广东省揭阳市高中物理第六章万有引力与航天6.5宇宙航行(2)习题课教案新人教版必修2

合集下载

高中物理第六章万有引力与航天5宇宙航行(2)教案必修2

高中物理第六章万有引力与航天5宇宙航行(2)教案必修2

万有引力的两大疑难问题一、【教材分析及在高考中的地位】本节课有两个模块,卫星的变轨和同步卫星、近地卫星、赤道上的物体的线速度,加速度的比较,学生在之前已经学习了平抛运动、圆周运动和向心力等知识以及万有引力定律为本节课的学习做好铺垫,重点讲述人造卫星的发射原理、人造卫星绕地球做圆周运动的动力学原因和人造卫星的运行问题。

人造卫星是万有引力定律在天文学上应用的一个实例,是人类征服自然的见证,体现了知识的力量,是学生学习、了解现代科技知识的一个极好素材。

本节课与社会生活有着密切的联系,如气象卫星与天气预报,卫星定位系统与自动导航汽车等,更值得大家瞩目的是近年来我国的航天事业取得了辉煌的成绩,所以本节课具有广泛的现实意义和科研价值,而且也很有可能在近三年的高考中成为热点。

二、【学情分析】1、学生已经基本掌握万有引力定律和圆周运动的知识;2、学生的综合分析能力还比较的弱。

3、设计重趣味性与知识性的结合。

三、【教学重点】1、卫星变轨原理。

2、近地卫星、同步卫星、赤道上的物体的比较。

四、【教学难点】打破原来的供需关系,让卫星实现离心运动或近心运动,从而达到变轨的目的。

五、【学习目标】1、通过新课引入,调动起学生的学习兴趣和积极性。

2、通过教师精讲与小组合作学习知道卫星变轨的基本思路和应用。

3、通过小组讨论和总结掌握分析近地卫星,同步卫星,赤道上的物体的比较。

六、【探究案】新课引入探究一、卫星变轨卫星变轨概念:由于技术上的需要,有时要在适当的位置短时间启动卫星上的发动机,使卫星的速度发生突变,让其运行轨道发生改变,最终到达预定的目标。

小组合作学习(一)问题1、卫星从轨道1上的P点转移到轨道2上做的是()运动,需要改变卫星的(),所以经过P点的速度V p1、速度V p2的大小关系是()。

问题2、卫星从2轨道上的近地点P点向远地点Q点运动的过程中,卫星的速度(),经过P点的速度V p2和经过Q点的速度V Q2的大小关系是()。

高中物理 第六章《宇宙航行》学案 新人教版必修2-新人教版高一必修2物理学案

高中物理 第六章《宇宙航行》学案 新人教版必修2-新人教版高一必修2物理学案

6.5 《宇宙航行》学案【课标要求】1.了解人造卫星的有关知识。

2.知道三个宇宙速度的含义,会推导第一宇宙速度。

3.理解卫星的运行速度与轨道半径的关系。

【重点难点】1. 第一宇宙速度的推导。

2.运行速率与轨道半径之间的关系。

【课前预习】1.牛顿在思考万有引力定律时就曾想过,从高山上水平抛出物体,速度一次比一次大,落地点 。

如果速度足够大,物体就 ,它将绕地球运动,成为 。

2.第一宇宙速度大小为 ,也叫 速度。

第二宇宙速度大小为 ,也叫 速度。

第三宇宙速度大小为 ,也叫 速度。

第一宇宙速度,是发射卫星的________速度,同时也是卫星绕地球做匀速圆周运动时的________速度。

3 .①世界上第一颗人造卫星是1957年10月4日在 发射成功的,卫星质量为 kg ,绕地球飞行一圈需要的时间为 。

②世界上第一艘载人飞船是1961年4月12日在 发送成功,飞船绕地球一圈历时 。

③世界上第一艘登月飞船是1969年7月16日9时32分在 发送成功进入月球轨道; 飞船在月球表面着陆; 宇航员登上月球。

④中国第一艘载人航天飞船在2003年10月15日9时在 发送成功的,飞船绕地球 圈后,于 安全降落在 主着陆场。

成为中国登上太空的第一人。

[探究与生成][问题1] 人造卫星[教师点拨]1.在地面上抛出的物体,由于受到地球引力的作用,所以最终都要落回到地面. 由平抛物体的运动规律知:x =v 0t …………………..①,t=g h 2 ……………………….②。

联立①、②可得:x =v 0gh 2,即物体飞行的水平距离和初速度v 0及竖直高度h 有关,在竖直高度相同的情况下,水平距离的大小只与初速度v 0有关,水平初速度越大,飞行的越远.2.如果在地面上抛出一个物体时的速度足够大,物体飞行的距离也很大,由于地球是一圆球体,故物体将不能再落回地面,而成为一颗绕地球运转的卫星.3. 月球也要受到地球引力的作用,由于月球在绕地球沿近似圆周的轨道运转,此时月球受到的地球的引力(即重力),用来充当绕地运转的向心力,故而月球并不会落到地面上来.牛顿曾依据平抛现象猜想了卫星的发射原理,但他没有看到他的猜想得以实现.今天,我们的科学家们把牛顿的猜想变成了现实.例1.宇航员站在一星球表面上某高处,沿水平方向抛出一个小球,经过时间小球落到星球表面,测得抛出点与落地点之间的距离为,若抛出时的初速度增大到2倍,则抛出点与落地点之间的距离为.已知两落地点在同一水平面上,该星球的半径为,万有引力常量为.求该星球的质量.【解析】要建立清晰的物理情景,理清解题思路,根据力学知识求出两者的联系量:重力加速度.设抛出点的高度为h ,第一次水平位移为x ,则有x 2+h 2=L 2, 第二次平抛过程有2 解得 , 设该行星表面上重力加速度为g ,由平抛运动规律得:, 由万有引力定律与牛顿第二定律得:联立以上各式可解得求解力学知识和万有引力定律综合问题的方法:由万有引力和重力的关系求其他的物理量.【拓展与分享】.某星球的质量约为地球的9倍,半球约为地球的一半,若从地球表面上高h 处平抛一物体,射程x 为60 m,则在该星球表面上,从同样高度,以同样的初速度平抛同一物体,射程应为多少?【思路分析】已知抛出点的高度为h ,设水平初速度为v 0,在星球上的水平距离为x ',星球表面的重力加速度为g 星,则有星g h 2v x 0=',又由星星星g 2=R GM 得,6x h 261hR 2v x 220==='地地星星GM R GM ,由已知条件可得在星球上的射程为10m 。

高中物理第六章万有引力与航天第3节万有引力定律教案2新人教版必修2(new)

高中物理第六章万有引力与航天第3节万有引力定律教案2新人教版必修2(new)

6。

3 万有引力定律一、教学目标(一)知识和技能1。

知道万有引力是一种普遍存在的力.知道万有引力定律的发现过程,了解科学研究的一般过程。

2。

知道万有引力定律的表达式,知道万有引力定律是平方比定律,知道G的含义。

3。

了解卡文迪许实验中扭秤的测量微小力的巧妙构思,知道卡文迪许实验的意义在于直接验证万有引力定律。

(二)过程和方法1.以学习万有引力定律为载体,培养学生搜集、组织信息的能力,掌握理论探究的基本方法。

2.以学习万有引力定律为载体,通过展现思维程序“提出问题→猜想与假设→理论分析→实验观测→验证结论”培养学生探究思维能力。

3. 认识物理模型、理想实验和数学工具在物理学发展过程中的作用。

(三)情感、态度和价值观1。

领略自然界的奇妙与和谐,蕴涵其中的规律之简洁,发展对科学的好奇心与求知欲。

2.体验牛顿在前人基础上发现万有引力的思考过程,说明科学研究的长期性、连续性、艰巨性,体现科学精神与人文精神的结合.二、学情分析教学对象分析:本节课的教学对象为高一年级学生。

本节课使用的教材是人民教育出版社出版的普通高中课程标准实验教科书——物理②(必修),第六章第二、第三节的相关内容。

将这两节内容进行整合,有利于学生经历完整的探究过程.这两节内容准备两课时完成,本节课主要是引领学生,用自己的手和脑,重新“发现”万有引力定律。

经历将近两个学期的高中学习,学生已经基本掌握了高中物理的学习方法,具有一定的抽象思维能力和概括能力.另外,处于十七、八岁的他们,人生观、世界观正逐步形成,需要教师正确引导。

教学任务分析:本节课以天体运动为线索,通过猜想、建模、归纳、演绎、理想实验、检验等方法、运用牛顿运动定律、匀速圆周运动及向心力的知识,揭示万有引力定律。

通过对科学简史和科学人物的介绍,突出了万有引力的发现过程,体现了科学精神和人文精神的结合。

卡文迪许实验的介绍,说明任何科学发现都必须接受实验的验证。

教学设计思路:学生普遍感觉“万有引力”部分知识的学习为他们打开了探索宇宙的一扇天窗.但是,这部分知识的学习过程可以用:“难"、“繁"两字来概括。

高中高中物理 第六章《万有引力与航天》6.5宇宙航行学案新人教版必修2

高中高中物理 第六章《万有引力与航天》6.5宇宙航行学案新人教版必修2

【课题名称】6.5宇宙航行课型新授课时 1 编号14 【学习目标】 1.了解人造卫星的有关知识。

知道三个宇宙速度的含义,会推导第一宇宙速度。

2.通过实例,了解人类对太空的探索过程。

【学习重点】第一宇宙速度的推导,了解第二、第三宇宙速度。

【学习难点】运行速率与轨道半径之间的关系。

【教法】三步五段学情调查、情境导入1、复习万有引力定律的表达式:2、复习向心力的表达式:问题展示、合作探究一、宇宙速度(1)第一宇宙速度问题:牛顿实验中,炮弹至少要以多大的速度发射,才能在地面附近绕地球做匀速圆周运动?(地球半径为6400km,地球质量为5.98×1024kg)结论:如果发射速度小于,炮弹将落到地面,而不能成为一颗卫星;发射速度等于,它将在地面附近作匀速圆周运动;要发射一颗半径大于地球半径的人造卫星,发射速度必须大于。

可见,向高轨道发射卫星比向低轨道发射卫星要困难。

意义:第一宇宙速度是人造卫星在地面附近环绕地球作匀速圆周运动所必须具有的速度,所以也称为速度。

(2)第二宇宙速度大小,意义:使卫星挣脱地球的束缚,成为绕太阳运行的人造行星的最小发射速度,也称为速度。

注意:发射速度大于,而小于,卫星绕地球运动的轨迹为椭圆;等于或大于时,卫星就会脱离地球的引力,不再绕地球运行。

(3)第三宇宙速度大小,意义:使卫星挣脱太阳引力束缚的最小发射速度。

注意:发射速度大于,而小于,卫星绕太阳作椭圆运动,成为一颗人造行星。

如果发射速度大于等于,卫星将挣脱太阳引力的束缚,飞到太阳系以外的空间。

二、同步卫星同步卫星具有几个特点?【例题1】有两颗人造卫星,都绕地球做匀速圆周运行,已知它们的轨道半径之比r1:r2=4:1,求这颗卫星的:⑴线速度之比;⑵角速度之比;⑶周期之比;⑷向心加速度之比。

