钻柱受力分析

合集下载

第二章 2-钻柱

第二章  2-钻柱

二、钻柱的工作状态及受力
(一)钻柱的工作状态
钻柱主要是在起下钻和正常钻进这两种条件下工作的。 起下钻时,钻柱处于受拉伸的直线稳定状态。 正常钻进时,上部钻柱受拉伸而下部钻柱受压缩。
小钻压且井眼直时,钻柱是直的; 压力达到钻柱的临界压力值,下 部钻柱将失去直线稳定状态而发生弯 曲并与井壁接触于某个点(称为“切 点”),这是钻柱的第一次弯曲 (Bulkling of the first oder); 增大钻压,则会出现钻柱的第二 次弯曲或更多次弯曲。

105(G) 723.95 105000 930.79 135000 792.90 115000
135(S) 930.70 135000 1137.64 165000 999.74 145000
(3)钻杆接头及丝扣 钻杆接头是钻杆的组成部分,分公接头和母接头 钻杆接头壁厚较大,接头外径大于管体外径,用强度更
3、弯曲力矩(Bending Moment) 其大小与钻柱的刚度、 弯曲变形部分的长度及最大挠度等因 素有关。 4、离心力(Centrifugal force) 5、外挤压力(Collapsing Pressure):中途测试和卡瓦悬持。 6、纵向振动(Axial Vibration):钻柱中性点附近产生交变的 轴向应力。纵向振动和钻头结构、所钻地层性质、泵量不均匀、钻 压及转速当等因素有关。
式中: Fw —钻进时(有钻压)钻柱任一
截面上的轴向拉力,kN;
w —钻压,kN。
图2-36 钻柱轴向力分布
中性点:钻柱上轴向力为零的点(N点)(亦称中和点, Neutral Point )。
垂直井眼中钻柱的中性点高度可按下式确定:
LN
W qc K
式中: LN —中性点距井底的高度,m。

钻井工程理论与技术 第二章 钻进工具——钻柱(3学时)

钻井工程理论与技术  第二章 钻进工具——钻柱(3学时)

(2)旋转运动形式
自转——钻柱磨损均匀;在弯曲井段受交变弯曲应力 公转——钻柱偏磨;受离心力作用 自转+公转 振动——纵振、扭振、横振,产生交变应力
二、钻柱的工作状态及受力
(二)钻柱受力分析
1. 轴向力
(1)自重:
F
F0 q p L p qc Lc
qp,Lp
(2)浮力: FB d (q p Lp qc Lc ) / s
第二节 钻柱
一、钻柱的作用与组成 二、钻柱的工作 状态与受力分析 三、钻柱设计
三、钻柱设计
◆ 设计内容:
(1)尺寸选择 (2)钻铤柱长度计算 (3)钻杆柱强度设计及较核。
设计原则:
(1)满足强度(抗拉、抗挤强度等)要求,保证钻柱安全工作;
(2)尽量减轻整个钻柱的重力,以便在有限的钻机承载能力下 钻更深的井。
(1)选择第一段钻杆(接钻铤)
① 选用外径127mm、内径108.6mm,每米重284.69N/m,E级新钻
杆,最小抗拉载荷=1760KN。 ② 最大长度计算: 最大安全静拉载荷为:
Fa1 0.9 Fy St
=0.9×1760/1.30=1218.46(kN)
Fa1 0.9 Fy y t =0.9×1760/1.42=1115.49(kN)
三、钻柱设计
(四)典型钻柱的设计举例
2. 钻铤柱设计:
① 选用外径158.75mm(6-1/4in)、内径57.15mm、 qc=1.35kN/m的钻铤 ② 计算钻铤长度:
Lc Wmax S N (qc K B cos )
式中: Wmax ─最大钻压,180 kN; S N ─安全系数,取 =1.18;
三、钻柱设计

钻柱

钻柱

Fw = 0.9 Fy
Fw :钻柱工作时允许受到的最大轴向载荷
Fy :材料最小屈服强度下的抗拉力
2. 钻柱允许的最大静拉载荷 Fa
Fa :钻柱在钻井液中重量产生的轴向载荷。
Fa < Fw
钻柱设计
2. 钻柱允许的最大静拉载荷 Fa 1)安全系数法 Fw Fa = Sp
S p :设计安全系数 S p = 1.3 ~ 1.6
钻柱设计
1. 钻具尺寸的选择: 钻具组合书写表示方法: 215毫米钻头(钻头高度,m)+420×520(长度,m)+178毫 米钻铤(长度,m) +521×410 (长度,m) +159毫米钻铤 (长度,m) +127毫米钻杆(长度,m) +411×520 (长度 ,m) +133毫米方钻杆(方入,m)+水龙头(631反)
钻柱设计
2.钻铤长度的确定: 原则: 钻铤在泥浆中的重量为所需最大钻压的1.2~1.3倍。
S n ⋅ Wmax 计算公式为: Lc = qc ⋅ K b ⋅ cos α
Lc ——钻铤长度,米;
α ——井斜角,度
Wmax ——最大钻压,牛;
qc
Kb
Sn
——钻铤的每米重量,牛/米 ——浮力系数 ——设计安全系数
钻柱设计
1. 钻具尺寸的选择: 常用钻具组合: 12 ¼” 以上井眼: 钻头+9”钻铤+8”钻铤+7”钻铤+5”钻杆+5 ¼”方钻杆 8 1/2” 井眼: 钻头+ 6 1/2”钻铤+6 1/4”钻铤+5”钻杆+5 ¼”方钻杆 6” 井眼: 钻头+ 4 3/4”钻铤+3 1/2”钻杆+ 3 1/2”方钻杆

