰状态和状态变化率,通过高速中央处理器计算出适当数据和指令后,驱动电动机产生前进或后退的加速度来达到车体前后平衡的效果。

控制技术是运动控制的核心,在实际生产实践中应用最普遍的是各种以PID为代表的基本控制技术。

按照偏差的比例、积分和微分进行控制的调节器,简称为PID调节器,是连续系统中技术成熟且应用广泛的一种调节器。

本文对系统用到的PID 控制技术做了相应的研究,从理论上分析了变积分的PID控制技术的优势,并在系统的实际测试中获得了良好的效果。

关键词:自平衡;陀螺仪;加速度计;PID控制----AbstractIn this thesis, a two-wheeled vehicle with the characteristic of self-balancing was developed. For the prototype design, the vehicle is arranged by two paralleled wheels and powered by electric motor, which is an unstable object needed force to keep balance, just as the traditional ‘inverted pendulum’. Since the action principle is similar to rocket flying and robot waking, this research is meaningful for the theory and practice.According to the inertial sensor (gyroscope, accelerometer ),the monitoring data of pitching state changing are input into the MCU(Micro Control Unit)calculation for the acceleration commands to drive the motor forward/backward for the balance keeping. Control technique is the core of vehicle movement, which is typical with PID (Proportion Integration Differentiation) technique in practice. PID moderator is a technology-matured moderator for wide application in continuous system, which based on deviation proportion, integration and differentiation. In this thesis, PID control technique was detailed investigated in theory, especially for the advantages of PID variational integralion, and finally well-performance was achieved in the application.Key words: self-balance; gyroscope; accelerometer; PID----目录摘要 (II)Abstract (III)第1章绪论 (1)1.1前言 (1)1.2自平衡同轴双轮小车的研究意义 (1)1.3 两轮自平衡小车的发展历程和现状 (1)1.3.1国外研究成果 (2)1.3.2国内的研究成果 (3)1.4 本文的研究内容 (4)第2章系统原理分析 (5)2.1控制系统要求分析 (5)2.2平衡控制原理分析 (6)2.3姿态检测系统分析 (7)2.3.1陀螺仪数据处理 (7)2.3.2加速度计数据处理 (8)2.3.3传感器数据处理的必要性 (9)2.3.4基于卡尔曼滤波的数据融合 (10)2.4 PID控制技术 (12)2.4.1 PID控制技术的应用现状 (13)2.4.2 PID调节规律 (13)2.4.3 积分分离的PID算法 (14)2.4.4 PID控制器参数的确定 (14)第3章系统硬件结构 (16)3.1系统硬件组成及工作原理 (16)3.1.1系统的结构框图 (16)3.1.2系统的组成 (16)3.2直流无刷电动机 (17)3.2.1 直流无刷电机选择理由 (17)3.2.2 直流无刷电机调速 (17)3.2.3 直流无刷电机控制方法 (18)3.3电机驱动器 (18)----3.3.1电源部分 (19)3.3.2功率元件部分 (19)3.3.3功率管驱动芯片 (20)3.3.4硬件设计中的抗干扰措施 (21)3.4陀螺仪 (22)3.4.1陀螺仪简介 (22)3.4.2 陀螺仪的应用电路 (23)3.5加速度计 (24)3.5.1加速度计简介 (24)3.5.2加速度计应用电路 (25)3.6控制器 (26)3.6.1微控制器选型 (26)3.6.2 AVR 、ATmega16L单片机简介 (28)3.6.3复位电路 (29)3.6.4 A/D模数转换电路 (29)第四章系统软件设计与实际测试 (31)4.1系统软件功能模块划分 (31)4.2软件功能模块设计 (31)4.2.1初始化和主循环模块 (31)4.2.2 A D采样及采样数据滤波处理模块 (32)4.2.2陀螺仪与加速度计输出值转换 (33)4.2.3卡尔曼滤波器的软件实现 (34)4.2.4平衡PID控制软件实现 (37)4.2.5两轮自平衡车的运动控制 (38)结论 (41)致谢 (42)参考文献 (43)----第1章绪论1.1前言移动机器人是机器人学的一个重要分支,对于移动机器人的研究,包括轮式、腿式、履带式以及水下式机器人等,可以追溯到20世纪60年代。