【例题2】能否发射一颗周期为80min的人造地球卫星并说明原因?当堂检测、巩固提升A1、人造地球卫星的轨道半径越大,则()请同学们独立完成独立思考完成讨论,代表发言小组合作、讨论学生代表发言A.速度越小,周期越小B.速度越小,周期越大C.速度越大,周期越小D.速度越大,周期越大 A2.关于人造卫星,下列说法中不可能的是 ( ) A .人造卫星环绕地球运行的速率是7.9km /s B .人造卫星环绕地球运行的速率是5.0km /s C .人造卫星环绕地球运行的周期是80min D .人造卫星环绕地球运行的周期是200minA3.人造地球卫星围绕地球作匀速圆周运动,其速率( )A.一定等于7.9s km /B.一定大于7.9s km /C.等于或小于7.9s km /D.介于7.9~11.2s km /之间B4.两个质量相等的人造地球卫星a 、b 绕地球运行的轨道半径ra=2rb ,下列说法中正确的是:( ) A 、由公式F=r m v 2可知,卫星a 的向心力是b 的1/2, B 、由公式F=G 2r Mm可知,卫星a 的向心力是b 的1/4,C 、由公式F=m r v 2可知,卫星a 的向心力是b 的2倍, D 、以上说法都不对。

高中物理第六章 万有引力与航天 单元教学设计

高中物理第六章 万有引力与航天 单元教学设计

高中物理第六章万有引力与航天单元教学设计一、任务分析1、课程标准:(1)通过有关事实了解万有引力定律的发现过程。

知道万有引力定律。

认识发现万有引力定律的重要意义,体会科学定律对人类探索未知世界的作用。

(2)会计算人造卫星的环绕速度。

知道第二宇宙速度和第三宇宙速度。

(3)初步了解经典时空观和相对论时空观,知道相对论对人类认识世界的影响。

(4)初步了解微观世界中的量子化现象,知道宏观物体和微观粒子的能量变化特点,体会量子论的建立深化了人类对于物质世界的认识。

(5)通过实例,了解经典力学的发展历程和伟大成就,体会经典力学创立的价值与意义,认识经典力学的实用范围和局限性。

(6)体会科学研究方法对人们认识自然的重要作用。

举例说明物理学的进展对于自然科学的促进作用。

高考说明解读:万有引力定律及其应用、环绕速度Ⅱ级要求,第二宇宙速度、第三宇宙速度Ⅰ级要求。

一级与了解、认识相当,二级与理解、应用相当。

初中教材:未有涉及各版本教材分析:相互借鉴、去长补短、对教学很有帮助。

上海科教版:安排了两章,第五章,万有引力与航天,侧重于规律的发现过程、物理学史及航天事业的学习。

第六章,经典力学与现代物理,侧重于现代物理学的了解与认识。

山东科技版:安排了两章,第五章,万有引力定律及其应用,侧重于章节引入,规律简介、应用及物理学史、航天事业的学习。

第六章,相对论与量子论初步,侧重于现代物理学的了解与认识。

人教版:兼顾二者。

2、本单元在教材中的地位作用及主要内容本章主要知识是万有引力定律及其在天体运动中的应用,重点是第一宇宙速度、卫星线速度、角速度、周期等的计算、比较。

本章是匀速圆周运动、牛顿定律的进一步应用,在高考中占一定的分数。

除知识外,本章内容是对学生进行“过程与方法、情感、态度与价值观”教育的好机会,让学生充分体会“人类对行星运动规律的认识过程和牛顿建立万有引力定律的过程”,让学生充分体验托勒密、哥白尼、第谷、开普勒、布鲁诺、伽利略等物理学家坚持真理、勇于创新和实事求是的科学态度、科学精神和科学思维方法(求真、求简、求美),让学生充分感知航天活动是一项高顶尖的事业,正改变着我们的生活及正确评价经典力学。

高中物理必修二第六章-万有引力与航天-教案

高中物理必修二第六章-万有引力与航天-教案

授课班级:安排课时:6.1行星的运动三维教学目标1、学问与技能(1)知道地心说和日心说的基本内容;(2)知道全部行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上;(3)知道全部行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等,且这个比值与行星的质量无关,但与太阳的质量有关;(4)理解人们对行星运动的相识过程是漫长困难的,真理是来之不易的。

2、过程与方法:过托勒密、哥白尼、第谷·布拉赫、开普勒等几位科学家对行星运动的不同相识,了解人类相识事物本质的曲折性并加深对行星运动的理解。

3、情感、看法与价值观(1)澄清对天体运动裨秘、模糊的相识,驾驭人类相识自然规律的科学方法。

(2)感悟科学是人类进步不竭的动力。

教学重点:理解和驾驭开普勒行星运动定律,相识行星的运动。

学好本节有利于对宇宙中行星的运动规律的相识,驾驭人类相识自然规律的科学方法,并有利于对人造卫星的学习。

教学难点:对开普勒行星运动定律的理解和应用,通过本节的学习可以澄清人们对天体运动神奇、模糊的相识。

教学方法:探究、讲授、探讨、练习教具打算:教学过程:第一节行星的运动(一)新课导入多媒体演示:天体运动的图片阅读。

(二)新课教学1、“地心说”和“日心说”之争2、开普勒行星运动定律运第肯定律:全部行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。

这肯定律说明白行星运动轨迹的形态,不同的行星绕大阳运行时椭圆轨道相同吗?(不同)其次定律:对随意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。

如图所示,行星沿着椭圆轨道运行,太阳位于椭圆的一个焦点上,假如时间间隔相等,即t2-t1=t4-t3,那么面积A=面积B。

由此可见,行星在远日点a 的速率最小,在近日点b的速率最大。

第三定律:全部行星的椭圆轨道的半长轴的三次方跟公转周期的平方的比值都相等。

由于行星的椭圆轨道都跟圆近似,在近似计算中,可以授课备注(教学班级的授课详细时间、老师自由调整内容、课堂教学记录等。

高中物理 第六章 万有引力与航天 3 万有引力定律教学设计 新人教版必修2(2021年最新整理)

高中物理 第六章 万有引力与航天 3 万有引力定律教学设计 新人教版必修2(2021年最新整理)

高中物理第六章万有引力与航天3 万有引力定律教学设计新人教版必修2 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中物理第六章万有引力与航天3 万有引力定律教学设计新人教版必修2)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中物理第六章万有引力与航天3 万有引力定律教学设计新人教版必修2的全部内容。

万有引力定律教学流程图教学目标一、知识与技能目标(1)理解万有引力定律的推导思路和过程。

(2)理解并掌握万有引力定律.(3)知道任何物体间都存在着万有引力,且遵循相同的规律.二、过程与方法目标(1)认识科学研究活动中根据事实和分析推理进行猜想、假设和检验的重要性,培养学生的推理能力、概括能力和归纳总结能力;(2)结合“月-地检验"通过思维程序“提出问题→猜想与假设→理论分析→实验观测→验证结论”培养学生探究思维能力。

三、情感态度与价值观目标(1)学习科学家们谦逊美德,使学生学习中互相协作、互相借鉴,培养团队精神.(2)认识天文观测、分析推理、归纳总结等科学意识和方法的重要性,培养学生尊重客观事实并透过现象看本质的认识观。

(3)学习科学家们坚持不懈、勇往直前和一丝不苛的工作精神,培养学生良好的学习习惯和善于探索的思维品质;教学重点1.万有引力定律的推导思路和过程.2.万有引力定律的内容及表达公式。

教学难点1.对万有引力定律的理解;2.对万有引力的理解:任意物体间都有万有引力作用。

3.计算万有引力时物体间距离的含义。

教学媒体与环境(1)电脑、投影仪、屏幕、视频展示台;(2)Powerpoint、自制多媒体Flash积件:行星绕太阳的运动动画、苹果落地的受力动画、地球引力作用于运动着的月球的受力动画等等。

【人教版】高中物理必修二全册优秀教案:第六章万有引力与航天第5节宇宙航行

【人教版】高中物理必修二全册优秀教案:第六章万有引力与航天第5节宇宙航行

5.宇宙航行三维目标知识与技能1.了解人造卫星的有关知识;2.知道三个宇宙速度的含义,会推导第一宇宙速度。

过程与方法通过用万有引力定律推导第一宇宙速度,培养学生运用知识解决问题的能力。

情感、态度与价值观1.通过介绍我国在卫星发射方面的情况,激发学生的爱国热情;2.感知人类探索宇宙的梦想.促使学生树立献身科学的人生价值观。

教学重点第一宇宙速度的推导。

教学难点运行速率与轨道半径之间对应的关系。

教学方法探究、讲授、讨论、练习。

教具准备多媒体课件教学过程[新课导入]1957年前苏联发射了第一颗人造地球卫星,开创了人类航天时代的新纪元。

我国在70年代发射第一颗卫星以来,相继发射了多颗不同种类的卫星,掌握了卫星回收技术和“一箭多星”技术,1999年发射了“神舟”号试验飞船。

随着现代科学技术的发展,我们对人造卫星已有所了解,那么地面上的物体在什么条件下才能成为人造卫星呢?人造卫星的轨道半径和它的运动速率之间有什么关系呢?这节课,我们要学习有关人造地球卫星的知识。

[新课教学]一、人造地球卫星1.牛顿的设想在高山上用不同的水平初速度抛出一个物体,不计空气阻力,它们的落地点相同吗?它们的落地点不同,速度越大,落地点离山脚越远。

因为在同一座高山上抛出,它们在空中运动的时间相同,速度大的水平位移大,所以落地点也较远。

假设被抛出物体的速度足够大,物体的运动情形又如何呢?如果地面上空有一个相对于地面静止的物体,它只受重力的作用,那么它就做自由落体运动,如果物体在空中具有一定的初速度,且初速度的方向与重力的方向垂直,那么它将做平抛运动,牛顿曾设想过:从高山上用不同的水平速度抛出物体,速度一次比一次大,落地点也一次比一次离山脚远,如果没有空气阻力,当速度足够大时,物体就永远不会落到地面上来,它将围绕地球旋转,成为一颗绕地球运动的人造地球卫星,简称人造卫星。

