化学热力学基础习题解答
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化学热力学基础习题解
答
Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】
第一章 化学热力学基础
1-1 气体体积功的计算式 dV P W e ⎰-= 中,为什么要用环境的压力e P 在什么情
况下可用体系的压力体P
答: 在体系发生定压变化过程时,气体体积功的计算式 dV P W e ⎰-= 中,
可用体系的压力体P 代替e P 。
1-2 298K 时,5mol 的理想气体,在(1)定温可逆膨胀为原体积的 2 倍; ( 2 )
定压下加热到373K ;(3)定容下加热到373K 。已知 C v,m = ·mol -1·K -1。 计算三过程的Q 、W 、△U 、△H 和△S 。
解 (1) △U = △H = 0
(2) kJ nC Q H m P P 72.13)298373(,=-==∆
W = △U – Q P = - kJ
(3) kJ nC Q U m V V 61.10)298373(,=-==∆
W = 0
1-3 容器内有理想气体,n=2mol , P=10P ,T=300K 。求 (1) 在空气中膨胀了
1dm 3,做功多少 (2) 膨胀到容器内压力为 lP ,做了多少功(3)膨胀时外压总比气体的压力小 dP , 问容器内气体压力降到 lP 时,气体做多少功
解:(1)此变化过程为恒外压的膨胀过程,且Pa P e 510=
(2)此变化过程为恒外压的膨胀过程,且Pa P e 510=
(3) V
nRT P dP P P e =≈-= 1-4 1mol 理想气体在300K 下,1dm 3定温可逆地膨胀至10dm 3,求此过程的
Q 、W 、△U 及△H 。
解: △U = △H = 0
W f dl p A dl p dV
δ=-⋅=-⋅⋅=-⋅外外外
1-5 1molH 2由始态25℃及P 可逆绝热压缩至 5dm -3, 求(1)最后温度;(2)最
后压力; ( 3 ) 过程做功。
解:(1) 351
1178.2410298314.81-=⨯⨯==dm P nRT V (2) Pa V nRT P 53222104.910
53.565314.81⨯=⨯⨯⨯==- (3) )2983.565(314.85.21)(12,-⨯⨯⨯-=--=∆-=T T nC U W m V
1-6 40g 氦在3P 下从25℃加热到50℃,试求该过程的△H 、△U 、Q 和W 。设氦是理想
气体。( He 的M=4 g·mol -1 )
解: J nC Q H m P P 3.519625314.825440)298323(,=⨯⨯⨯=
-==∆ W = △U – Q P =
1-7 已知水在100℃ 时蒸发热为 J·g -1,则100℃时蒸发30g 水,过程的△U 、△
H 、 Q 和W 为多少(计算时可忽略液态水的体积)
解: mol n 67.118
30== 1-8 298K 时将1mol 液态苯氧化为CO 2 和 H 2O ( l ) ,其定容热为 -3267 kJ·mol -
1 , 求定压反应热为多少
解: C 6H 6 (l) + (g) → 6CO 2 (g) +3 H 2O ( l )
1-9 300K 时2mol 理想气体由ldm -3可逆膨胀至 10dm -3 ,计算此过程的嫡变。 解: 11
229.3810ln 314.82ln -⋅=⨯==∆K J V V nR S 1-10.已知反应在298K 时的有关数据如下
C 2H 4 (g) + H 2O (g) → C 2H 5OH (l)
△f H m /kJ·mol -1 - -
C P , m / J·K -1·mol -1
计算(1)298K 时反应的△r H m 。
(2)反应物的温度为288K ,产物的温度为348K 时反应的△r H m 。
解(1) △r H m = - + - = - kJ·mol -1
(2) 288K C 2H 4 (g) + H 2O (g) → C 2H 5OH (l) 348K ↓△H 1 ↓△H 2 ↑△H 3
298K C 2H 4 (g) + H 2O (g) → C 2H 5OH (l) 298K
△r H m = △r H m ( 298K ) + △H 1 + △H 2 + △H 3
= - + [( + ) ×(298-288) + ×( 348-298)]×10-3
= - kJ·mol -1
1-11 定容下,理想气体lmolN 2由300K 加热到600K ,求过程的△S 。
已知11,,)006.000.27(2--⋅⋅+=mol K J T C N m P
解: T R C C m P m V 006.069.18,,+=-=
1-12 若上题是在定压下进行,求过程的嫡变。
解: ⎰+=∆600
300006.000.27dT T T S 1-13 下,2mol 甲醇在正常沸点时气化,求体系和环境的嫡变各为多少已知甲醇
的气化热△H m = ·mol -1
解: 13
2.2082
.337101.352-⋅=⨯⨯=∆=∆K J T H n S m 体系 1-14 绝热瓶中有373K 的热水,因绝热瓶绝热稍差,有4000J 的热量流人温度
为298K 的空气中,求(1)绝热瓶的△S 体;(2)环境的△S 环;(3)总熵变△S 总。
解:近似认为传热过程是可逆过程
△S 总 = △S 体 + △S 环 = ·K -1