双轮平衡车设计

双轮平衡车设计

• 196•进入新世纪后,我国人工智能行业逐渐崭露头角,智能机器人、智能安装机器人、无人驾驶等新型科技产业飞速发展。

在双轮平衡车领域,科技人员通过对陀螺仪的研究,也将其纳入发展行列。

当今世界绿色主题发展越来越明显,随着科技的进步,清洁能源的大量投入使用使得电动汽车的数量在不断增加。

为解决交通拥挤等问题,研究者以简洁、小型化为出发点,开发出了一款两轮电动平衡车。

1 系统框架在设计中本装置的硬件电路主要包含:提供工作的电压并各个电路模块降压电路的设计、转向、STM32F103ZET6控制系统电路、光耦隔离电路的设计等。

由于系统各部分电路所需的电压不同,因此需要特殊的电压转换电路来保证系统中各电路的正常工作。

平衡数据、转向数据采集由集成处理模块MPU6050中的六轴运动和倾斜信号传感器处理,主控制系统以数据为基础进行判断,数据处理,通过高级定时器TIM1(TIM8)输出不同占空比的PWM 波绕两个电机转速,使平衡车一直处于平衡状态。

2 电机驱动模块2.1 无刷直流电机无刷直流电动机的结构与普通直流电动机的结构非常相似。

无刷直流电动机的三相绕组均匀分布在120°空间内,使用该绕组分布方法可以最大程度的节约空间,为转子提供稳定的控制回路。

一般来说有三个绕组连接,一个用于Y 连接,另一个用于星形连接。

本文采用的连接方法是星形连接,电动机驱动电路中有六个功率晶体管分别为VT1、VT3、VT4、VT5、VT6,两个DC 控制端分别为DC+、DC-。

转子的实时位置数据,判断控制电路的功率晶体管的开西北民族大学电气工程学院 王元琪 李远航双轮平衡车设计闭情况。

通过控制上臂和下臂六个功率晶体管的导通顺序,实现了电动机线圈的通电顺序的变化。

该电机具有转矩和速度特性好、动态响应速度快、效率高、使用寿命长、转向过程无火花、运行平稳、维护方便等优点。

2.2 门极驱动电路设计平衡车的控制系统中电机的控制是至关重要的。

两轮自平衡小车设计报告

两轮自平衡小车设计报告

沈阳工业大学信息科学与工程学院第五届创新杯大学生电子设计竞赛双轮自平衡小车摘要:本作品采用STM32单片机作为主控制器,用一个陀螺仪传感器来检测车的状态,通过TB6612控制小车两个电机,来使小车保持平衡状态,通过手机蓝牙与小车上蓝牙模块连接以控制小车运行状态。

关键字:智能小车;单片机;陀螺仪;蓝牙模块。

一、系统完成的功能根据老师的指导要求,在规定的时间内,由团队合作完成两轮自平衡小车的制作,使小车在一定时间内能够自助站立并且自由行走,以及原地转圈,上坡和送高处跃下站立。

二、系统总体设计原理框架图图2.1 系统总体框图三.系统硬件各个组成部分介绍3.1.STM32单片机简介(stm32rbt6)主控模块的STM32单片机是控制器的核心部分。

该单片机是ST意法半导体公司生产的32位高性能、低成本和低功耗的增强型单片机,它的内核采用ARM 公司最新生产的Cortex—M3架构,最高工作频率可达72MHz,256K的程序存储空间、48K的RAM,8个定时器/计数器、两个看门狗和一个实时时钟RTC,片上集成通信接口有两个I2C、3个SPI、5个USART、一个USB、一个CAN、两个和一个SDIO,并集成有3个ADC和一个DAC,具有80个I/0端口。