钻杆受力分析篇

钻杆受力分析篇

第三章钻受力分析3.1 作用在钻柱上的基本载荷钻柱的受力状态与所选用的钻井方式有关,不同的位置上作用不同的载荷。

概括起来,作用在钻柱上的基本载荷有以下几种:(1)轴向力。

处于悬挂状态下的钻柱,在自重作用下,由上到下均受拉力。

最下端的拉力为零,井口处的拉力最大。

在钻井液中钻柱将受到浮力的作用,浮力使钻柱受拉减小。

起钻过程中,钻柱与井壁之间的摩擦力以及遇阻、遇卡,均会增大钻柱上的拉伸载荷。

下钻时钻柱的承载情况与起钻时相反。

循环系统在钻柱内及钻头水眼上所耗损的压力,也将使钻柱承受的拉力增大。

钻铤以自重给钻头加钻压,造成钻柱下部处于压缩状态。

(2)径向挤压力。

应用卡瓦进行起下钻作业时,由于卡瓦有一定的锥角,在钻柱上引起一定的挤压力。

中途测试时,钻柱上也要承受管外液柱的挤压力。

(3)弯曲力矩。

弯曲力矩的产生是因钻柱上有弯曲变形存在;引起钻校弯曲变形的主要因素是给定的钻压值超过了钻柱的临界值。

在转盘钻井中,钻柱在离心力的作用下,亦会造成弯曲。

由于钻柱在弯曲井眼内工作,也将产生弯曲。

在弯曲状态,钻柱如绕自身轴线旋转,则会产生交变的弯曲应力。

(4)离心力。

钻柱在钻压的作用下会产生弯曲,在一定的条件下,弯曲钻柱会围绕井眼中心线旋转而产生离心力,促使钻柱更加弯曲。

(5)扭矩。

钻头破碎岩石的功率是由转盘通过方钻杆传递给钻柱的。

出于钻柱与井壁和钻井液有摩擦阻力,因而钻柱所承受的扭矩井口比井底大。

但在使用井底动力钻具(涡轮钻具、迪纳钻具等)时,作用在钻柱上的反扭矩,井底大于井口。

(6)振动载荷。

使钻柱产生振动的干扰力也是作用在钻柱的重要载荷(图 2-1)。

在钻井过程中,用钻柱将钻头送至井眼底部并向钻头传递动力,靠钻头的牙齿、切削刃和射流破碎岩石形成井筒;通过钻柱中心的圆管向井下传递高压钻井液,靠钻井液的流动把岩石碎屑携至地面并从钻井液中除掉岩屑。

为了控制井眼钻进的方向,靠近钻头的一段钻柱外径和抗弯刚度较大,并在一定位置上安放一定规格的稳定器,下部钻柱只有稳定器和钻头接触井壁,钻柱本体则不与井壁接触。

钻柱失效分析及与预防措施

钻柱失效分析及与预防措施

04
钻柱失效预防技术发展
新材料应用
总结词
新材料的应用为钻柱失效的预防提供了新的解决方案,能够有效提高钻柱的强度、耐腐 蚀性和耐磨性。
详细描述
随着科技的不断发展,新型材料如高强度合金钢、钛合金、陶瓷等逐渐应用于钻柱的制 造中。这些新材料具有更高的强度、耐腐蚀性和耐磨性,能够显著提高钻柱的使用寿命,
详细描述
通过改进钻柱的结构设计,提高其承载能力和耐久性,可以降低失效风险。例 如,优化钻柱的壁厚、直径和材料选择,以及采用更先进的连接方式等。
制造质量控制
总结词
严格控制制造质量是防止钻柱失效的关键环节。
详细描述
确保钻柱在制造过程中符合相关标准和规范,对每个生产环节进行质量检查和控制,以消除潜在的缺陷和隐患。 同时,可以采用无损检测技术对钻柱进行全面检测,确保其质量和可靠性。
磨损
钻柱与井壁、钻头等之间的摩擦会 导致钻柱磨损,影响其使用寿命。
失效原因
01
02
03
设计不合理
钻柱结构设计不合理,如 壁厚不均、连接方式不当 等,可能导致钻柱失效。
制造缺陷
钻柱制造过程中可能存在 的材料缺陷、加工误差等, 也是导致钻柱失效的重要 原因。
操作不当
钻井过程中操作不当,如 过载、转速过高、钻压过 大等,可能加速钻柱的磨 损和疲劳。
使用维护保养
总结词
合理使用和维护保养可以有效延长钻柱的使用寿命。
详细描述
在使用过程中,应遵循操作规程,避免超载和过载情况的发生。同时,定期对钻柱进行检查和维护, 及时发现并处理潜在问题,以保持其良好的工作状态。此外,对于使用环境恶劣的钻柱,应采取相应 的保护措施,以减缓其老化过程。
03
钻柱失效案例分析

钻杆受力分析篇

钻杆受力分析篇

第三章钻受力分析3.1 作用在钻柱上的根本载荷钻柱的受力状态与所选用的钻井方式有关,不同的位置上作用不同的载荷。

概括起来,作用在钻柱上的根本载荷有以下几种:〔1〕轴向力。

处于悬挂状态下的钻柱,在自重作用下,由上到下均受拉力。

最下端的拉力为零,井口处的拉力最大。

在钻井液中钻柱将受到浮力的作用,浮力使钻柱受拉减小。

起钻过程中,钻柱与井壁之间的摩擦力以及遇阻、遇卡,均会增大钻柱上的拉伸载荷。

下钻时钻柱的承载情况与起钻时相反。

循环系统在钻柱内及钻头水眼上所耗损的压力,也将使钻柱承受的拉力增大。

钻铤以自重给钻头加钻压,造成钻柱下部处于压缩状态。

〔2〕径向挤压力。

应用卡瓦进展起下钻作业时,由于卡瓦有一定的锥角,在钻柱上引起一定的挤压力。

中途测试时,钻柱上也要承受管外液柱的挤压力。

〔3〕弯曲力矩。

弯曲力矩的产生是因钻柱上有弯曲变形存在;引起钻校弯曲变形的主要因素是给定的钻压值超过了钻柱的临界值。

在转盘钻井中,钻柱在离心力的作用下,亦会造成弯曲。

由于钻柱在弯曲井眼内工作,也将产生弯曲。

在弯曲状态,钻柱如绕自身轴线旋转,那么会产生交变的弯曲应力。

〔4〕离心力。

钻柱在钻压的作用下会产生弯曲,在一定的条件下,弯曲钻柱会围绕井眼中心线旋转而产生离心力,促使钻柱更加弯曲。

〔5〕扭矩。

钻头破碎岩石的功率是由转盘通过方钻杆传递给钻柱的。

出于钻柱与井壁和钻井液有摩擦阻力,因此钻柱所承受的扭矩井口比井底大。

但在使用井底动力钻具〔涡轮钻具、迪纳钻具等〕时,作用在钻柱上的反扭矩,井底大于井口。

〔6〕振动载荷。

使钻柱产生振动的干扰力也是作用在钻柱的重要载荷〔图 2-1〕。

在钻井过程中,用钻柱将钻头送至井眼底部并向钻头传递动力,靠钻头的牙齿、切削刃和射流破碎岩石形成井筒;通过钻柱中心的圆管向井下传递高压钻井液,靠钻井液的流动把岩石碎屑携至地面并从钻井液中除掉岩屑。