2.人造地球卫星(1)人造地球卫星从地面抛出的物体,在地球引力的作用下绕地球旋转,就成为绕地球运动的人造卫星。

2019-2020年高中物理 第六章 万有引力与航天 第五节 宇宙航行教案 新人教版必修2

2019-2020年高中物理 第六章 万有引力与航天 第五节 宇宙航行教案 新人教版必修2

2019-2020年高中物理第六章万有引力与航天第五节宇宙航行教案新人教版必修2课时:一课时教师:教学重点会推导第一宇宙速度,了解第二、第三宇宙速度.教学难点运行速率与轨道半径之间的关系.三维目标知识与技能1.了解人造卫星的有关知识.2.知道三个宇宙速度的含义,会推导第一宇宙速度.3.通过实例,了解人类对太空的探索历程.过程与方法1.能通过航天事业的发展史说明物理学的发展对于自然科学的促进作用.2.通过用万有引力定律推导第一宇宙速度,培养学生运用知识解决问题的能力.情感态度与价值观1.通过对我国航天事业发展的了解,进行爱国主义的教育.2.关心国内外航空航天事业的发展现状与趋势,有将科学技术服务于人类的意识.教学过程导入新课情景导入万有引力定律的发现,不仅解决了天上行星的运行问题,也为人们开辟了上天的理论之路.现代火箭航天技术先驱、俄国科学家齐奥尔科夫斯基曾说过:“地球是人类的摇篮,人类绝不会永远躺在这个摇篮里,而会不断地探索新的天体和空间.”1957年10月4日,前苏联用三级火箭发射了世界上第一颗人造地球卫星——“旅行者1号”,人类开始迈入航天时代.2003年10月15日,“神舟五号”飞船载着中国第一位航天员杨利伟成功升空,这标志着我国进入了载人航天时代.那么,多大的速度才能使物体不再落回地面,而使其成为地球的一颗卫星呢?学习本节内容之后便可解决上述问题了.推进新课一、宇宙速度问题探究:1、在地面抛出的物体为什么要落回地面?2、月球也要受到地球引力的作用,为什么月亮不会落到地面上来?3、平抛物体的速度逐渐增大,物体的落地点如何变化?速度达到一定值后,物体还能否落回地面?若不能,此速度必须满足什么条件?若此速度再增大,又会出现什么现象?4、什么叫人造地球卫星?组织学生讨论、交流,大胆猜测.结论:1.平抛物体的速度逐渐增大,物体的落地点逐渐变大.2.速度达到一定值后,物体将不再落回地面.3.物体不落回地面时环绕地球做圆周运动,所受地球的引力恰好用来提供向心力,满足GMm r 2=mv 2r v =GMr. 4.若此速度再增大,物体不落回地面,也不再做匀速圆周运动,万有引力不能提供所需要的向心力,从而做离心运动,轨道为椭圆轨道.合作探究教师引导学生共同探究出:1.人造卫星:物体绕地球做圆周运动时,此物体成为地球的卫星. 2.卫星轨道:可以是圆轨道,也可以是椭圆轨道.卫星绕地球沿圆轨道运行时,由于地球对卫星的万有引力提供了卫星绕地球运动的向心力,而万有引力指向地心,所以,地心必须是卫星圆轨道的圆心.卫星的轨道平面可以在赤道平面内(如同步卫星),也可以和赤道平面垂直,还可以和赤道平面成任一角度.卫星绕地球沿椭圆轨道运动时,地心是椭圆的一个焦点,其周期和半长轴的关系遵循开普勒第三定律.3.卫星的种类:卫星主要有侦察卫星、通讯卫星、导航卫星、气象卫星、地球资源勘测卫星、科学研究卫星、预警卫星和测地卫星等种类.4.卫星的运行:卫星在轨道上运行时,卫星的轨道可视为圆形,这样卫星受到的万有引力提供了卫星做圆周运动的向心力.1)教材在推导卫星的运动速度的时候,选取的卫星轨道的形状是什么?卫星的所有轨道都是这种形状吗?2)人造卫星做圆周运动时向心力从何而来?卫星环绕地球运转的动力学方程是什么? 3)请关闭书本后推导出卫星做圆周运动的速度表达式4)如果卫星绕地球做匀速圆周运动而不落回地面,它的速度大小与卫星离开地面的高度的关系是怎样的?能否根据这个关系得出结论,将卫星发射得越高越容易?为什么? 5)卫星绕地球运转的最小半径是多少?6)在地面附近的物体要成为卫星而不落回地面,必须给它至少以多大的速度才行?这个速度是怎样计算出来的? 人造卫星的运动规律:设卫星的轨道半径为r ,线速度大小为v ,角速度为ω,周期为T ,向心加速度为a .根据万有引力定律与牛顿第二定律得G Mm r 2=ma =m v 2r =mr ω2=mr 4π2T2所以,卫星运行速度、角速度、周期和半径的关系分别为:v =GMr ,ω=GMr 3,T =4πr3GM.问题讨论:1、能不能发射这样的地球卫星,它绕地球的轨道平面不经过地球的球心?为什么?2、人造卫星的轨道平面有何特点?你知道为什么吗?3、为什么实际的卫星轨道只能大气层外?地球同步卫星的含义是什么?4、为什么地球同步卫星轨道平面一定和地球的赤道平面重合? 关于地球同步卫星对同步卫星有什么要求?周期T 、轨道面、半径 r 、运行速度 V 、绕行方向地球同步卫星如果人造地球卫星的周期与地球自转周期相同,转动方向也相同,从地面观察这种卫星好像静止在空中一样,这就是地球同步卫星。

高中物理第六章万有引力与航天6.5宇宙航行导学案必修2

高中物理第六章万有引力与航天6.5宇宙航行导学案必修2

第5节 宇宙航行[学习目标]:1.知道三个宇宙速度的含义,会推导第一宇宙速度.2.了解人造卫星的有关知识,掌握人造卫星的线速度、角速度、周期与轨道半径的关系.3.了解人类对太空探索的历程及我国卫星发射的情况.[学习过程]:任务一:牛顿曾提出过一个著名的理想实验:如图1所示,从高山上水平抛出一个物体,当抛出的速度足够大时,物体将环绕地球运动,成为人造地球卫星.据此思考并小组讨论以下问题:1、当抛出速度较小时,物体做什么运动?当物体刚好不落回地面时,物体做什么运动?2、若地球的质量为M ,地球半径为R ,引力常量为G ,试推导物体刚好不落回地面时的运行速度.并求此时速度的大小(已知地球半径R =6 400 km ,地球质量M =5.98×1024 kg)答案 (1)当抛出速度较小时,物体做平抛运动.当物体刚好不落回地面时,物体绕地球做匀速圆周运动.(2)物体的向心力由万有引力提供,G Mm r 2=m v 2r解得v = GM r.当刚好不落回地面时,紧贴地面飞行时r =R ,v = GM R =7.9 km/s. [教师概括] 宇宙速度:宇宙速度是地球上满足不同要求的卫星发射速度.1.第一宇宙速度v Ⅰ=7.9 km/s(1)推导 方法一:由G Mm R 2=m v 2R得v = GM R方法二:由mg =m v 2R得v =gR (2)理解:第一宇宙速度是人造地球卫星的最小发射速度,也是卫星绕地球做匀速圆周运动的最大运行速度.2.第二宇宙速度v Ⅱ=11.2 km/s ,是从地面上发射物体并使之脱离地球束缚的最小发射速度,又称逃逸速度.3.第三宇宙速度v Ⅲ=16.7 km/s ,是从地面上发射物体并使之脱离太阳束缚的最小发射速度,又称脱离速度.任务二:如图2所示,圆a 、b 、c 的圆心均在地球的自转轴线上.b 、c 的圆心与地心重合. 思考并小组讨论以下问题:1、卫星绕地球做匀速圆周运动,a 、b 、c 中可以作为卫星轨道的是哪条?为什么?2、根据万有引力定律和向心力公式推导卫星的线速度、角速度、周期与轨道半径的关系.答案 (1)b 、c 轨道都可以.因为卫星绕地球做匀速圆周运动,万有引力提供向心力,而万有引力是始终指向地心的,故卫星做匀速圆周运动的向心力必须指向地心,因此b 、c 轨道都可以,a 轨道不可以.(2)卫星所受万有引力提供向心力,G Mm r 2=m v 2r =m ω2r =m(2πT)2r ,所以v = GM r ,ω= GM r 3,T =2π r 3GM. [教师概括] 人造地球卫星的运动特点:1.所有卫星的轨道平面均过地心.2.卫星的向心加速度、线速度、角速度、周期与轨道半径的关系根据万有引力提供卫星绕地球运动的向心力,即有:GMm r 2=ma =m v 2r =m ω2r =m(4π2T2)r (1)a =GMr 2,r 越大,a 越小. (2)v = GM r,r 越大,v 越小. (3)ω= GMr3,r 越大,ω越小. (4)T =2πr 3GM ,r 越大,T 越大. 任务三:同步卫星也叫通讯卫星,它相对于地面静止,和地球自转的周期相同,即T =24 h.已知地球的质量M =6×1024 kg ,地球半径R =6 400 km ,引力常量G =6.67×10-11 N·m 2/kg 2.请根据以上信息以及所学知识求出以下问题:(1)同步卫星所处的轨道平面.答案 (1)假设卫星的轨道在某一纬线圈的上方跟着地球的自转做同步地匀速圆周运动,卫星运动的向心力由地球对它的引力的一个分力提供.由于另一个分力的作用将使卫星轨道靠向赤道,故只有在赤道上方,同步卫星才能稳定的运行.(2)由万有引力提供向心力和已知周期T 得G Mm +2=m(R +h)(2πT )2,所以h = 3GMT 24π2-R ,代入数据得h =3.6×107 m.2)同步卫星的离地高度h.[教师概括]同步卫星的特点:1.定轨道平面:所有地球同步卫星的轨道平面均在赤道平面内.2.定周期:运转周期与地球自转周期相同,T =24 h.3.定高度(半径):离地面高度为36 000 km.4.定速率:运行速率为3.1×103 m/s.任务四:完成下列练习,检测本堂课学习效果1、假设地球的质量不变,而地球的半径增大到原来半径的2倍,那么从地球发射人造卫星的第一宇宙速度的大小应为原来的( B )A. 2 倍B.22倍 C.12倍 D.2倍2、某人在一星球上以速率v竖直上抛一物体,经时间t后,物体以速率v落回手中.已知该星球的半径为R,求该星球上的第一宇宙速度的大小.答案2vR t3、如图3所示,a、b、c是地球大气层外圆形轨道上运行的三颗人造卫星,a和b的质量相等,且小于c的质量,则( ABD )A.b所需向心力最小高考理综物理模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2019-2020年高中物理 第六章 万有引力与航天 5 宇宙航行教学案 新人教版必修2