STM32单片机要求2.0~3.6V的操作电压(VDD),本设计采用5.0V电源通过移动电源给单片机供电。

3.2.陀螺仪传感器陀螺仪可以用来测量物体的旋转角速度。

本设计选用MPU-6050。

MPU-60X0 是全球首例9 轴运动处理传感器。

它集成了3 轴MEMS 陀螺仪,3 轴MEMS加速度计,以及一个可扩展的数字运动处理器DMP(Digital Motion Processor),可用I2C接口连接一个第三方的数字传感器,比如磁力计。

扩展之后就可以通过其I2C 或SPI 接口输出一个9 轴的信号(SPI 接口仅在MPU-6000 可用)。

MPU-60X0 也可以通过其I2C 接口连接非惯性的数字传感器,比如压力传感器MPU-60X0 对陀螺仪和加速度计分别用了三个16 位的ADC,将其测量的模拟量转化为可输出的数字量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双轮自平衡车设计报告学院…………..........班级……………………姓名………………..手机号…………………..姓名………………..手机号…………………..姓名………………..手机号…………………..目录一、双轮自平衡车原理二、总体方案三、电路和程序设计四、算法分析及参数确定过程一.双轮自平衡车原理1.控制小车平衡的直观经验来自于人们日常生活经验。

一般的人通过简单练习就可以让一个直木棒在手指尖上保持直立。

这需要两个条件:一个是托着木棒的手掌可以移动;另一个是眼睛可以观察到木棒的倾斜角度和倾斜趋势(角速度)。

通过手掌移动抵消木棒的倾斜角度和趋势,从而保持木棒的直立。

这两个条件缺一不可,让木棒保持平衡的过程实际上就是控制中的负反馈控制。

图1 木棒控制原理图2.小车的平衡和上面保持木棒平衡相比,要简单一些。

因为小车是在一维上面保持平衡的,理想状态下,小车只需沿着轮胎方向前后移动保持平衡即可。

图2 平衡小车的三种状态3.根据图2所示的平衡小车的三种状态,我们把小车偏离平衡位置的角度作为偏差;我们的目标是通过负反馈控制,让这个偏差接近于零。

用比较通俗的话描述就是:小车往前倾时车轮要往前运动,小车往后倾时车轮要往后运动,让小车保持平衡。

4.下面我们分析一下单摆模型,如图4所示。

在重力作用下,单摆受到和角度成正比,运动方向相反的回复力。

而且在空气中运动的单摆,由于受到空气的阻尼力,单摆最终会停止在垂直平衡位置。

空气的阻尼力与单摆运动速度成正比,方向相反。

图4 单摆及其运动曲线类比到我们的平衡小车,为了让小车能静止在平衡位置附近,我们不仅需要在电机上施加和倾角成正比的回复力,还需要增加和角速度成正比的阻尼力,阻尼力与运动方向相反。

5 平衡小车直立控制原理图5.根据上面的分析,我们还可以总结得到一些调试的技巧:比例控制是引入了回复力;微分控制是引入了阻尼力,微分系数与转动惯量有关。

在小车质量一定的情况下,重心位置增高,因为需要的回复力减小,所以比例控制系数下降;转动惯量变大,所以微分控制系数增大。

在小车重心位置一定的情况下,质量增大,因为需要的回复力增大,比例控制系数增大;转动惯量变大,所以微分控制系数增大。

二.总体方案■小车总框图三.电路和程序设计1.主要元器件选型A. STM32F103RCT6最小核心板■小容量增强型,32位基于ARM核心的带16或32K字节闪存的微控制器USB、CAN、6个定时器、2个ADC 、6个通信接口功能。

■内核:ARM 32位的Cortex™-M3 CPU−最高72MHz工作频率,在存储器的0等待周期访问时可达1.25DMips/MHz(Dhrystone2.1)。