为了控制井眼钻进的方向,靠近钻头的一段钻柱外径和抗弯刚度较大,并在一定位置上安放一定规格的稳定器,下部钻柱只有稳定器和钻头接触井壁,钻柱本体那么不与井壁接触。

钻柱受力分析

钻柱受力分析
5、方钻杆技术规范
❖ 方钻杆旋转时,上端始终处于转盘面以上, 下部则处在转盘面以下。方钻杆上端至水龙头 的连接部位的丝扣均为左旋丝扣(反扣),以防 止方钻杆转动时卸扣。方钻杆下端至钻头的所 有连接丝扣均为右旋转扣(正扣),在方钻杆带 动钻柱旋转时,丝扣越上越紧。为减轻方钻杆 下部接头丝扣(经常拆卸部位)的磨损,常在该 部位装保护接头。加上两端方保接头,全长 14~15米。
钻井工程
复习旧课:1、钻头的类型 2、金刚石钻头与 PDC钻头的 组成及区别; 3、 钻头的工作原理。
导入新课:钻头是破碎岩石的主要工具,需 要一定的钻压和转速,钻压和转速是由谁 产生和传递的呢?
第二章 钻柱
一、钻柱的作用与组成 二、钻柱的工作 状态与受力分析 三、钻柱设计
四、本章需要10学时
第二章 钻 柱 §2-1 钻柱的作用与组成
❖ (2)公转。
❖ 钻柱像一个刚体,围绕着井眼轴线旋转并沿着井壁滑动。钻 柱公转时,不受交变弯曲应力的作用,但产生不均匀的单向 磨损(偏磨),从而加快了钻柱的磨损和破坏。
第二章 钻 柱 §2-1 钻柱工作状态及受力分析
(3)公转与自转的结合 钻柱围绕井眼轴线旋转,同时围绕自身轴线转动,即
不是沿着井壁滑动而是滚动。在这种情况下,钻柱磨损均匀 ,但受交变应力的作用,循环次数比自转时低得多。 比较简单。 (4) 纵向振动—钻头振动引起,产生交变应力。
一、钻柱的作用
概念:钻柱是钻头以上,水龙头以下各部分的管柱 的总称。它包括方钻杆、钻杆、钻挺、 各种接头、及 稳定器等井下工具。 (一)、钻柱在钻井过程中的主要作用
1、为钻井液由井口流向钻头提供通道; 2、给钻头施加适当的压力(钻压),使钻头的工作刃 不断吃入岩石; 3、把地面动力(扭矩等)传递给钻头,使钻头不断旋 转破碎岩石; 4、起下钻头; 5、根据钻柱的长度计算井深。

钻柱力学分析

钻柱力学分析

钻柱力学分析读者朋友,欢迎你来到这篇文章,这篇文章将为你提供一个深入的分析,关于叫做钻柱力学(Drilling Column Mechanics)的话题。

本文将概述钻柱力学的基本原理和它的在石油钻探中的应用,还将分析钻柱力学的可行性以及它在钻探方面的发展前景。

一、钻柱力学的基本原理钻柱力学的主要原理来自于两个优秀的物理原理:力的平衡和圆柱曲线力学。

力的平衡是指钻柱的各种力,如系统重力、钻柱扭矩、钻柱圆柱曲线力学及系统抗拉力,需要相互抵消,以维持力学稳定。

而圆柱曲线力学是指圆柱形轴向力的力学行为,可以用来计算钻柱的截面变形情况。

二、钻柱力学在石油钻探中的应用现代石油钻探技术中,钻柱力学是一个重要的因素,可以帮助工程师理解钻探过程中钻柱受力和变形的情况,以及如何确定在钻探过程中采取正确的措施。

此外,钻柱力学还可以用来估计井壁收敛变形,以及确定最佳钻柱尺寸,以减少钻井时间和成本。

三、钻柱力学的可行性在钻探过程中,钻柱受到各种不同的力,这些力会促使钻柱产生微小的变形,并在时间的推移中不断影响钻探过程的进展。

因此,利用钻柱力学可以有效地控制钻柱的受力状态,从而帮助钻探工程师在短时间内完成钻井。

此外,钻柱力学可以帮助建立仿真模型,以便工程师可以在实际钻探之前模拟出不同情况下的钻井受力和变形状况。

四、钻柱力学的发展前景由于石油钻探技术不断进步,钻柱力学在钻井过程中也将变得越来越重要。

目前,钻柱力学已经被广泛应用于石油钻探,但未来仍有很多空间可以改进和优化,如研发新型工具和材料,以及提高力学分析技术。

此外,研究人员正在尝试用钻柱力学来优化钻探布线,以减少钻探过程中的受力和变形。

总结以上是关于钻柱力学的详细介绍。

从上面可以看出,钻柱力学是一个非常重要的概念,它可以帮助工程师在短时间内完成钻井,而且在未来也会越来越受重视。

因此,为了提高石油钻探的效率,应该加强对钻柱力学的研究,以提升钻探技术水平。

第二节 钻柱

第二节 钻柱

第二节钻柱一、钻柱的作用与组成二、钻柱的工作状态与受力分析三、钻柱设计一、钻柱的组成与作用(一)钻柱的组成钻柱(Drilling String)是水龙头以下、钻头以上钢管柱的总称。

它包括方钻杆(Square Kelly)、钻杆(Drill Pipe)、钻挺(Drill Collar)、各种接头(Joint)及稳定器(Stabilizer)等井下工具。

(一)钻柱组成(一)钻柱的组成钻柱是钻头以上,水龙头以下部分的钢管柱的总称.它包括方钻杆、钻杆、钻挺、各种接头(Joint)及稳定器等井下工具。

(二)钻柱的作用(见动画)(1)提供钻井液流动通道;(2)给钻头提供钻压;(3)传递扭矩;(4)起下钻头;(5)计量井深;(6)观察和了解井下情况(钻头工作情况、井眼状况、地层情况);(7)进行其它特殊作业(取芯、挤水泥、打捞等);(8)钻杆测试(Drill-Stem Testing),又称中途测试。