2019-2020年高中物理 第六章 万有引力与航天 5 宇宙航行教学案 新人教版必修2

2019-2020年高中物理第六章万有引力与航天 5 宇宙航行教学案新人教版必修2[学习目标] 1.知道三个宇宙速度的含义,会推导第一宇宙速度.2.认识同步卫星的特点.3.了解人造卫星的相关知识和我国卫星发射的情况以及人类对太空的探索历程.一、宇宙速度1.牛顿的设想:如图1所示,把物体水平抛出,如果速度足够大,物体就不再落回地面,它将绕地球运动,成为人造地球卫星.图12.三个宇宙速度数值意义第一宇宙速度7.9 km/s卫星在地球表面附近绕地球做匀速圆周运动的速度第二宇宙速度11.2km/s使卫星挣脱地球引力束缚永远离开地球的最小地面发射速度第三宇宙速度16.7km/s使卫星挣脱太阳引力束缚飞到太阳系外的最小地面发射速度二、梦想成真1.1957年10月4日苏联成功发射了第一颗人造地球卫星.2.1961年4月12日,苏联空军少校加加林进入“东方一号”载人飞船,铸就了人类进入太空的丰碑.3.1969年7月,美国“阿波罗11号”飞船登上月球.4.2003年10月15日,我国“神舟五号”宇宙飞船发射成功,把中国第一位航天员杨利伟送入太空.[即学即用]1.判断下列说法的正误.(1)第一宇宙速度是发射卫星的最小速度.(√) (2)人造地球卫星的最小绕行速度是7.9 km/s.(×)(3)要发射一颗人造地球卫星,发射速度必须大于16.7 km/s.(×)2.已知月球半径为R ,月球质量为M ,引力常量为G ,则月球的第一宇宙速度v =________. 答案GM R一、第一宇宙速度的理解与计算[导学探究] (1)不同天体的第一宇宙速度是否相同?第一宇宙速度的决定因素是什么? (2)把卫星发射到更高的轨道上需要的发射速度越大还是越小?答案 (1)不同.由GMm R 2=m v 2R得,第一宇宙速度v =GMR,可以看出,第一宇宙速度的值取决于中心天体的质量M 和半径R ,与卫星无关.(2)越大.向高轨道发射卫星比向低轨道发射卫星困难,因为发射卫星要克服地球对它的引力. [知识深化]1.第一宇宙速度:第一宇宙速度是人造卫星近地环绕地球做匀速圆周运动的绕行速度.2.推导:对于近地人造卫星,轨道半径r 近似等于地球半径R =6 400 km ,卫星在轨道处所受的万有引力近似等于卫星在地面上所受的重力,取g =9.8 m/s 2,则3.推广由第一宇宙速度的两种表达式看出,第一宇宙速度的值由中心天体决定,可以说任何一颗行星都有自己的第一宇宙速度,都应以v =GMR或v =gR 表示,式中G 为引力常量,M 为中心天体的质量,g 为中心天体表面的重力加速度,R 为中心天体的半径. 4.理解(1)“最小发射速度”与“最大绕行速度”①“最小发射速度”:向高轨道发射卫星比向低轨道发射卫星困难,因为发射卫星要克服地球对它的引力.所以近地轨道的发射速度(第一宇宙速度)是发射人造卫星的最小速度.②“最大绕行速度”:由G Mm r 2=m v 2r可得v =GMr,轨道半径越小,线速度越大,所以近地卫星的线速度(第一宇宙速度)是最大绕行速度.(2)发射速度与发射轨道①当7.9 km/s ≤v 发<11.2 km/s 时,卫星绕地球运动,且发射速度越大,卫星的轨道半径越大,绕行速度越小.②当11.2 km/s ≤v 发<16.7 km/s 时,卫星绕太阳旋转,成为太阳系一颗“小行星”. ③当v 发≥16.7 km/s 时,卫星脱离太阳的引力束缚跑到太阳系以外的空间中去.例1 我国发射了一颗绕月运行的探月卫星“嫦娥一号”.设该卫星的轨道是圆形的,且贴近月球表面.已知月球的质量约为地球质量的181,月球的半径约为地球半径的14,地球上的第一宇宙速度约为7.9 km/s ,则该探月卫星绕月运行的最大速率约为( ) A.0.4 km/s B.1.8 km/s C.11 km/s D.36 km/s答案 B解析 星球的第一宇宙速度即为围绕星球做圆周运动的轨道半径为该星球半径时的环绕速度,由万有引力提供向心力即可得出这一最大环绕速度. 卫星所需的向心力由万有引力提供,G Mm r 2=m v 2r,得v =GMr, 又由M 月M 地=181、r 月r 地=14, 故月球和地球上第一宇宙速度之比v 月v 地=29, 故v 月=7.9×29 km/s ≈1.8 km/s ,因此B 项正确.例2 某人在一星球上以速率v 竖直上抛一物体,经时间t 后,物体以速率v 落回手中.已知该星球的半径为R ,求该星球的第一宇宙速度. 答案2vRt解析 根据匀变速直线运动的规律可得,该星球表面的重力加速度为g =2vt,该星球的第一宇宙速度即为卫星在其表面附近绕它做匀速圆周运动的线速度,该星球对卫星的引力(重力)提供卫星做圆周运动的向心力,则mg =mv 12R,该星球的第一宇宙速度为v 1=gR =2vRt.二、人造地球卫星 [导学探究]1. 如图2所示,圆a 、b 、c 的圆心均在地球的自转轴线上.b 、c 的圆心与地心重合,d 为椭圆轨道,且地心为椭圆的一个焦点.四条轨道中哪些可以作为卫星轨道?为什么?图2答案b、c、d轨道都可以.因为卫星绕地球做匀速圆周运动,万有引力提供向心力,而万有引力是始终指向地心的,故卫星做匀速圆周运动的向心力必须指向地心,因此b、c轨道都可以,a轨道不可以.卫星也可在椭圆轨道运行,故d轨道也可以.2.地球同步卫星的轨道在哪个面上?周期是多大?同步卫星的高度和轨道面可以任意选择吗?答案同步卫星是相对地面静止的卫星,必须和地球自转同步,也就是说必须在赤道面上,周期是24 h.由于周期一定,故同步卫星离地面的高度也是一定的,即同步卫星不可以任意选择高度和轨道面.[知识深化]1.人造地球卫星的轨道:卫星绕地球做匀速圆周运动时,由地球对它的万有引力充当向心力.因此卫星绕地球做匀速圆周运动的圆心必与地心重合,而这样的轨道有多种,其中比较特殊的有与赤道共面的赤道轨道和通过两极上空的极地轨道.当然也存在着与赤道平面呈某一角度的圆轨道.如图3所示.图32.地球同步卫星(1)定义:相对于地面静止的卫星,又叫静止卫星.(2)特点:①确定的转动方向:和地球自转方向一致;②确定的周期:和地球自转周期相同,即T=24 h;③确定的角速度:等于地球自转的角速度;④确定的轨道平面:所有的同步卫星都在赤道的正上方,其轨道平面必须与赤道平面重合;⑤确定的高度:离地面高度固定不变(3.6×104 km);⑥确定的环绕速率:线速度大小一定(3.1×103 m/s).例3 关于地球的同步卫星,下列说法正确的是( )A.同步卫星的轨道和北京所在纬度圈共面B.同步卫星的轨道必须和地球赤道共面C.所有同步卫星距离地面的高度不一定相同D.所有同步卫星的质量一定相同答案 B解析同步卫星所受向心力指向地心,与地球自转同步,故卫星所在轨道与赤道共面,故A 项错误,B项正确;同步卫星距地面高度一定,但卫星的质量不一定相同,故C、D项错误.解决本题的关键是掌握同步卫星的特点:同步卫星定轨道(在赤道上方)、定周期(与地球的自转周期相同)、定速率、定高度.针对训练(多选)我国“中星11号”商业通信卫星是一颗同步卫星,它定点于东经98.2度的赤道上空,关于这颗卫星的说法正确的是( )A.运行速度大于7.9 km/sB.离地面高度一定,相对地面静止C.绕地球运行的角速度比月球绕地球运行的角速度大D.向心加速度与静止在赤道上物体的向心加速度大小相等答案BC解析“中星11号”是地球同步卫星,距地面有一定的高度,运行速度要小于7.9 km/s,A 错.其位置在赤道上空,高度一定,且相对地面静止,B正确.其运行周期为24小时,小于月球的绕行周期27天,由ω=2πT知,其运行角速度比月球的大,C正确.同步卫星与静止在赤道上的物体具有相同的角速度,但半径不同,由a n=rω2知,同步卫星的向心加速度大,D错.1.(对宇宙速度的理解)(多选)下列关于三种宇宙速度的说法中正确的是( )A.第一宇宙速度v1=7.9 km/s,第二宇宙速度v2=11.2 km/s,则人造卫星绕地球在圆轨道上运行时的速度大于等于v1,小于v2B.美国发射的“凤凰号”火星探测卫星,其发射速度大于第三宇宙速度C.第二宇宙速度是在地面附近使物体可以挣脱地球引力束缚,成为绕太阳运行的人造行星的最小发射速度D.第一宇宙速度7.9 km/s是人造地球卫星绕地球做圆周运动的最大运行速度答案CD解析根据v=GMr可知,卫星的轨道半径r越大,即距离地面越远,卫星的环绕速度越小,v1=7.9 km/s是人造地球卫星绕地球做圆周运动的最大运行速度,D正确;实际上,由于人造卫星的轨道半径都大于地球半径,故卫星绕地球在圆轨道上运行时的速度都小于第一宇宙速度,选项A错误;美国发射的“凤凰号”火星探测卫星,仍在太阳系内,所以其发射速度小于第三宇宙速度,选项B 错误;第二宇宙速度是使物体挣脱地球引力束缚而成为太阳的一颗人造行星的最小发射速度,选项C 正确.2.(对同步卫星的认识)下列关于我国发射的“亚洲一号”地球同步通讯卫星的说法,正确的是( )A.若其质量加倍,则轨道半径也要加倍B.它在北京上空运行,故可用于我国的电视广播C.它以第一宇宙速度运行D.它运行的角速度与地球自转角速度相同 答案 D解析 由G Mm r 2=m v 2r 得r =GMv2,可知轨道半径与卫星质量无关,A 错;同步卫星的轨道平面必须与赤道平面重合,即在赤道上空运行,不能在北京上空运行,B 错;第一宇宙速度是卫星在最低圆轨道上运行的速度,而同步卫星在高轨道上运行,其运行速度小于第一宇宙速度,C 错;所谓“同步”就是卫星保持与赤道上某一点相对静止,所以同步卫星的角速度与地球自转角速度相同,D 对.3.(第一宇宙速度的计算)若取地球的第一宇宙速度为8 km/s ,某行星的质量是地球质量的6倍,半径是地球半径的1.5倍,此行星的第一宇宙速度约为( ) A.16 km/s B.32 km/s C.4 km/s D.2 km/s答案 A4.(第一宇宙速度的计算)某星球的半径为R ,在其表面上方高度为aR 的位置,以初速度v 0水平抛出一个金属小球,水平射程为bR ,a 、b 均为数值极小的常数,则这个星球的第一宇宙速度为( ) A.2abv 0 B.ba v 0 C.abv 0 D.a 2bv 0 答案 A解析 设该星球表面的重力加速度为g ,小球落地时间为t ,抛出的金属小球做平抛运动,根据平抛运动规律得aR =12gt 2,bR =v 0t ,联立以上两式解得g =2av 02b 2R,第一宇宙速度即为该星球表面卫星线速度,根据星球表面卫星重力充当向心力得mg =m v 2R,所以第一宇宙速度v =gR=2av 02b 2RR =2abv 0,故选项A 正确.课时作业一、选择题(1~6为单项选择题,7~10为多项选择题)1.由于通讯和广播等方面的需要,许多国家发射了地球同步轨道卫星,这些卫星的( ) A. 质量可以不同 B. 轨道半径可以不同 C. 轨道平面可以不同 D. 速率可以不同答案 A解析 万有引力提供卫星做圆周运动的向心力GMm r 2=m (2πT )2r =m v 2r,解得周期T =2πr 3GM,环绕速度v =GMr,可见周期相同的情况下轨道半径必然相同,B 错误.轨道半径相同必然环绕速度相同,D 错误.同步卫星相对于地面静止在赤道上空,所有的同步卫星轨道运行在赤道上空同一个圆轨道上,C 错误.同步卫星的质量可以不同,A 正确.2.地球上相距很远的两位观察者,都发现自己的正上方有一颗人造卫星,相对自己静止不动,则这两位观察者的位置以及两颗人造卫星到地球中心的距离可能是( ) A.一人在南极,一人在北极,两卫星到地球中心的距离一定相等B.一人在南极,一人在北极,两卫星到地球中心的距离可以不等,但应成整数倍C.两人都在赤道上,两卫星到地球中心的距离一定相等D.两人都在赤道上,两卫星到地球中心的距离可以不等,但应成整数倍 答案 C解析 观察者看到的都是同步卫星,卫星在赤道上空,到地心的距离相等.3.2013年6月11日17时38分,“神舟十号”飞船在酒泉卫星发射中心发射升空,航天员王亚平进行了首次太空授课.在飞船进入离地面343 km 的圆形轨道环绕地球飞行时,它的线速度大小( ) A.等于7.9 km/sB.介于7.9 km/s 和11.2 km/s 之间C.小于7.9 km/sD.介于7.9 km/s 和16.7 km/s 之间 答案 C解析 卫星在圆形轨道上运行的速度v =GMr.由于轨道半径r >地球半径R ,所以v < GMR=7.9 km/s ,C 正确. 4.如图1所示为北斗导航系统的部分卫星,每颗卫星的运动可视为匀速圆周运动.下列说法错误的是( )图1A.在轨道运行的两颗卫星a 、b 的周期相等B.在轨道运行的两颗卫星a 、c 的线速度大小v a <v cC.在轨道运行的两颗卫星b 、c 的角速度大小ωb <ωcD.在轨道运行的两颗卫星a 、b 的向心加速度大小a a <a b 答案 D解析 根据万有引力提供向心力,得T =2πr 3GM,因为a 、b 的轨道半径相等,故a 、b 的周期相等,选项A 正确;因v =GM r,c 的轨道半径小于a 的轨道半径,故线速度大小v a <v c ,选项B 正确;因ω=GMr 3,c 的轨道半径小于b 的轨道半径,故角速度大小ωb <ωc ,选项C 正确.因a =GMr2,a 的轨道半径等于b 的轨道半径,故向心加速度大小a a =a b ,选项D 错误. 5.星球上的物体脱离星球引力所需的最小速度称为该星球的第二宇宙速度,星球的第二宇宙速度v 2与其第一宇宙速度v 1的关系是v 2=2v 1.已知某星球的半径为r ,表面的重力加速度为地球表面重力加速度g 的16,不计其他星球的影响,则该星球的第二宇宙速度为( )A.grB. 16gr C. 13gr D.13gr 答案 C解析 16mg =m v 12r得v 1=16gr .再根据v 2=2v 1得v 2= 13gr ,故C 选项正确. 6.假设地球的质量不变,而地球的半径增大到原来半径的2倍,那么地球的第一宇宙速度的大小应为原来的( ) A. 2 B.22 C.12D.2 答案 B解析 因第一宇宙速度即为地球的近地卫星的线速度,此时卫星的轨道半径近似的认为等于地球的半径,且地球对卫星的万有引力提供向心力.由G Mm R 2=mv 2R得v =GMR,因此,当M 不变,R 增大为2R 时,v 减小为原来的22,选项B 正确. 7.关于第一宇宙速度,下列说法正确的是( ) A.它是人造地球卫星绕地球飞行的最小速度B.它是近地圆形轨道上人造地球卫星的最大运行速度C.它是能使卫星进入近地圆形轨道的最小发射速度D.它是人造地球卫星绕地球飞行的最大环绕速度 答案 BCD解析 第一宇宙速度是从地球表面发射人造地球卫星的最小发射速度,是人造地球卫星绕地球飞行的最大环绕速度,也是近地圆形轨道上人造地球卫星的最大运行速度,选项B 、C 、D 正确,A 错误.8.一颗人造地球卫星以初速度v 发射后,可绕地球做匀速圆周运动,若使发射速度增大为2v ,则该卫星可能( ) A.绕地球做匀速圆周运动 B.绕地球运动,轨道变为椭圆 C.不绕地球运动,成为太阳的人造行星 D.挣脱太阳引力的束缚,飞到太阳系以外的宇宙 答案 CD解析 以初速度v 发射后能成为人造地球卫星,可知发射速度v 一定大于第一宇宙速度7.9 km/s ;当以2v 速度发射时,发射速度一定大于15.8 km/s ,已超过了第二宇宙速度11.2 km/s ,也可能超过第三宇宙速度16.7 km/s ,所以此卫星不再绕地球运行,可能绕太阳运行,或者飞到太阳系以外的宇宙,故选项C 、D 正确.9.我国在轨运行的气象卫星有两类,如图2所示,一类是极地轨道卫星——“风云1号”,绕地球做匀速圆周运动的周期为12 h ,另一类是地球同步轨道卫星——“风云2号”,运行周期为24 h.下列说法正确的是( )图2A.“风云1号”的线速度大于“风云2号”的线速度B.“风云1号”的向心加速度大于“风云2号”的向心加速度C.“风云1号”的发射速度大于“风云2号”的发射速度D.“风云1号”“风云2号”相对地面均静止 答案 AB解析 由r 3T 2=k 知,风云2号的轨道半径大于风云1号的轨道半径.由G Mm r 2=m v 2r =ma n 得v =GM r ,a n =GMr2,r 越大,v 越小,a n 越小,所以A 、B 正确.把卫星发射的越远,所需发射速度越大,C 错误.只有同步卫星相对地面静止,所以D 错误.10.中俄曾联合实施探测火星计划,由中国负责研制的“萤火一号”火星探测器与俄罗斯研制的“福布斯—土壤”火星探测器一起由俄罗斯“天顶”运载火箭发射前往火星.由于火箭故障未能成功,若发射成功,且已知火星的质量约为地球质量的19,火星的半径约为地球半径的12.下列关于火星探测器的说法中正确的是( ) A.发射速度只要大于第一宇宙速度即可 B.发射速度只有达到第三宇宙速度才可以C.发射速度应大于第二宇宙速度且小于第三宇宙速度D.火星探测器环绕火星运行的最大速度约为地球第一宇宙速度的23答案 CD解析 火星探测器前往火星,脱离地球引力束缚,还在太阳系内,发射速度应大于第二宇宙速度、小于第三宇宙速度,选项A 、B 错误,C 正确;由GMm r 2=m v 2r 得,v =GMr.已知火星的质量约为地球质量的19,火星的半径约为地球半径的12,可得火星的第一宇宙速度与地球第一宇宙速度之比v 火v 地= M 火M 地·R 地R 火= 19×21=23,选项D 正确. 二、非选择题11.据报道:某国发射了一颗质量为100 kg 、周期为1 h 的人造环月卫星,一位同学记不住引力常量G 的数值,且手边没有可查找的资料,但他记得月球半径为地球半径的14,月球表面重力加速度为地球表面重力加速度的16,经过推理,他认定该报道是则假新闻,试写出他的论证方案.(地球半径约为6.4×103km ,g 地取9.8 m/s 2) 答案 见解析解析 对环月卫星,根据万有引力定律和牛顿第二定律得GMm r 2=m 4π2T2r ,解得T =2πr 3GM则r =R 月时,T 有最小值,又GMR 月2=g 月 故T min =2πR 月g 月=2π 14R 地16g 地=2π 3R 地2g 地代入数据解得T min ≈1.73 h环月卫星最小周期为1.73 h ,故该报道是则假新闻.12.我国正在逐步建立同步卫星与“伽利略计划”等中低轨道卫星构成的卫星通信系统.11 / 11 (1)若已知地球的平均半径为R 0,自转周期为T 0,地表的重力加速度为g ,试求同步卫星的轨道半径R .(2)有一颗与上述同步卫星在同一轨道平面的低轨道卫星,自西向东绕地球运行,其运行半径为同步卫星轨道半径R 的四分之一,试求该卫星至少每隔多长时间才在同一地点的正上方出现一次.(计算结果只能用题中已知物理量的字母表示)答案 (1) 3gR 0 2T 024π2 (2)T 07 解析 (1)设地球的质量为M ,同步卫星的质量为m ,运动周期为T ,因为卫星做圆周运动的向心力由万有引力提供,故G Mm R 2=mR (2πT)2① 同步卫星的周期为T =T 0②而在地球表面,重力提供向心力, 有m ′g =G Mm ′R 02③ 由①②③式解得R = 3gR 0 2T 0 24π2.(2)由①式可知T 2∝R 3,设低轨道卫星运行的周期为T ′,则T ′2T 2=(R 4)3R 3,因而T ′=T 08,设卫星至少每隔t 时间才在同一地点的正上方出现一次,根据圆周运动角速度与所转过的圆心角的关系θ=ωt ,得2πT ′t -2πT 0t =2π,解得t =T 07,即卫星至少每隔T 07时间才在同一地点的正上方出现一次.。