−单周期乘法和硬件除法。

■存储器−从16K到32K字节的闪存程序存储器。

−从6K到10K字节的SRAM。

■时钟、复位和电源管理− 2.0~3.6伏供电和I/O引脚。

−上电/断电复位(POR/PDR)、可编程电压监测器(PVD)。

− 4~16MHz晶体振荡器。

−内嵌经出厂调校的8MHz的RC振荡器。

−产生CPU时钟的PLL−带校准功能的32kHz RTC振荡器■低功耗−睡眠、停机和待机模式− VBAT为RTC和后备寄存器供电■2个12位模数转换器,1μs转换时间(多达16个输入通道)−转换范围:0至3.6V−双采样和保持功能−温度传感器■DMA:− 7通道DMA控制器−支持的外设:定时器、ADC、SPI、I2C和USART■多达80个快速I/O端口− 26/37/51个I/O口,所有I/O口可以映像到16个外部中断;几乎所有端口均可容忍5V信号B. L298N双直流电机驱动模块■板载一个L298N马达控制芯片和一个7805稳压芯片。

■模块可以同时驱动2个直流电机或者一个五线四相式步进电机。

■模块输入电压6~12V■常用的电机驱动功能够用切资料也很好找。

C.传感器MPU6050模块■此六轴模块采用先进的数字滤波技术(卡尔曼滤波),能有效降低测量噪声,提高测量精度。

模块内部集成了运动引擎DMP,获取四元数得到当前姿态。

姿态测量精度0.01度,稳定性极高,性能甚至优于某些专业的倾角仪!采用高精度的陀螺加速度计MPU6050通过IIC协议输出保证数据的准确性。

■电压:3V~6V 。

电流:<10mA 。

体积:17.8mm X 17.8mm 重量:1.1g■测量维度:加速度:3 维,角速度:3 维,姿态角:3 维■量程:加速度:± 16g,角速度:± 2000°/s。

■分辨率:加速度:6.1e-5g,角速度:7.6e-3°/s。

■稳定性:加速度:0.01g,角速度 0.05°/s。

■数据输出频率 100Hz(波特率 115200)/20Hz(波特率 9600)。

■波特率 115200kps/9600kps。

D.HC-05蓝牙主从一体模块■供电电压3.3V~3.6V;■支持AT指令集配置模块;■采用CSR主流蓝牙芯片,蓝牙V2.0协议标准;■波特率最高为1382400bps;■配对以后当全双工串口使用,无需了解任何蓝牙协议,但仅支持8位数据位、1位停止位、无奇偶校验的通信格式,这也是最常用的通信格式,不支持其他格式。

2电路设计■STM32核心板原理图叮叮小文库■电机驱动原理图■MPU6050原理图■蓝牙模块原理图四.算法分析及参数确定■小车直立环使用PD(比例微分)控制器,其实一般的控制系统单纯的P 控制或者PI 控制就可以了,但是那些对干扰要做出迅速响应的控制过程需要D (微分)控制。

直立控制的PD代码int balance(float Angle,float Gyro){float Bias,kp=300,kd=1;int balance;Bias=Angle-0; //计算直立偏差balance=kp*Bias+Gyro*kd; //计算直立PWMreturn balance; //返回直立PWM}参数是平衡小车倾角和Y 轴陀螺仪(这个取决于MPU6050 的安装),调试过程包括确定平衡小车的机械中值、确定kp 值的极性(也就是正负号)和大小、kd 值的极性和大小等步骤。

在调试直立环的时候,我们要在定时中断服务函数里面屏蔽速度环和转向环。

■确定平衡小车的机械中值把平衡小车放在地面上,绕电机轴旋转观察小车什么时候平衡用量角器量大概中值在哪。

本小车为2度。

■确定kp 值的极性(令kd=0)首先我们估计kp的取值范围。

我们的PWM设置的是7200代表占空比100%,假如我们设定kp 值为720,那么平衡小车在±10°的时候就会满转。

根据我们的感性认识,这显然太大了,那我们就可以估计kp 值在0~720 之间,首先大概我们给一个值kp=-200,我们可以观察到,小车往哪边倒,电机会往那边加速让小车到下,就是一个我们不愿看到的正反馈的效果。