1. 钻杆(1)作用:传递扭矩和输送钻井液,延长钻柱。

(2)结构:管体+接头,由无缝钢管制成。

1. 钻杆(3)连接方式及现状:a.细丝扣连接,对应钻杆为有细扣钻杆。

b.对焊连接,对应钻杆为对焊钻杆。

1. 钻杆(4)管体两端加厚方式:常用的加厚形式有内加厚(a)、外加厚(b)、内外加厚(c)三种.(a) (b) (c)(5)规范壁厚:9 ~11mm 外径:长度:根据美国石油学会(American Petroleum Institute,简称API)的规定,钻杆按长度分为三类:"21,"21 ,"21,"87 ,835139.70 ,500.127 430.1144101.60390.88 273.00 230.60第一类 5.486~6.706米(18~22英尺);第二类8.230~9.144米(27~30英尺); 第三类11.582~13.716米(38~45英尺)。

常用钻杆规范(内径、外径、壁厚、线密度等)见表2-12(6)钢级与强度钻 杆 钢 级物 理 性 能D E95(X)105(G)135(S)MPa379.21517.11655.00723.95930.70最小屈服强度lb/in2550007500095000105000135000 MPa586.05723.95861.85930.791137.64最大屈服强度lb/in285000105000125000135000165000 MPa655.00689.48723.95792.90999.74最小抗拉强度lb/in295000100000105000115000145000钢级:钻杆钢材等级,由钻杆最小屈服强度决定。

石油工程钻井钻柱力学-第五章钻柱一般设计方法与螺弯受力精品PPT课件

石油工程钻井钻柱力学-第五章钻柱一般设计方法与螺弯受力精品PPT课件

式中: PCIN——井深为 DW1处套管的内压力 ,MPa; D D0——上覆岩层压
力剃度,MPa/m; DW-——井深,m; DW1——-计算点井深处的压力
剃度, MPa/m ;GDg——天然气的压力剃度, MPa/m ;
7
二、钻柱设计的一般试验内容(条件)
1、 额定极限试验——如图 1A、B所示。
17
第三步:如果不满足公式(1-7)的任何一项试验要求,初 选壁厚是不使用的。需要用下列步骤进行计算。 (1)、如果所选择的tm是制造厂家壁厚列表中最后的,当 前设计就是失败的。 (2)、如果所哦选择tm不是制造厂家壁厚列表中最后的, 然后,从制造厂家壁厚列表中选择下一个壁厚tm+1。采用第 1-5 步重新进行设计。
2、大位移井钻柱设计方法步骤
设计过程需从井眼底部(端面)向上到井口逐渐(即从底 端的第“Ei”各单元)开始,按上述内容)逐一进行计算,
15
未设计好钻柱单元
节点(I+1)
tm E(I)设计单元
已设计好单元
0.000 1000 TVD 2000 英 3000 尺 4000 5000
井眼轨迹(二维剖面)
14
三、 钻柱的一般设计方法步骤
1、大位移井钻柱设计所需剖面(如图 3)
1)、井身剖面——认为井身剖面是由钻柱是由许多不连续 的节点组成的。
2)、钻柱剖面——是和井身剖面一样的网络形式。即节点 数相同、节点之间有相同的长度。
3)、设计任务——用制造厂家的钻柱管材壁厚表,确定钻 柱剖面上每个单元的近似壁厚。
当增大压缩比。对于高压缩比情况,想通过增大压缩比(13 )来增加延伸长度(L)是无效的。由(9)式可以说明:
把最大压缩比用于钻柱设计上,将会减小钻柱的延伸长度。 2、压缩比()大表示钻柱所受载荷大,相当于强度变差 或薄弱),从作业安全性来件,钻柱的(max)也要受限 制。主要原因在于:严重的螺旋弯曲是容易使钻柱产生其它 形式的破坏(如螺旋麻花状破坏)。因此在进行钻井作业时 ,要求保持低的压缩比。 3、式(9)中的最大压缩比(max)通常需要借助两个系 数加以确定。钻柱的下井深度(H)和作业的安全系数。在 实际应用,max一般限定到 10。

钻柱工作状态及受力分析

钻柱工作状态及受力分析

钻柱工作状态及受力分析一、钻柱的工作状态在钻井过程中,钻柱主要是在起下钻和正常钻进这两种条件下工作。

在起下钻时,整个钻柱被悬挂起来,在自重力的作用下,钻柱处于受拉伸的直线稳定状态。

实际上,井眼并非是完全竖直的,钻柱将随井眼倾斜和弯曲。

在正常钻进时,部分钻柱(主要是钻铤)的重力作为钻压施加在钻头上,使得上部钻柱受拉伸而下部钻柱受压缩。

在钻压小和直井条大钻压,则会出现钻柱的第一次弯曲或更多次弯曲(图1)。

目前,旋转钻井所用钻压一般都超过了常用钻铤的临界压力值,如果不采取措施,下部钻柱将不可避免地发生弯曲。

在转盘钻井中,整个钻柱处于不停旋转的状态,作用在钻柱上的力,除拉力和压力外,还有由于旋转产生的离心力。

离心力的作用有可能加剧下部钻柱的弯曲变形。

钻柱上部的受拉伸部分,由于离心力的作用也可能呈现弯曲状态。

在钻进过程中,通过钻柱将转盘扭矩传送给钻头。

在扭矩的作用下,钻柱不可能呈平面弯曲状态,而是呈空间螺旋形弯曲状态。

根据井下钻柱的实际磨损情况和工作情况来分析,钻柱在井眼内的旋转运动形式可能是自转,钻柱像一根柔性轴,围绕自身轴线旋转;也可能是公转,钻柱像一个刚体,围绕着井眼轴线旋转并沿着井壁滑动;或者是公转与自转的结合及整个钻柱或部分钻柱做无规则的旋转摆动。