高中物理第六章 第6节《宇宙航行》教案必修2

高中物理第六章 第6节《宇宙航行》教案必修2

《宇宙航行》教学设计一、【教学内容分析】“宇宙航行”是人教版—普通高中《物理》教材·必修2—第六章“万有引力与航天”的第五小节。

主要介绍了万有引力定律的实践成就,及航天事业的发展及其巨大成果。

教材不但介绍了人造卫星中一些基本理论,更是在其中渗透了很多研究实际物理问题的物理方法。

因此,本节课是“万有引力与航天”中的一个重点内容,是学生进一步学习研究天体物理问题的理论基础。

人造卫星是万有引力定律在天文学上应用的一个实例,是学生学习、了解现代科技知识的一个极好素材。

通过对人造卫星原理、宇宙速度等宇宙航行知识的学习,学生不仅可以对万有引力定律有个更全面、更深入的认识,对人类进行宇宙航行有一个更为系统的了解,还有助于帮助学生巩固前面所学的运动学和动力学知识,同时,也可以培养学生对航天科学的热爱,增强民族自豪感和自信心。

二、【教学对象分析】从知识层面来看,在学习本节课之前,学生已经学过了平抛运动、匀速圆周运动的规律,具备解决宇宙航行问题的知识基础。

另外,通过本章前四节课的学习,学生对万有引力定律的内容及其在天文学上的理论应用也有了初步的认识,但对人造地球卫星的原理尚不清楚,对人类航天事业也需要进一步的了解。

从学生的认知特点及思维规律来看,高一学生的思维方式,尚处在由初中形象思维为主、向高中抽象思维为主过渡的阶段,容易接受表象的知识,但对知识体系的条理性掌握、对易混淆知识的辨别能力还有所欠缺。

所以需要教师在教学过程中的巧妙引导和指点。

三、【教学目标及重难点】(1)教学目标知识与技能1.知道三个宇宙速度的数值及意义,并会推导第一宇宙速度。

2.了解人造卫星的原理及运行规律,建立起关于各种卫星的运行状况的正确图景。

过程与方法1.经历探究人造卫星由设想变为现实的过程,体会猜想、外推的科学方法,培养学生的科学思维。

2.通过用万有引力定律推导第一宇宙速度,以及对卫星运动规律的研究,培养学生分析、推导、归纳及合理表达能力,养成用万有引力是天体运动的向心力这一基本方法研究问题的习惯。

人教版高中物理必修2第六章万有引力与航天第五节宇宙航行教案(6)

人教版高中物理必修2第六章万有引力与航天第五节宇宙航行教案(6)

6.5 宇宙航行★新课标要求(一)知识与技能1、了解人造卫星的有关知识。

2、知道三个宇宙速度的含义,会推导第一宇宙速度。

(二)过程与方法通过用万有引力定律推导第一宇宙速度,培养学生运用知识解决问题的能力(三)情感、态度与价值观1、通过介绍我国在卫星发射方面的情况,激发学生的爱国热情。

2、感知人类探索宇宙的梦想,促使学生树立献身科学的人生价值观。

★教学重点第一宇宙速度的推导★教学难点运行速率与轨道半径之间的关系★教学方法教师启发、引导,学生自主阅读、思考,讨论、交流学习成果。

★教学工具有关练习题的投影片、计算机、投影仪等多媒体教学设备★教学过程(一)引入新课教师活动:上节课我们学习了万有引力的成就。

现在请同学们回忆下列问题:1、万有引力定律在天文学上有何应用?2、如何应用万有引力定律计算天体的质量?能否计算环绕天体的质量? 学生活动:经过思考,回答上述问题:1、应用万有引力定律可以估算天体的质量;可以来发现未知天体。

