插值函数使用详细介绍

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Matlab中插值函数汇总和使用说明

MATLAB中的插值函数为interp1,其调用格式为: yi= interp1(x,y,xi,'method') 其中x,y为插值点,yi为在被插值点xi处的插值结果;x,y为向量,'method'表示采用的插值方法,MATLAB提供的插值方法有几种:'method'是最邻近插值,'linear'线性插值;

'spline'三次样条插值;'cubic'立方插值.缺省时表示线性插值

注意:所有的插值方法都要求x是单调的,并且xi不能够超过x的范围。

例如:在一天24小时内,从零点开始每间隔2小时测得的环境温度数据分别为

12,9,9,10,18 ,24,28,27,25,20,18,15,13,

推测中午12点(即13点)时的温度.

x=0:2:24;

y=[12 9 9 10 18 24 28 27 25 20 18 15 13];

a=13;

y1=interp1(x,y,a,'spline')

结果为:27.8725

若要得到一天24小时的温度曲线,则:

xi=0:1/3600:24;

yi=interp1(x,y,xi, 'spline');

plot(x,y,'o' ,xi,yi)

命令1 interp1

功能一维数据插值(表格查找)。该命令对数据点之间计算内插值。它找出一元函数f(x)在中间点的数值。其中函数f(x)由所给数据决定。

x:原始数据点

Y:原始数据点

xi:插值点

Yi:插值点

格式

(1)yi = interp1(x,Y,xi)

返回插值向量yi,每一元素对应于参量xi,同时由向量x 与Y 的内插值决定。参量x 指定数据Y 的点。

若Y 为一矩阵,则按Y 的每列计算。yi 是阶数为length(xi)*size(Y,2)的输出矩阵。

(2)yi = interp1(Y,xi)

假定x=1:N,其中N 为向量Y 的长度,或者为矩阵Y 的行数。

(3)yi = interp1(x,Y,xi,method)

用指定的算法计算插值:

’nearest’:最近邻点插值,直接完成计算;

’linear’:线性插值(缺省方式),直接完成计算;

’spline’:三次样条函数插值。对于该方法,命令interp1 调用函数spline、ppval、mkpp、umkpp。这些命令生成一系列用于分段多项式操作的函数。命令spline 用它们执行三次样条函数插值;

’pchip’:分段三次Hermite 插值。对于该方法,命令interp1 调用函数pchip,用于对向量x 与y 执行分段三次内插值。该方法保留单调性与数据的外形;

’cubic’:与’pchip’操作相同;

’v5cubic’:在MATLAB 5.0 中的三次插值。

对于超出x 范围的xi 的分量,使用方法’nearest’、’linear’、’v5cubic’的插值算法,相应地将返回NaN。对其他的方法,interp1 将对超出的分量执行外插值算法。

(4)yi = interp1(x,Y,xi,method,'extrap')

对于超出x 范围的xi 中的分量将执行特殊的外插值法extrap。

(5)yi = interp1(x,Y,xi,method,extrapval)

确定超出x 范围的xi 中的分量的外插值extrapval,其值通常取NaN 或0。

例1

1.

2.>>x = 0:10; y = x.*sin(x);

3.>>xx = 0:.25:10; yy = interp1(x,y,xx);

4.>>plot(x,y,'kd',xx,yy)

复制代码

例2

1.

2.>> year = 1900:10:2010;

3.>> product = [75.995 91.972 105.711 123.203 131.669 150.697 179.323

203.212 226.505

4.249.633 256.344 267.893 ];

5.>>p1995 = interp1(year,product,1995)

6.>>x = 1900:1:2010;

7.>>y = interp1(year,product,x,'pchip');

8.>>plot(year,product,'o',x,y)

复制代码

插值结果为:

1.

2.p1995 =

3.252.9885

复制代码

命令2 interp2

功能二维数据内插值(表格查找)

格式

(1)ZI = interp2(X,Y,Z,XI,YI)

返回矩阵ZI,其元素包含对应于参量XI 与YI(可以是向量、或同型矩阵)的元素,即Zi(i,j) ←[Xi(i,j),yi(i,j)]。用户可以输入行向量和列向量Xi 与Yi,此时,输出向量Zi 与矩阵meshgrid(xi,yi)是同型的。同时取决于由输入矩阵X、Y 与Z 确定的二维函数Z=f(X,Y)。参量X 与Y 必须是单调的,且相同的划分格式,就像由命令meshgrid 生成的一样。若Xi与Yi 中有在X 与Y范围之外的点,则相应地返回nan(Not a Number)。

(2)ZI = interp2(Z,XI,YI)

缺省地,X=1:n、Y=1:m,其中[m,n]=size(Z)。再按第一种情形进行计算。

(3)ZI = interp2(Z,n)

作n 次递归计算,在Z 的每两个元素之间插入它们的二维插值,这样,Z 的阶数将不断增加。interp2(Z)等价于interp2(z,1)。

(4)ZI = interp2(X,Y,Z,XI,YI,method)

用指定的算法method 计算二维插值:

’linear’:双线性插值算法(缺省算法);

’nearest’:最临近插值;

’spline’:三次样条插值;

’cubic’:双三次插值。

例3:

1.

2.>>[X,Y] = meshgrid(-3:.25:3);

3.>>Z = peaks(X,Y);

4.>>[XI,YI] = meshgrid(-3:.125:3);

5.>>ZZ = interp2(X,Y,Z,XI,YI);

6.>>surfl(X,Y,Z);hold on;

7.>>surfl(XI,YI,ZZ+15)

8.>>axis([-3 3 -3 3 -5 20]);shading flat

9.>>hold off

复制代码

例4:

1.

2.>>years = 1950:10:1990;

3.>>service = 10:10:30;

4.>>wage = [150.697 199.592 187.625

5.179.323 195.072 250.287

6.203.212 179.092 322.767

7.226.505 153.706 426.730

8.249.633 120.281 598.243];

9.>>w = interp2(service,years,wage,15,1975)

复制代码

插值结果为:

1.

2.w =

3.190.6288

复制代码

相关文档
最新文档