从理论上讲,如果钻柱的刚度在各个方向上是均匀一致的,那么钻柱是哪种运动形式取决于外界阻力(如钻井液阻力、井壁摩擦力等)的大小,但总以消耗能量最小的运动形式出现。

因此,一般认为弯曲钻柱旋转的主要形式是自转,但也可能产生公转或两种运动形式的结合,既有自转,也有公转。

在钻柱自转的情况下,离心力的总和等于零,对钻柱弯曲没有影响。

这样,钻柱弯曲就可以简化成不旋转钻柱弯曲的问题。

在井下动力钻井时,钻头破碎岩石的旋转扭矩来自井下动力钻具,其上部钻柱一般是不旋转的,故不存在离心力的作用。

另外,可用水力荷载给钻头加压,这就使得钻柱受力情况变得比较简单。

二、钻柱的受力分析钻柱在井下受到多种荷载(轴向拉力及压力、扭矩、弯曲力矩)作用,在不同的工作状态下,不同部位的钻柱的受力的情况是不同的。

钻柱受力分析及强度校核

钻柱受力分析及强度校核
钻柱受力分析及强度校核 周帆-11-23
1
钻柱的工作状态
一、起下钻
整个钻柱被悬挂起来,在自重力的作 用下,处于拉伸的直线稳定状态
二、正常钻进
在部分自重压力、公转离心力和旋转 扭矩等因素的作用下,钻柱处于弯曲状态。
2
钻柱的受力分析
钻柱承受的基本载荷主要有以下几种:
(1)轴向力和压力: 钻柱在垂直井眼中处于悬挂状态,由于其自身的重量 ,钻柱受到拉伸,最下端的拉力最小(等于 0),最上端 的拉力最大。当井眼内充满钻井液时,钻柱还受到钻井液 对其产生的浮力,而作用在钻柱内外表面的侧向静液压力 ,虽然合力为零,但对钻柱管体形成侧向挤压作用,两种 力综合作用相当于使钻柱的线重减轻。 正常钻进时,部分钻柱的重力加到钻头上作为钻压。 钻压使钻柱的轴向拉力都减小一个相应数值,且下部钻柱 受压缩应力的作用。鲁宾斯基在此提出了中性点的概念
y d p Ks d p Ks 1 t 2 LS 2 LS
2

1 2
12
钻柱的强度校核
三是拉力余量法。考虑钻柱被卡时的上提解卡力,以钻柱 的最大允许静拉力小于最大安全拉伸力的一个合适余量来确保 钻柱不被拉断。
Fa FP MOP
4
钻柱的受力分析
1、钻柱的轴向应力计算 (1) 钻柱在空气中悬空时(图a) 分析:受重力、拉力 任一截面的拉力: ……………………(1) 式中: Fo——空气中任一截面上的拉力,kN; qp、qc——分别为钻杆、钻铤单位长度的重力,kN; Lc、——钻铤长度,m; Lp——截面以下钻杆长度,m;
5
9
钻柱的受力分析
6、纵向振动 n 在中性点处会产生交变的轴向应力; n 当纵向振动的周期和钻柱本身固有的振动周期相同(或成整 数倍时),就会产生共振,称之为“跳钻”。后果是严重的。 7、扭转振动

钻柱分析——精选推荐

钻柱分析——精选推荐

钻柱分析钻柱⼀、钻柱的作⽤与组成⼆、钻柱的⼯作状态与受⼒分析三、钻柱设计⼀、钻柱的组成与功⽤(⼀)钻柱的组成钻柱(Drilling String)是钻头以上,⽔龙头以下部分的钢管柱的总称.它包括⽅钻杆(Square Kelly)、钻杆(Drill Pipe)、钻挺(Drill Collar)、各种接头(Joint)及稳定器(Stabilizer)等井下⼯具。

(⼆)钻柱的功⽤(1)提供钻井液流动通道;(2)给钻头提供钻压;(3)传递扭矩;(4)起下钻头;(5)计量井深。

(6)观察和了解井下情况(钻头⼯作情况、井眼状况、地层情况);(7)进⾏其它特殊作业(取芯、挤⽔泥、打捞等);(8)钻杆测试 ( Drill-Stem Testing),⼜称中途测试。

1. 钻杆(1)作⽤:传递扭矩和输送钻井液,延长钻柱。

(2)结构:管体+接头(3)规范:壁厚:9 ~ 11mm外径:长度:根据美国⽯油学会(American Petroleum Institute,简称API)的规定,钻杆按长度分为三类:第⼀类 5.486~ 6.706⽶(18~22英尺);第⼆类 8.230~ 9.144⽶(27~30英尺);第三类 11.582~13.716⽶(38~45英尺)。

常⽤钻杆规范(内径、外径、壁厚、线密度等)见表2-12丝扣连接条件:尺⼨相等,丝扣类型相同,公母扣相匹配。

钻杆接头特点:壁厚较⼤,外径较⼤,强度较⾼。

钻杆接头类型:内平(IF)、贯眼(FH)、正规(REG); NC系列内平式:主要⽤于外加厚钻杆。

特点是钻杆通体内径相同,钻井液流动阻⼒⼩;但外径较⼤,容易磨损。

贯眼式:主要⽤于内加厚钻杆。

其特点是钻杆有两个内径,钻井液流动阻⼒⼤于内平式,但其外径⼩于内平式。

正规式:主要⽤于内加厚钻杆及钻头、打捞⼯具。

其特点是接头内径<加厚处内径<管体内径,钻井液流动阻⼒⼤,但外径最⼩,强度较⼤。

三种类型接头均采⽤V型螺纹,但扣型、扣距、锥度及尺⼨等都有很⼤的差别。

第5章钻柱

第5章钻柱

第五章 钻柱第一节 钻柱的工作状态及受力分析一、工作状态起下钻时:钻柱处于悬持状态--受拉伸(自重),直线稳定状态正常钻进:P<P1 直线稳定P1≤P<P2 一次弯曲P2≤P<P3 二次弯曲钻柱旋转→扭矩离心力→下部弯曲半波缩短上部弯曲半波增长(上部受拉)结论:变节距的空间螺旋弯曲曲线形状钻柱在井内可能有4种旋转形式:(P96)a.自转:b.公转:沿井壁滑动。

c.自转和公转的结合:沿井壁滚动。

d.整个钻柱作无规则的摆动:二、钻柱在井下的受力分析(1) 轴向拉应力与压应力拉应力:由钻柱自重产生,井口最大,起钻和卡钻时产生附加拉力。

压应力:由钻压产生,井底最大。

应力分布(P97,图3-2) 轴向力零点:钻柱上即不受拉也不受压的一点。

中和点:该点以下钻柱在液体中的重量等于钻压。

(2) 剪应力(扭矩):旋转钻柱和钻头所需的力,井口最大。

(3) 弯曲应力:钻柱弯曲并自转时产生交变的拉压应力。

井眼弯曲→钻柱弯曲 132(4) 纵向、横向、扭转振动(5) 其他外力:起下钻动载(惯性),井壁磨擦力,钻柱旋转时因离心力引起的弯曲。

综合以上分析:工况不同,应力作用不同,需根据实际工况确定应力状态。

(1) 钻进时钻柱下部:轴向压力、扭矩、弯曲力矩、交变应力;(2) 钻进和起下钻时井口钻柱:拉力、扭力最大+动载(3) 钻压、地层岩性变化引起中和点位移产生交变载荷。