2、应用万有引力定律求解天体质量时,万有引力充当向心力,结合圆周运动向心加速度的三种表述方式可得三种形式的方程,即 G rv m r Mm 22= ① G 2rMm =m ω2·r ② G 2r Mm =m 224T r π ③ 教师活动:点评、总结导入:这节课我们再来学习有关宇宙航行的知识。

(二)进行新课1、宇宙速度教师活动:请同学们阅读课文第一自然段,同时思考下列问题[投影出示]:1、在地面抛出的物体为什么要落回地面?2、什么叫人造地球卫星?学生活动:阅读课文,从课文中找出相应的答案。

1、在地面上抛出的物体,由于受到地球引力的作用,所以最终都要落回到地面。

2、如果在地面上抛出一个物体时的速度足够大,那么它将不再落回地面,而成为一个绕地球运转的卫星,这个物体此时就可认为是一颗人造地球卫星。

教师活动:引导学生深入探究1、月球也要受到地球引力的作用,为什么月亮不会落到地面上来?2、物体做平抛运动时,飞行的距离与飞行的水平初速度有何关系?3、若抛出物体的水平初速度足够大,物体将会怎样?学生活动:分组讨论,得出结论。

2019-2020学年高中物理 第6章 万有引力与航天教案新人教版必修2【共6套48页】

2019-2020学年高中物理 第6章 万有引力与航天教案新人教版必修2【共6套48页】

本套资源目录2019_2020学年高中物理第6章1行星的运动教案新人教版必修22019_2020学年高中物理第6章2太阳与行星间的引力3万有引力定律教案新人教版必修22019_2020学年高中物理第6章4万有引力理论的成就教案新人教版必修22019_2020学年高中物理第6章5宇宙航行教案新人教版必修22019_2020学年高中物理第6章6经典力学的局限性教案新人教版必修22019_2020学年高中物理第6章章末复习课教案新人教版必修21.行星的运动[学习目标] 1.了解地心说和日心说的内容. 2.理解开普勒行星运动三定律的内容.(重点) 3.掌握行星运动定律的应用.(重点、难点) 4.了解人们对行星运动的认识过程漫长复杂,真理来之不易.一、地心说和日心说开普勒定律1.地心说(1)内容:地球是宇宙的中心,是静止不动的,太阳、月亮以及其他行星都绕地球运动.(2)代表人物:托勒密.2.日心说(1)内容:太阳是静止不动的,地球和其他行星都绕太阳运动.(2)代表人物:哥白尼.3.开普勒定律定律内容公式或图示开普勒第一定律所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上开普勒第二定律对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积开普勒第三定律所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等公式:a3T2=k,k是一个与行星无关的常量1.行星绕太阳运动的轨道十分接近圆,太阳处在圆心.2.对某一行星来说,它绕太阳做圆周运动的角速度(或线速度大小)不变,即行星做匀速圆周运动.3.所有行星轨道半径的三次方跟它的公转周期的二次方的比值都相等.1.思考判断(正确的打“√”,错误的打“×”)(1)宇宙的中心是太阳,所有行星都在绕太阳做匀速圆周运动. (×) (2)开普勒定律仅适用于行星绕太阳的运动. (×) (3)所有行星绕太阳运转的周期都是相等的. (×) (4)在中学阶段可认为地球围绕太阳做圆周运动. (√) (5)行星的轨道半径和公转周期成正比.(×) (6)公式a 3T2=k 中的a 可认为是行星的轨道半径.(√)2.日心说的代表人物是( ) A .托勒密 B .哥白尼 C .布鲁诺D .第谷B [日心说的代表人物是哥白尼,布鲁诺是宣传日心说的代表人物.] 3.下述说法中正确的有( )A .一天24 h ,太阳以地球为中心转动一周是公认的事实B .由开普勒定律可知,各行星都分别在以太阳为圆心的各圆周上做匀速圆周运动C .太阳系的八颗行星中,水星离太阳最近,由开普勒第三定律可知其运动周期最小D .月球也是行星,它绕太阳一周需一个月的时间C [地球以太阳为中心转动一周是公认的事实,一天24 h ,故A 错误;各行星都分别在以太阳为焦点,做椭圆运动,故B 错误;由开普勒第三定律r 3T2=k ,可知:水星离太阳最近,则运动的周期最小,C 正确;月球是地球的卫星,它绕地球一周需一个月的时间,故D 错误.]对开普勒行星运动定律的理解定律 认识角度 理解开普勒第一定律对空间分布的认识各行星的椭圆轨道尽管大小不同,但太阳是所有轨道的一个共同焦点不同行星的轨道是不同的,可能相差很大开普勒第二定律对速度大小的认识行星沿椭圆轨道运动靠近太阳时速度增大,远离太阳时速度减小近日点速度最大,远日点速度最小开普勒第三定律对周期长短的认识椭圆轨道半长轴越长的行星,其公转周期越长该定律不仅适用于行星,也适用于其他天体常数k只与其中心天体有关【例1】火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知( )A.太阳位于木星运行轨道的中心B.火星和木星绕太阳运行速度的大小始终相等C.火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积C[太阳位于木星运行轨道的一个焦点上,A项错误;火星与木星轨道不同,在运行时速度不可能始终相等,B项错误;“在相等的时间内,行星与太阳连线扫过的面积相等”是对于同一颗行星而言的,不同的行星,则不具有可比性,D项错误;根据开普勒第三定律,对同一中心天体来说,行星公转半长轴的三次方与其周期的平方的比值为一定值,C项正确.]开普勒行星运动定律的四点注意(1)开普勒三定律是通过对行星运动的观察结果总结而得出的规律,它们都是经验定律.(2)开普勒行星运动定律是对行星绕太阳运动的总结,实践表明该定律也适用于其他天体的运动,如月球绕地球的运动,卫星(或人造卫星)绕行星的运动.(3)开普勒第二定律与第三定律的区别:前者揭示的是同一行星在距太阳不同距离时的运动快慢的规律,后者揭示的是不同行星运动快慢的规律.(4)绕同一中心天体运动的轨道分别为椭圆、圆的天体,k值相等,即r3T21=a3T22=k.1.某行星绕太阳运动的轨道如图所示,则以下说法不正确的是( )A.太阳一定在椭圆的一个焦点上B.该行星在a点的速度比在b、c两点的速度都大C .该行星在c 点的速度比在a 、b 两点的速度都大D .行星与太阳的连线在相等时间内扫过的面积是相等的C [行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上,则A 正确;每一个行星而言,太阳行星的连线在相同时间内扫过的面积相等,即近日点速度快,远日点速度慢,则B 、D 正确,C 错误.]开普勒第三定律的应用1太阳运动的天体,也适用于绕其他中心天体运动的天体.2.用途(1)求周期:两颗绕同一中心天体运动的行星或卫星,知道其中一颗的周期及它们的半长轴(或半径),可求出另一颗的周期.(2)求半长轴:两颗绕同一中心天体运动的行星或卫星,知道其中一颗的半长轴(或半径)及它们的周期,可求出另一颗的半长轴(或半径).3.k 值:表达式a 3T2=k 中的常数k ,只与中心天体的质量有关,如研究行星绕太阳运动时,常数k 只与太阳的质量有关,研究卫星绕地球运动时,常数k 只与地球的质量有关.【例2】 飞船沿半径为R 的圆周绕地球运动,其周期为T .如果飞船要返回地面,可在轨道上某点A 处,将速率降低到适当数值,从而使飞船沿着以地心为焦点的椭圆轨道运动,椭圆和地球表面在B 点相切,如图所示.如果地球半径为R 0,求飞船由A 点运动到B 点所需要的时间.思路点拨:分析该题的关键是:①开普勒第三定律对圆轨道和椭圆轨道都适用. ②椭圆轨道的半长轴大小为R +R 02.③飞船由A 点运动到B 点的时间为其椭圆轨道周期的一半.[解析] 飞船沿椭圆轨道返回地面,由题图可知,飞船由A 点到B 点所需要的时间刚好是沿图中整个椭圆运动周期的一半,椭圆轨道的半长轴为R +R 02,设飞船沿椭圆轨道运动的周期为T ′.根据开普勒第三定律有R 3T 2=⎝ ⎛⎭⎪⎫R +R 023T ′2.解得T ′=T⎝ ⎛⎭⎪⎫R +R 02R 3=(R +R 0)T 2R R +R 02R. 所以飞船由A 点到B 点所需要的时间为t =T ′2=(R +R 0)T 4RR +R 02R . [答案](R +R 0)T4R R +R 02R上例中,飞船在半径为R 的圆周轨道与椭圆轨道上运行时的周期之比为多少?提示:由R 3T2=k 知,T ∝R 3.则周期之比为R 3⎝ ⎛⎭⎪⎫R +R 023=8R3(R +R 0)3.应用开普勒第三定律的步骤(1)判断两个行星的中心天体是否相同,只有对同一个中心天体开普勒第三定律才成立. (2)明确题中给出的周期关系或半径关系.(3)根据开普勒第三定律r 31T 21=r 32T 22=k 列式求解.2.理论和实践证明,开普勒行星运动定律不仅适用于太阳系中的天体运动,而且对一切天体(包括卫星绕行星的运动)都适用.对于开普勒第三定律的公式R 3T2=k ,下列说法正确的是( )A .公式只适用于轨道是椭圆的运动B .公式中的T 为天体的自转周期C .公式中的k 值,只与中心天体有关,与绕中心天体公转的行星(或卫星)无关D .若已知月球与地球之间的距离,根据开普勒第三定律公式可求出地球与太阳之间的距离C [开普勒第三定律不仅适用于行星绕太阳的运动,也适用于卫星绕行星的运动,所以也适用于轨道是圆的运动,故A 错误;式中的T 是行星(或卫星)的公转周期,B 错误;式中的k 是与中心星体的质量有关,与绕中心天体旋转的行星(或卫星)无关,故C 正确;月球绕地球运动,地球绕太阳运动,不是同一个中心天体,式中的k 是与中心星体的质量有关,已知月球与地球之间的距离,无法求出地球与太阳之间的距离,故D 错误.]课堂 小 结知 识 脉 络1.开普勒第一定律指明行星绕太阳的轨道为椭圆轨道,而非圆轨道;第二定律可导出近日点速率大于远日点速率;第三定律指明了行星公转周期与半长轴间的定量关系.2.近似处理时,可将行星绕太阳运动或卫星绕地球运动看作是匀速圆周运动,且对同一中心天体的行星或卫星,a 3T2=k 中的k 值均相同.1.关于行星绕太阳运动的下列说法中正确的是( ) A .所有行星都在同一椭圆轨道上绕太阳运动 B .行星绕太阳运动时,太阳位于行星轨道的中心处 C .离太阳越近的行星运动周期越长D .所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等D [所有行星围绕太阳运动的轨道都是椭圆,且太阳处在所有椭圆的一个焦点上.运动的周期T 与半长轴a 满足a 3T2=k ,故选项A 、B 、C 均错误,选项D 正确.]2.某行星绕太阳运行的椭圆轨道如图所示,F 1和F 2是椭圆轨道的两个焦点,行星在A 点的速率比在B 点的大,则太阳是位于( )A .B B .F 1C .AD .F 2B [根据开普勒第二定律,对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积.行星在近日点速率大于在远日点速率,即A 为近日点,B 为远日点,太阳位于F 1,故B 正确.]3.如图所示,某人造地球卫星绕地球做匀速圆周运动,其轨道半径为月球绕地球运转半径的19,设月球绕地球运动的周期为27天,则此卫星的运转周期大约是( )A .19天B .13天 C .1天 D .9天 C [由于r 卫=19r 月,T 月=27天,由开普勒第三定律r 3卫T 2卫=r 3月T 2月,可得T 卫=1天,故选项C正确.]4.银河系中有两颗行星环绕某恒星运转,从天文望远镜中观察它们的运转周期之比为27∶1,则它们的轨道半长轴之比是( )A .3∶1B .9∶1C .27∶1D .1∶9B [根据开普勒第三定律T 2r 3=k 可得绕同一颗恒星运动的两个行星有T 21r 31=T 22r 32,解得轨道半长轴之比是r 1r 2=3T 21T 22=327212=91,B 正确.]2.太阳与行星间的引力3.万有引力定律[学习目标] 1.知道太阳与行星间的引力公式推导方法. 2.理解万有引力定律的含义.(重点) 3.掌握万有引力表达式的适用条件及应用.(重点、难点) 4.知道万有引力常量是重要的物理常量之一.一、太阳与行星间的引力 1.猜想行星围绕太阳的运动可能是太阳的引力作用造成的,太阳对行星的引力F 应该与行星到太阳的距离r 有关.2.模型简化行星以太阳为圆心做匀速圆周运动,太阳对行星的引力提供了行星做匀速圆周运动的向心力.3.太阳对行星的引力F =mv 2r =m ⎝ ⎛⎭⎪⎫2πr T 2·1r=4π2mr T 2.结合开普勒第三定律得:F ∝mr2. 4.行星对太阳的引力根据牛顿第三定律,行星对太阳的引力F ′的大小也存在与上述关系类似的结果,即F ′∝M r2.5.太阳与行星间的引力由于F ∝mr 2、F ′∝M r 2,且F =F ′,则有F ∝Mm r 2,写成等式F =G Mm r2,式中G 为比例系数. 