说明kp 值的极性反了,接下来我们设定kp=200,这个时候可以看到平衡小车有直立的趋势,虽然响应太慢,但是,我们可以确定kp 值极性是正的。

具体的数据接下来再仔细调试。

■确定kp 值的大小(令kd=0)确定参数的原则是:kp 一直增加,直到出现大幅度的低频抖动。

定kp=200,这个时候我们可以看到,小车虽然有平衡的趋势,但是显然响应太慢了。

定kp=680,这个时候我们可以看到,小车的响应明显加快,而且来回推动小车的时候,会有大幅度的低频抖动。

说明这个时候kp 值已经足够大了,需要增加微分控制削弱p 控制,抑制低频抖动。

■确定kd 值的极性(令kp=0)我们得到的MPU6050 输出的陀螺仪的原始数据,通过观察数据,我们发现最大值不会超过4 位数(正常应用在平衡小车上的时候),再根据7200 代表占空比100%,所以我们估算kd 值应该在0~3 之间,我们先设定kd=-0.5,当我们拿起小车旋转的时候,车轮会反向转动,并没有能够实现跟随效果。

这说明了kd 的极性反了。

接下来,我们设定kd=0.5,这个时候我们可以看到,当我们旋转小车的时候,车轮会同向以相同的速度跟随转动,这说明我们实现了角速度闭环,至此,我们可以确定kd 的极性是正的。

具体的数据接下来再仔细调试。

■确定kd 值的大小(令kp=500)确定参数的原则是:kd 一直增加,直到出现高频抖动。

设定kd=0.5,这个时候我们可以看到,低频大幅度频抖动已经基本消除。

设定kd=1,这个时候我们可以看到,整体性能已经非常棒。

设定kd=3.8,这个时候我们可以看到,小车开始出现剧烈抖动至此,我们可以确定得到kp=500,kd=1.7 是P、D 参数的最大值。

然后我们进行最关键的一步,对每个系数乘以0.6,取整得到kp=680,kd=2,这就是最终我们需要的参数,这样做的原因是,我们之前得到的参数是kp、kd 最对每个数据乘以0.6 得到。

这个时候我们可以看到,小车没有任何的抖动,非常平稳,但是依然无法保持长时间的直立,直立很短一段时间后会往一个方向加速倒下。

这个等我们下面加上速度环才能得到更好的性能。

只有直立环是很难让小车达到很好的直立效果的。

■平衡小车速度控制调试平衡小车速度环使用PI(比例积分)控制器,这也是速度控制最常使用的控制器。

PI 控制器是一种线性控制器,它根据给定值与实际输出值构成控制偏差,将偏差的比例(P)和积分(I)通过线性组合构成控制量对被控对象进行控制。

■计算速度偏差根据公式偏差=测量值-目标值测量值我们使用左右编码器之和表示,我们没有必要纠结于是否要除以2,因为这样就引入舍去误差,我们需要的其实是一个可以表示速度变化的变量。

另外,我们的目标速度设置为零。

所以,可以得到Encoder_Least =(Encoder_Left+Encoder_Right)-0;然后,我们对速度值进行低通滤波,具体的系数由工程经验得到。

这样做的目的是为了减缓速度值的变化,防止速度控制对直立造成干扰,因为平衡小车系统里面,直立控制是主要的,其他控制对于直立来说都是一种干扰。

■确定kp 与ki 值的极性为了调试方便,接下来我们先关闭之前已经调试好的直立控制部分,积分项由偏差的积分得到,所以积分控制和比例控制的极性是相同的。

的平衡小车速度控制系统里面,一般我们可以把ki 值设置为ki=kp/200;这样,只要我们可以得到kp 值的大小和极性,就可以完成速度控制部分的参数整定了。

显然,这样大大缩短了PID 参数整定的时间。

另外要说明的是,虽然这里的PI 控制器是速度控制常用的一种控制器,但是和普通的调速系统不一样,这里的速度控制是正反馈的,当小车以一定的速度运行的时候,我们要让小车停下来,小车需要行驶更快的速度去“追”,小车运行的速度越快,去“追”的速度也就越快,所以这是一个正反馈的效果。

相关文档
最新文档