第二节 钻井过程中各种应力的计算一、轴向应力计算(一)上部拉应力计算1、钻柱在泥浆中空悬浮力:αρ⋅⋅⋅⋅=F L g B mα——考虑钻杆接头和加厚影响的重量修正系数,1.05~1.10 钻柱在空气中的重力:αρ⋅⋅⋅⋅=F L g Q s a井口拉力:B Q Q a -=a f Q K Q ⋅=浮力系数:)1(s m f K ρρ-=ρs --钢的密度,7.85 g/cm 3拉应力:FQ t =σ 注意计算井口以下任一截面上的拉力不能直接用浮力系数法计算。

钻柱

钻柱
钻柱动力学分析
钻柱的振动分析(轴向、横向、扭转振动) 钻柱在井内的运动轨迹 动应力分析是一个正在研究的问题。
钻柱抗挤计算
中途测试、井漏、带单向阀未灌泥浆等导致 钻杆内无液体,若井深为H,外挤压力为:
Poc m gH
钻杆内液体深度为L时:
Poc m gH f g(H L)
深井钻柱强度设计
Q0 Q B
井内静止
Q0 Q B P
正常钻进
Q0 Q B Qg
起钻
Q0 Q B Qg
下钻
Q0:井口拉力 Q:钻柱的自重
B:浮力 P:钻压 Qg:起下钻动载
B m gLF
钻柱浮力的计算:
B: 浮力(N) m: 泥浆密度(kg/m3) L: 钻柱长度(m) F:钻具的横截面积(M2) :钻具截面系数 对于非单一钻柱,浮力事实上是钻柱所排开 的钻井液的重量。
Lc2、qc2 、Fc2 Lc1、qc1 、Fc1
B
Lp
/Kf qp
Pa
Pc
(L p q p Pc )K f Pa
nc
Pc Lciqci
i 1
复合钻柱设计
设有nc段钻铤,则钻铤在 Lp、qp、Fp 空气中的总重量为:
Lpi、qpi、Fpi
Lp1、qp1、Fp1
Lci、qci 、Fci 第一段钻杆的最大许下长度
动载
离心力(质量偏心、钻柱不直)主要造 成钻柱的横向振动 钻头与地层之间的相互作用力,主要造 成钻柱的纵向振动 钻具与井壁之间的间隙接触产生的摩擦 力,导致钻柱的运动形态发生改变 泥浆排量不均产生的脉动力。
轴向力(起下钻)
Q0
B
轴向力(正常钻进)
Q0
B+WOB
井口拉力的计算

定向井钻井钻柱受力分析

定向井钻井钻柱受力分析
报 . 0 , 2 . 2 () 09
[ ] 万林, 2鲁 宋德 文. 析路 桥施 工 中上 部结 构 的加 固技术 与工 艺 要求 探
【 】 湖北桥 梁工程 . 0 , 1 ) J. 2 ( . 06 0
() 4 保护张锚体系。 当采用无粘结 刚绞线作为体外预应力索时, 通常
外裹油脂及其塑料护套能对预应力索起到一定的保护作用 , 并且经久耐用 , 而张锚体系的两端锚具和防松套—般要用玻璃丝布缠包油脂。 3 、 总 结
[】 辉. 如何 解决 路桥 工程施 工预 应力应用 中存在 的 问题 [】 科 技成 3赵 J. 果纵 横. 7 ( . 2 0 , 2) 0 [】 4 胡蜂, 伟利. 浅谈 路桥施 工 中体外 预应力 加 固法 的工程应用 【】 刘 J.
吉林建 筑. 0 , 3. 2 8( ) 0 【] 5 赵丽敏 , 马成 学. 公路 路桥 过渡段 设计 与施工 技术 的创 新 与科学发 展
[ ] o - . n i r v d o e1 n p o a f r o u n t e 4 H H S A mp o e m d g r g m o c mp ti g h i r
t r u a d d a i di e t o a a d e P e1 , P 1 4 , 8 . 0 qe n r g n c i n I n d e w 1 S E 0 1 8 r S 8 7 9
【】 中国桥 梁建设 . 0, 1 . J. 2 9 ( 1) 0
21 0 00・6
中国电 子商务. 2 3 . 7
[】 5 张建群 , 孙学增 , 俊平. 赵 定向井 中摩擦 阻力模 式及 应用 的初步研 究.

南 嘛 5 ( )

钻具的受力分析

钻具的受力分析

五、水平井钻具的受力分析水平井钻具的受力分析是一个比较复杂的力学问题,在水平井摩阻与扭矩分析和计算的基础上,我们可以定性的分析在一定井眼条件和一定钻井参数情况下,不同钻具组合对井眼轨迹控制的能力。

钻柱与井壁产生的摩阻和扭矩, 用滑动摩擦理论计算如下:F =μ×NTr =μ×N×R式中:F 一 摩擦力μ 一 摩擦系数N 一 钻柱和井壁间的正压力R 一 钻柱的半径Tr 一 摩擦扭矩从上式可以看出,μ 和 N 是未知数,通过大量现场数据的回归计算求出:μ=0.21(钻柱与套管)μ=0.28~0.3(钻柱与裸眼)同时我们对正压力也进行了分析和计算。

1、 正压力大小的计算(1) 弯曲井眼内钻具重量和井眼曲率引起的正压力N1现有的摩阻和扭矩计算模式是根据"软绳"假设建立起来的,即钻具的刚度相对于井眼曲率可忽略不计.设一弯曲井眼上钻柱单位长度的重量为W,两端的平均井斜角为I,两端的平均方位角为 A 。

如果假定Y轴在垂直平面内,•X轴在侧向平面内,把N1沿X和Y轴分解,则: N1y=T×sin I + W×sin IN1x=T×sin A×sin I(2) 钻柱弯曲产生的弯曲正压力N2钻柱通过弯曲井段时,由于钻柱的刚性和钻柱的弯曲,便产生了一种附加的正压力N2。