二、万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比、与它们之间距离r 的二次方成反比.2.表达式:F =Gm 1m 2r 2. 3.引力常量G :由英国物理学家卡文迪许测量得出,常取G =6.67×10-11N·m 2/kg 2.1.思考判断(正确的打“√”,错误的打“×”)(1)公式F =G Mm r2中G 是比例系数,与太阳和行星都没关系.(√)(2)在推导太阳与行星的引力公式时,用到了牛顿第二定律和牛顿第三定律. (√) (3)由于太阳质量大于行星质量,故太阳对行星的引力大于行星对太阳的引力. (×) (4)月球绕地球做圆周运动的向心力是由地球对它的引力产生的.(√)(5)地球对月球的引力与地面上的物体所受的地球的引力是两种不同性质的力. (×) 2.行星之所以绕太阳运行,是因为( ) A .行星运动时的惯性作用B .太阳是宇宙的控制中心,所有星体都绕太阳旋转C .太阳对行星有约束运动的引力作用D .行星对太阳有排斥力作用,所以不会落向太阳 C [行星之所以绕太阳运行,是因为受到太阳的吸引力.]3.两个质量均匀的球体,相距r ,它们之间的万有引力为10-8N ,若它们的质量、距离都增加为原来的两倍,则它们之间的万有引力为( )A .4×10-8N B .10-8N C .2×10-8 ND .8×10-8NB [原来的万有引力为:F =GMm r 2,后来变为:F ′=G ·2M ·2m (2r )2=GMmr2,即:F ′=F =10-8N .故选B.]太阳与行星间的引力理解1(1)匀速圆周运动模型:由于太阳系中行星绕太阳做椭圆运动的轨迹的两个焦点靠得很近,行星的运动轨迹非常接近圆,所以将行星的运动看成匀速圆周运动.(2)质点模型:由于天体间的距离很远,研究天体间的引力时将天体看成质点,即天体的质量集中在球心上.2.推导过程 (1)太阳对行星的引力(2)太阳与行星间的引力3.太阳与行星间的引力的特点:太阳与行星间引力的大小,与太阳的质量、行星的质量成正比,与两者距离的二次方成反比.太阳与行星间引力的方向沿着二者的连线方向.【例1】 (多选)关于太阳与行星间的引力,下列说法中正确的是( ) A .由于地球比木星离太阳近,所以太阳对地球的引力一定比对木星的引力大 B .行星绕太阳沿椭圆轨道运动时,在从近日点向远日点运动时所受引力变小C .由F =GMm r 2可知G =Fr 2Mm,由此可见G 与F 和r 2的乘积成正比,与M 和m 的乘积成反比D .行星绕太阳的椭圆轨道可近似看成圆形轨道,其向心力来源于太阳对行星的引力 BD [由F =GMmr 2,太阳对行星的引力大小与m 、r 有关,对同一行星,r 越大,F 越小,选项B 正确;对不同行星,r 越小,F 不一定越大,还要由行星的质量决定,选项A 错误;公式中G 为比例系数,是一常量,与F 、r 、M 、m 均无关,选项C 错误;通常的研究中,行星绕太阳的椭圆轨道可近似看成圆形轨道,向心力由太阳对行星的引力提供,选项D 正确.]1.(多选)在探究太阳与行星间的引力的思考中,属于牛顿的猜想的是( ) A .使行星沿圆轨道运动,需要一个指向圆心的力,这个力就是太阳对行星的吸引力 B .行星运动的半径越大,其做圆周运动的运动周期越大 C .行星运动的轨道是一个椭圆D .任何两个物体之间都存在太阳和行星之间存在的这种类型的引力AD [牛顿认为任何方式改变速度都需要力(这种力存在于任何两物体之间),行星沿圆或椭圆运动,需要指向圆心或椭圆焦点的力,这个力是太阳对它的引力.]万有引力定律的理解1.F =G Mmr2的适用条件(1)万有引力定律的公式适用于计算质点间的相互作用,当两个物体间的距离比物体本身大得多时,可用此公式近似计算两物体间的万有引力.(2)质量分布均匀的球体间的相互作用,可用此公式计算,式中r 是两个球体球心间的距离.(3)一个均匀球体与球外一个质点的万有引力也可用此公式计算,式中的r 是球体球心到质点的距离.2.万有引力的四个特性 特性 内容普遍性万有引力不仅存在于太阳与行星、地球与月球之间,宇宙间任何两个有质量的物体之间都存在着这种相互吸引的力相互性两个有质量的物体之间的万有引力是一对作用力和反作用力,总是满足大小相等,方向相反,作用在两个物体上宏观性地面上的一般物体之间的万有引力比较小,与其他力比较可忽略不计,但在质量巨大的天体之间或天体与其附近的物体之间,万有引力起着决定性作用 特殊性两个物体之间的万有引力只与它们本身的质量和它们间的距离有关,而与它们所在空间的性质无关,也与周围是否存在其他物体无关F ,如果在球体中央挖去半径为r 的球体,且r =R2,则原球体剩余部分对质点P 的万有引力变为多少?思路点拨:①由于大球体被挖去一小球体后,不能看成质点,不能直接应用万有引力定律.②设想将挖出的小球体放回大球体中,使之成为完整的均匀球体,则可应用万有引力定律算出完整球体与质点P 之间的万有引力.③再求出挖出的球体对质点P 的万有引力,将两个引力求差即可.[解析] 设原球体质量为M ,质点P 的质量为m ,球心与质点P 之间的距离为r 0,则它们之间的万有引力F=G Mm r 20;被挖去的球的质量:m 1=V小V 大·M =4π3⎝ ⎛⎭⎪⎫R 2343πR 3·M =M8被挖去的球原来与质点P 的万有引力F 1=G m 1m r 20=G M8mr 20=F 8所以,原球体剩余部分对质点P 的万有引力变为F 2=F -F 1=78F .[答案] 78F2.(多选)对于质量为m 1和质量为m 2的两个物体间的万有引力的表达式F =G m 1m 2r 2,下列说法正确的是( )A .公式中的G 是引力常量,它是由实验得出的,而不是人为规定的B .当两个物体间的距离r 趋于零时,万有引力趋于无穷大C .m 1和m 2所受引力大小总是相等的D .两个物体间的引力总是大小相等、方向相反,是一对平衡力AC [引力常量G 是由英国物理学家卡文迪许运用构思巧妙的“精密”扭秤实验第一次测定出来的,所以选项A 正确;两个物体之间的万有引力是一对作用力与反作用力,它们总是大小相等、方向相反,分别作用在两个物体上,所以选项C 正确,D 错误;公式F =Gm 1m 2r 2适用于两质点间的相互作用,当两物体相距很近时,两物体不能看成质点,所以选项B 错误.]万有引力与重力的关系1.万有引力是合力:如图所示,设地球的质量为M ,半径为R ,A 处物体的质量为m ,则物体受到地球的吸引力为F ,方向指向地心O ,则由万有引力公式得F =G Mm R2.2.万有引力有两个分力:除南北两极外,万有引力有两个分力,一个分力F 1提供物体随地球自转的向心力,方向垂直地轴;另一个分力F 2是重力,产生使物体压地面的效果.3.重力与纬度的关系:地面上物体的重力随纬度的升高而变大.(1)赤道上:重力和向心力在一条直线上F =F n +mg ,即G MmR2=mrω2+mg ,所以mg =G Mm R 2-mrω2.(2)地球两极处:向心力为零,所以mg =F =G Mm R2.(3)其他位置:重力是万有引力的一个分力,重力的大小mg <G Mm R2,重力的方向偏离地心.4.重力、重力加速度与高度的关系(1)地球表面的重力约等于地球的万有引力,即mg =G Mm R2,所以地球表面的重力加速度g =GM R2.(2)地球上空h 高度,万有引力等于重力,即mg =G Mm(R +h )2,所以h 高度的重力加速度g =GM(R +h )2. 【例3】 设地球自转周期为T ,质量为M ,引力常量为G ,假设地球可视为质量均匀分布的球体,半径为R .同一物体在南极和赤道水平面上静止时所受到的支持力之比为( )A.GMT 2GMT 2-4π2R 3B.GMT 2GMT 2+4π2R 3C.GMT 2-4π2R 3GMT 2D.GMT 2+4π2R 3GMT 2A [在赤道上:G Mm R 2-F N =m 4π2T 2R ,可得F N =G Mm R 2-m 4π2T2R在南极:G Mm R 2=F ′N ,联立可得:F ′N F N =GMT 2GMT 2-4π2R 3,故选项A 正确,选项B 、C 、D 错误.]处理万有引力与重力关系的思路(1)若题目中不考虑地球自转的影响,不考虑重力随纬度的变化,可认为重力等于万有引力,mg=G MmR2.(2)若题目中需要考虑地球自转,需要考虑重力随纬度的变化,就要注意重力与万有引力的差别,两极处:mg=G Mm R 2;赤道处:mg +F 向=G Mm R2.3.地球表面重力加速度为g 地、地球的半径为为R 地,地球的质量为M 地,某飞船飞到火星上测得火星表面的重力加速度为g 火、火星的半径为R 火,由此可得火星的质量为( )A.g 火R 2火g 地R 2地M 地B.g 地R 2地g 火R 2火M 地C.g 2火R 火g 2地R 地M 地 D.g 火R 火g 地R 地M 地 A [星球表面的物体受到的重力等于万有引力,即:G Mm R 2=mg 得:M =R 2g G ,所以:M 火M 地=R 2火g 火R 2地g 地,所以:M 火=R 2火g 火R 2地g 地M 地,故A 正确.]课 堂 小 结知 识 脉 络1.牛顿认为所有物体之间存在万有引力,太阳与行星间的引力使得行星绕太阳运动. 2.自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的二次方成反比,这就是万有引力定律,其表达式为F =Gm 1m 2r 2. 3.引力常量G =6.67×10-11N·m 2/kg 2,是英国物理学家卡文迪许利用扭秤实验测出的.1.由万有引力定律可知,两个物体的质量分别为m 1和m 2,其间距为r 时,它们之间万有引力的大小为F =Gm 1m 2r 2,式中G 为引力常量.在国际单位制中,G 的单位是( )A .N·m 2/kg 2B .kg 2/(N·m 2) C .N·m 2/kgD .N·kg 2/m 2A [根据万有引力定律知F =G m 1m 2r 2,则G =Fr 2m 1m 2,可知G 的单位为:N·m 2/kg 2=N·m 2·kg-2,故A 正确.] 2.关于万有引力F =Gm 1m 2r 2和重力,下列说法正确的是( ) A .公式中的G 是一个比例常数,没有单位B .到地心距离等于地球半径2倍处的重力加速度为地面重力加速度的14C .m 1、m 2受到的万有引力是一对平衡力D .若两物体的质量不变,它们间的距离减小到原来的一半,它们间的万有引力也变为原来的一半B [G 的单位是N·m 2/kg 2,A 错误;设地球质量为M ,半径为R ,则地球表面的重力加速度为GM R 2,到地心距离等于地球半径2倍处的重力加速度为GM4R 2,所以B 正确;m 1、m 2受到的万有引力是一对作用力与反作用力,C 错误;根据万有引力公式,若两物体的质量不变,它们间的距离减小到原来的一半,它们间的万有引力应变为原来的4倍,D 错误.]3.(多选)根据开普勒关于行星运动的规律和圆周运动的知识知:太阳对行星的引力F ∝m r 2,行星对太阳的引力F ′∝Mr2 ,其中M 、m 、r 分别为太阳、行星质量和太阳与行星间的距离.下列说法正确的是( )A .由F ∝m r 2和F ′∝M r2,F ∶F ′=m ∶M B .F 和F ′大小相等,是作用力与反作用力 C .F 和F ′大小相等,是同一个力D .太阳对行星的引力提供行星绕太阳做圆周运动的向心力BD [F ′和F 大小相等、方向相反,是作用力和反作用力,太阳对行星的引力是行星绕太阳做圆周运动的向心力,故正确答案为B 、D.]4.万有引力理论的成就[学习目标] 1.了解万有引力定律在天文学上的重要应用. 2.掌握计算天体的质量和密度的方法.(重点) 3.掌握解决天体运动问题的基本思路.(重点、难点)一、计算天体的质量 1.地球质量的计算(1)依据:地球表面的物体,若不考虑地球自转,物体的重力等于地球对物体的万有引力,即mg =G MmR2.(2)结论:M =gR 2G,只要知道g 、R 的值,就可计算出地球的质量.2.太阳质量的计算(1)依据:质量为m 的行星绕太阳做匀速圆周运动时,行星与太阳间的万有引力充当向心力,即G Mm r 2=4π2mrT.(2)结论:M =4π2r 3GT,只要知道行星绕太阳运动的周期T 和半径r ,就可以计算出太阳的质量.3.其他行星质量的计算(1)依据:绕行星做匀速圆周运动的卫星,同样满足G Mm r 2=4π2mrT2(M 为行星质量,m 为卫星质量).(2)结论:M =4π2r3GT2,只要知道卫星绕行星运动的周期T 和半径r ,就可以计算出行星的质量.二、发现未知天体 1.海王星的发现英国剑桥大学的学生亚当斯和法国年轻的天文学家勒维耶根据天王星的观测资料,利用万有引力定律计算出天王星外“新”行星的轨道.1846年9月23日,德国的伽勒在勒维耶预言的位置附近发现了这颗行星——海王星.2.其他天体的发现近100年来,人们在海王星的轨道之外又发现了冥王星、阋神星等几个较大的天体.。