如图所示:R = 18000/K/pi (m)L = R×2×ΦΦ = 2×L/RL1 = 2×R×sin Φ (m)根据力学原理:M = E×Im ×K/18000*piM = N2×(L1/2)-T×L1×sin Φ则有:N2 = 2×T×sin Φ +2×E×Im ×K/1719×L1这里:K - 井眼曲率 (°/100米)L - 井段长度 (米)L1 - L的直线长度 (米)IA T SINi w I T N sin sin )sin (1⨯⨯+⨯+⨯=N2 -附加正压力 (KN)E-弹性模量 (KN/m)Im -截面惯性矩 (m^4)2、摩擦系数的确定在设计一口水平井时,我们可以利用邻井摩擦系数来预算摩阻和扭矩。

钻柱

钻柱

常用尺寸:6-1/4,6-1/2 ,7,8,9 英寸
(三)方钻杆 1、类
型:四方形、六方形 2、特 点:壁厚较大,强度较高 3、主要作用:传递扭矩和承受钻柱的全部重量。 4 、 常 用 尺 寸 : 89mm(3-1/2 英 寸 ) , 108mm (4-1/4 英 寸 ) , 133.4mm (5-1/4英寸)。
v Fd F0 gt
pi
pb
pi ps pb
pb pb pbot
(5)起下钻时钻柱轴向力:
Ft KB (q p Lp qc Lc ) Ff Fd
pbot
pb
第二章 钻 柱 §2-2 钻柱工作状态及受力分析 (5)中性点
钻柱上轴向力等于零的点(N点) (亦称中和点,Neutral Point )。 垂直井眼中钻柱的中性点高度:




第二章 钻 柱 §2-1 钻 柱的作用与组成 5、钻杆的通称尺寸:指钻杆本体外径 6.加重钻杆 加重钻杆是用厚壁钢管制造的新型钻柱构件,管 体两端和中部有超长的外加厚接头或外加厚段,兼有 钻铤和钻杆的功能。它具有以下几个特点: (1)超长的整体接头可以提供较大的耐磨表面和重 量,接头螺纹可以多次修复; (2)比同尺寸的钻杆重,管体和接头外径与普通钻 杆一致,内孔是内平的,内孔直径至少等于钻铤的内 径。 (3)中部外加厚段起小型稳定器作用。受压时管体 可以挠曲,只有两端和中部加厚段接触井壁,管体本 身不受磨损。
上方保接头
下方保接头
第二章 钻 柱 §2-1 钻柱的作用与组成 5、方钻杆技术规范

方钻杆旋转时,上端始终处于转盘面以上, 下部则处在转盘面以下。方钻杆上端至水龙头 的连接部位的丝扣均为左旋丝扣(反扣),以防 止方钻杆转动时卸扣。方钻杆下端至钻头的所 有连接丝扣均为右旋转扣(正扣),在方钻杆带 动钻柱旋转时,丝扣越上越紧。为减轻方钻杆 下部接头丝扣(经常拆卸部位)的磨损,常在该 部位装保护接头。加上两端方保接头,全长 13~16米。

【钻井精品】10. 钻具准备(钻柱受力与损坏)

【钻井精品】10.  钻具准备(钻柱受力与损坏)

※ 钻柱受力较大的部位:
(1)在正常钻进时,下部钻柱同时受到轴向压力、 扭矩和弯曲力矩的作用,若发生异常情况,则受力 更大。 (2)正常钻进时,上部钻柱靠近井口外,同时受 到拉力和扭矩的作用;起、下钻时受拉力最大。 (3)钻柱中和点附近,受拉、压交变应力和扭矩 的作用。
四、钻柱的疲劳破坏与腐蚀
(一)钻杆疲劳破坏的类型 1.纯疲劳破坏 钻杆在交变应力的作用下,易产生纯疲劳破坏。 2.伤痕疲劳破坏 钻杆伤痕处的应力集中易引起伤痕疲劳破坏。 3.腐蚀疲劳破坏 钻杆长期与具有腐蚀性的介质接触,被腐蚀处产生应 力集中易引起腐蚀疲劳破坏。 腐蚀可分为化学腐蚀和电化学腐蚀。
2. 扭矩
在钻进时,转盘带动钻柱和钻头旋 转破碎井底岩石,使钻柱受到扭矩 作用,井口处最大。
3.弯曲力矩 在压力作用下的下部钻柱易产生弯 曲,另外,钻柱旋转或在井斜井段, 也可能发生弯曲。
4. 离心力 当钻柱旋转时受到离心力作用。离 心力会增加钻柱的弯曲程度。
正常钻进时上部钻柱 和下部钻柱的受力情况
(二)钻柱的受力分析
1. 轴向拉力和压力
通常钻柱在重力作用下,受到轴向拉力的作用, 越靠近井口处,拉力越大,起下钻时最大。在 钻进时,部分钻柱的重量作为钻压作用在钻头 上,使下部钻柱受到轴向压力作用。 在钻柱受拉与受压之间,存在着既不受压力作 用也不受拉力作用的点,称为中和点,该点在 一定范围内是动态变化的。 在钻柱设计和使用过程中,应使中和点位于强 度较大的钻铤上。
为减少钻柱的疲劳破坏,可采取10项预防措施:
1)如果已知或怀疑井下存在有严重狗腿井段,应尽量把 狗腿破坏掉,以减少钻柱的弯曲。 2)应根据预计最大钻压合理确定钻铤长度,使钻铤在泥 浆中的重量大于最大钻压,保证钻杆始终处于拉伸状态。 3)尽可能降低钻杆工作的应力,并采用减震器以降低交 变应力的最大值。 4)在钻柱的繁重工作段和弯曲井段采用厚壁钻杆以延长 整个钻柱的使用寿命。 5)控制钻井液对钻杆的腐蚀性,可在钻杆内壁涂以塑料 树脂等保护层。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。





第二章 钻 柱 §2-1 钻 柱的作用与组成 5、钻杆的通称尺寸:指钻杆本体外径 6.加重钻杆 加重钻杆是用厚壁钢管制造的新型钻柱构件,管 体两端和中部有超长的外加厚接头或外加厚段,兼有 钻铤和钻杆的功能。它具有以下几个特点: (1)超长的整体接头可以提供较大的耐磨表面和重 量,接头螺纹可以多次修复; (2)比同尺寸的钻杆重,管体和接头外径与普通钻 杆一致,内孔是内平的,内孔直径至少等于钻铤的内 径。 (3)中部外加厚段起小型稳定器作用。受压时管体 可以挠曲,只有两端和中部加厚段接触井壁,管体本 身不受磨损。
4、接头及丝扣
(1)丝扣连接:
尺寸相等,丝扣类型 相同,公母扣相匹配。 壁厚较大,外径较大, 强度较高。 内平、贯眼、正规。
2)钻杆接头点
(3)钻杆接头类型:
第二章 钻 柱 §2-1 钻柱的作用与组成 内平式:主要用于外加厚钻 杆。其特点是钻杆通体内径相同, 钻井液流动阻力小;但外径较大, 容易磨损。 贯眼式:主要用于内加厚钻 杆。其特点是钻杆有两个内径, 钻井液流动阻力大于内平式,但 其外径小于内平式。 正规式:主要用于内加厚钻 杆及钻头、打捞工具。其特点是 接头内径加厚处内径管体内径, 钻井液流动阻力大,但外径最小, 强度较大。 三种类型接头均采用V型螺纹, 但扣型、扣距、锥度及尺寸等都 有很大的差别。




第二章 钻 柱 §2-1 钻柱的作用与组成 (1)用于直井:在钻铤和普通钻杆之间连接15~30 根加重钻杆,就可防止与钻铤连接的钻杆发生疲劳破 坏; (2)用于定向井:定向井钻柱中接上加重钻杆后, 可使钻铤和加重钻杆不紧贴在井壁上,从而减少发生 泥饼卡钻的可能性,减少卸扣扭矩,在起钻时上提拉 力也不会超过井内重量太多。此外,还能更好地控制 井斜角和方位角,减少定向工作的次数,从而缩短定 向井的建井周期。 在定向井中,为了保证足够的钻压,所需的加重 钻杆长度比直井在同样钻压下所需长度大,一般在 30°井眼中需加长度15%,在45°井眼中需增加长度 40%,在60°井眼中需增加长度100%。

第二章 钻 柱 §2-1 钻柱的作用与组成


(4)耐磨表面是用硬质合金加固的接头,寿命可以 延长4倍。 钻柱疲劳失效常发生在钻铤以上数根钻杆上,因 为从钻铤过渡到钻杆时断面急剧变化,弯曲应力集中 在这部分钻杆上。如果在钻铤和钻杆之间加入加重钻 杆,则可以缓和断面的变化,减少应力集中,从而减 少钻具事故。另外,与钻铤相比,加重钻杆还有打捞 容易、可缩短起下钻时间、搬运方便等优点,并能保 持定向井的方位,起到稳斜作用。在大钩负荷和钻压 相同的情况下,使用加重钻杆,还可提高钻机的钻深 能力。国外加重钻杆已广泛用于直井和斜井,据统计 已超过数百万根,但我国很少使用。现就国外使用情 况分述如下:
常用尺寸:6-1/4,6-1/2 ,7,8,9 英寸
(三)方钻杆 1、类
型:四方形、六方形 2、特 点:壁厚较大,强度较高 3、主要作用:传递扭矩和承受钻柱的全部重量。 4 、 常 用 尺 寸 : 89mm(3-1/2 英 寸 ) , 108mm (4-1/2 英 寸 ) , 133.4mm (5-1/2英寸)。
(二)钻柱的特殊作用
1、通过钻柱可以观察和了解钻头的工 作情况、井眼状况及地层情况等; 2、进行取心、挤水泥、打捞井下落物、 处理井下事故等特殊作业; 3、对地层流体及压力状况进行测试与 评价,即钻杆测试,又称中途测试

第二章 钻 柱 §2-1 钻柱的作用与组成
二、钻柱组成 方钻杆 钻杆 钻铤 稳定器 配合接头和保护接头 其它井下工具: 减震器、震击器、 扩眼器、键槽破坏器

5、方钻杆统称尺寸:方钻杆统称尺寸指方部截面边宽
第二章 钻 柱

பைடு நூலகம்
§2-1 钻柱的作用与组成
6、方钻杆技术规范 方钻杆位于钻柱的最上端,有四方形和六方形两 种。钻进时,方钻杆与方补心、转盘补心配合,将 地面转盘扭矩传递给钻杆,以带动钻头旋转。
标准方钻杆全长12.19 m,驱动部分长11.25 m。为了适应 钻柱配合的需要,方钻杆也有多种尺寸和接头类型。方钻杆的 壁厚一般比钻杆大三倍左右,并用高强度合金钢制造,故具有 较大的抗拉强度及抗扭强度可以承受整个钻柱的重量和旋转钻 柱及钻头所需要的矩。
钻井工程
复习旧课:1、钻头的类型 2、金刚石钻头与 PDC钻头的 组成及区别; 3、 钻头的工作原理。 导入新课:钻头是破碎岩石的主要工具,需 要一定的钻压和转速,钻压和转速是由谁 产生和传递的呢?
第二章 钻柱
一、钻柱的作用与组成
二、钻柱的工作 状态与受力分析
三、钻柱设计
四、本章需要10学时
第二章 钻 柱 §2-1 钻柱的作用与组成
一、钻柱的作用 概念:钻柱是钻头以上,水龙头以下各部分的管柱 的总称。它包括方钻杆、钻杆、钻挺、 各种接头、及 稳定器等井下工具。 (一)、钻柱在钻井过程中的主要作用 1、为钻井液由井口流向钻头提供通道; 2、给钻头施加适当的压力(钻压),使钻头的工作刃 不断吃入岩石; 3、把地面动力(扭矩等)传递给钻头,使钻头不断旋 转破碎岩石; 4、起下钻头; 5、根据钻柱的长度计算井深。
第二章 钻 柱 §2-1 钻柱的作用与组成
(一)钻杆
1、作用:传递扭矩和输送钻井液,延长钻柱。 2、结构:管体+接头
有效长度
第二章 钻 柱
§2-1 钻柱的作用与组成
3、规范:
(1)壁厚:9 ~ 11mm (2)外径:73.0,88.9(3½),101.6, 114、(4½),127.0(5英寸),139.7 (3)长度: 18~22ft ,27~30ft, 38~45ft
第二章 钻 柱 §2-1 钻柱的作用与组成
(二)钻铤

1、结构特点:管体两端直接车制丝扣,无专门接头;壁厚大(38-53毫 米),重量大,是钻杆质量的4~6倍刚度大。
有效长度

2、主要作用:(1)给钻头施加钻压; (2)减轻钻头的振动、摆动和跳动等,使钻头工作平稳; (3)控制井斜。

3、类
型:光钻铤、螺旋钻铤、扁钻铤。
相关文档
最新文档