广东省揭阳市高中物理第六章万有引力与航天万有引力定律教案新人教版必修2

广东省揭阳市高中物理第六章万有引力与航天万有引力定律教案新人教版必修2

广东省揭阳市高中物理第六章万有引力与航天万有引力定律教案新人教版必修2○3测出S ,依据石英丝改动力矩跟改动角度的关系算出这时的改动力矩,进而求得万有引力F 。

观看动画:扭秤;卡文迪许实验;桌面庞大形变 【牢记】:通常取G=6.67*10-11N*m 2/kg 2卡文迪许测出G 值的意义:1. 证明了万有引力的存在。

2. 使得万有引力定律有了适用价值。

例6、要使两物体间的万有引力减小到原来的1/4,以下方法不可采用的是〔D 〕A.使两物体的质量各减小一半,距离不变B.使其中一个物体的质量减小到原来的1/4,距离不变C.使两物体间的距离增为原来的2倍,质量不变D.使两物体间的距离和质量都减为原来的1/4例7、半径为R,质量为M 的平均球体,在其外部挖去一个半径为R/2的小球,在距离大球圆心为L 处有一个质量为为m 的小球,求此两个球体之间的万有引力.【解析】:化不规那么为规那么——先补后割〔或先割后补〕,等效处置在没有挖去前,大球对m 的万有引力为2L MmGF ,该力等效于挖去的直径为R 的小球对m 的力和剩余不规那么局部对m 的力这两个力的合力。

那么设不规那么局部对m的引力为x F ,有【效果】:为什么我们觉得不到旁边同窗的引力呢?【解析】:下面我们粗略地来计算一下两个质量为50kg ,相距0.5m 的人之间的引力F=GMm/R2=6.67×10-7N【答案】:那么太阳与地球之间的万有引力又是多大?【解析】::太阳的质量为M=2.0×1030kg ,地球质量为m=5.9×1024kg ,日地之间的距离为R=1.5×1011m F=GMm/R2=3.5×1023N五、万有引力与重力:一、实际:万向F mg F =+:在赤道,向心力最大,重力最小;在两极,无向心力,重力最大;纬度越高,重力越大,g 越大。

二、计算中:由于物体自转向心减速度很小,与重力减速度相比可以疏忽,即使是在赤道,向心减速度也只要0.034m/s 2,而重力减速度为9.8m/s 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由 ,得V=;故 越大, 越;
由 ,得ω=;故 越大, 越;
由 ,得T=;故 越大,T越;
由 ,得 =;故 越大, 越;
2.卫星运行中的受力和轨道问题
人造卫星在绕地球运行时,只考虑地球对卫星的万有引力,故卫星在轨道上做圆周运动时地球对卫星的万有引力卫星的向心力。所以人造卫星绕地球运行时的轨道圆心必须与地心。
6.请小组讨论,进一步探究地球同步卫星绕地球运行的线速度、向心加速度有何特点?
【课堂小结】
1.相对地面静止的卫星称为地球同步卫星,又称同步通讯卫星。
2.地球同步卫星的周期为地球自转的周期,即 小时。
3.地球同步卫星的轨道一定在赤道平面内,高度 一定, 。
4.地球同步卫星都位于同一轨道的不同位置上,但它们都具有相同大小的角速度、线速度和向心加速度。
【训练案】
1.火星有两颗卫星,分别为火卫一和火卫二,它们的轨道近似为圆,已知火卫一的周期为7小时39分,火卫二的周期为30小时18分,则两颗卫星()
A.火卫一距火星表面较近
B.火卫二的角速度较大
C.火卫一的运动速度较大
D.火卫二的向心加速度较大
2.可以发射一颗这样的人造地球卫星,使其圆轨道()
A.与地球表面上某一纬度(非赤道)是共面同心圆
A.等于零B.等于
C.等于 D.以上结果都不对
经典习题的练习及讲解,进行共性分析、归纳分类,达到鉴别结论的教育目的,同时还能进行理论联系实际的教育。
经典例题,百讲不厌。不断强调已形成的条件反射。变被动为主动,提高学习的效果。


第五节宇宙航行
1、宇宙速度
7.9km/s11.2km/s16.7km/s
(2)习题中感知人类探索宇宙的梦想.促使学生树立献身科学的人生价值观。
重点
难点
教学重点:第一宇宙速度的类型题知识拓展。
教学难点:运行速率,周期,角速度与轨道半径之间的关。
教具
准备挂图、多媒体课件Fra bibliotek课时安排
1
教学过程与教学内容
教学方法、教学手段与学法、学情
【预习探究】
1.知识点复习:卫星的绕行速度、角速度、周期与半径 的关系
C.不同国家发射地球同步卫星的地点不同,这些卫星的轨道不一定在同一平面上
D.不同地球同步卫星运行的线速度大小是相同的,加速度的大小也是相同的。
4.用 表示地球同步卫星的质量, 表示它离地面的高度, 表示地球的半径, 表示地球表面处的重力加速度, 表示地球自转角速度,则地球同步卫星所受的地球对它的万有引力的大小为()
3.结合公式T=,请指出地球同步卫星绕地球运行的轨道半径有何特点?
4.设地球质量为M,半径为R,自转周期为T,引力常量为G,请推导出同步卫星围绕地球做匀速圆周运动时距离地面的高度h。(提示:地球对同步卫星的万有引力提供同步卫星作匀速圆周运动的向心力)图
5.已知地球质量约为6×1024kg,半径约为6.4×106m,自转周期为1天,引力常量G=6.67×10-11Nm2/kg2,请结合第4题的结论,计算出h的具体数值。
3.什么叫同步卫星?请通过查阅互联网资料,谈谈你对同步卫星的认识。
【合作探究】
依据上节课所学有关人造卫星的内容,观看有关地球同步卫星的视频,小组合作探究以下四个问题:
1.请大致描述地球同步卫星绕地球运行时的轨迹?
2.如何理解地球同步卫星中“同步”的含义?地球同步卫星绕地球运行时的周期有何特点?周期是多少?角速度有何特点?
B.与地球表面上某一经度线所决定的圆是共面同心圆
C.与地球表面上的赤道线是共面同心圆,且卫星相对地球表面是静止的
D.与地球表面上的赤道线是共面同心圆,且卫星相对地球表面是运动的
3.下列关于地球同步卫星的说法中正确的是()
A.为避免地球同步卫星在轨道上相撞,应使它们运行在不同的轨道上
B.地球同步卫星定点在地球赤道上空某处,所有地球同步卫星的周期都是24h
宇宙航行
教学
目标
1、知识与技能
(1)复习巩固已学知识,运用卫星的绕行速度、角速度、周期与半径 的关系分析解决问题;
(2)运用已学知识,探究地球同步卫星的运行特点和轨道特点;
2、过程与方法:通过用万有引力定律计算星体运动,提高解题能力
3、情感、态度与价值观
(1)习题中通过介绍我国在卫星发射方面的情况.激发学生的爱国热情;
第一宇宙速度是卫星发射的最小速度,是在轨道上运行的最大速度。
2、人造地球卫星
3、同步卫星:定点在赤道上空,周期T、高度h、线速度v一定。T=24h h=36000kmv=3.1km/s
教学
反思
根据认识规律要让学生能灵活应用物理定律和公式解决实践问题,教师应该先指导学生正确理解基础知识,并通过对基础习题的解答训练,使学生掌握应用物理定律或公式解题的基本方法及运用物理量时单位必须统一的要求,进而使学生形成解答物理习题的基本模式,培养学生牢固掌握解题的规范和程序,为进一步深化做好准备。
相关文档
最新文档