模式识别实验报告-实验一 Bayes分类器设计

合集下载

模式识别大作业

模式识别大作业

模式识别专业:电子信息工程班级:电信****班学号:********** 姓名:艾依河里的鱼一、贝叶斯决策(一)贝叶斯决策理论 1.最小错误率贝叶斯决策器在模式识别领域,贝叶斯决策通常利用一些决策规则来判定样本的类别。

最常见的决策规则有最大后验概率决策和最小风险决策等。

设共有K 个类别,各类别用符号k c ()K k ,,2,1 =代表。

假设k c 类出现的先验概率()k P c以及类条件概率密度()|k P c x 是已知的,那么应该把x 划分到哪一类才合适呢?若采用最大后验概率决策规则,首先计算x 属于k c 类的后验概率()()()()()()()()1||||k k k k k Kk k k P c P c P c P c P c P P c P c ===∑x x x x x然后将x 判决为属于kc ~类,其中()1arg max |kk Kk P c ≤≤=x若采用最小风险决策,则首先计算将x 判决为k c 类所带来的风险(),k R c x ,再将x 判决为属于kc ~类,其中()min ,kkk R c =x可以证明在采用0-1损失函数的前提下,两种决策规则是等价的。

贝叶斯决策器在先验概率()k P c 以及类条件概率密度()|k P c x 已知的前提下,利用上述贝叶斯决策规则确定分类面。

贝叶斯决策器得到的分类面是最优的,它是最优分类器。

但贝叶斯决策器在确定分类面前需要预知()k P c 与()|k P c x ,这在实际运用中往往不可能,因为()|k P c x 一般是未知的。

因此贝叶斯决策器只是一个理论上的分类器,常用作衡量其它分类器性能的标尺。

最小风险贝叶斯决策可按下列步骤进行: (1)在已知)(i P ω,)(i X P ω,i=1,…,c 及给出待识别的X 的情况下,根据贝叶斯公式计算出后验概率:∑==cj iii i i P X P P X P X P 1)()()()()(ωωωωω j=1,…,x(2)利用计算出的后验概率及决策表,按下面的公式计算出采取i a ,i=1,…,a 的条件风险∑==cj j j i i X P a X a R 1)(),()(ωωλ,i=1,2,…,a(3)对(2)中得到的a 个条件风险值)(X a R i ,i=1,…,a 进行比较,找出使其条件风险最小的决策k a ,即()()1,min k i i aR a x R a x ==则k a 就是最小风险贝叶斯决策。

《模式识别》实验报告-贝叶斯分类

《模式识别》实验报告-贝叶斯分类

《模式识别》实验报告---最小错误率贝叶斯决策分类一、实验原理对于具有多个特征参数的样本(如本实验的iris 数据样本有4d =个参数),其正态分布的概率密度函数可定义为112211()exp ()()2(2)T d p π-⎧⎫=--∑-⎨⎬⎩⎭∑x x μx μ 式中,12,,,d x x x ⎡⎤⎣⎦=x 是d 维行向量,12,,,d μμμ⎡⎤⎣⎦=μ是d 维行向量,∑是d d ⨯维协方差矩阵,1-∑是∑的逆矩阵,∑是∑的行列式。

本实验我们采用最小错误率的贝叶斯决策,使用如下的函数作为判别函数()(|)(),1,2,3i i i g p P i ωω==x x (3个类别)其中()i P ω为类别i ω发生的先验概率,(|)i p ωx 为类别i ω的类条件概率密度函数。

由其判决规则,如果使()()i j g g >x x 对一切j i ≠成立,则将x 归为i ω类。

我们根据假设:类别i ω,i=1,2,……,N 的类条件概率密度函数(|)i p ωx ,i=1,2,……,N 服从正态分布,即有(|)i p ωx ~(,)i i N ∑μ,那么上式就可以写为1122()1()exp ()(),1,2,32(2)T i i dP g i ωπ-⎧⎫=-∑=⎨⎬⎩⎭∑x x -μx -μ对上式右端取对数,可得111()()()ln ()ln ln(2)222T i i i i dg P ωπ-=-∑+-∑-i i x x -μx -μ上式中的第二项与样本所属类别无关,将其从判别函数中消去,不会改变分类结果。

则判别函数()i g x 可简化为以下形式111()()()ln ()ln 22T i i i i g P ω-=-∑+-∑i i x x -μx -μ二、实验步骤(1)从Iris.txt 文件中读取估计参数用的样本,每一类样本抽出前40个,分别求其均值,公式如下11,2,3ii iii N ωωω∈==∑x μxclear% 原始数据导入iris = load('C:\MATLAB7\work\模式识别\iris.txt'); N=40;%每组取N=40个样本%求第一类样本均值 for i = 1:N for j = 1:4w1(i,j) = iris(i,j+1); end endsumx1 = sum(w1,1); for i=1:4meanx1(1,i)=sumx1(1,i)/N; end%求第二类样本均值 for i = 1:N for j = 1:4 w2(i,j) = iris(i+50,j+1);end endsumx2 = sum(w2,1); for i=1:4meanx2(1,i)=sumx2(1,i)/N; end%求第三类样本均值 for i = 1:N for j = 1:4w3(i,j) = iris(i+100,j+1); end endsumx3 = sum(w3,1); for i=1:4meanx3(1,i)=sumx3(1,i)/N; end(2)求每一类样本的协方差矩阵、逆矩阵1i -∑以及协方差矩阵的行列式i ∑, 协方差矩阵计算公式如下11()(),1,2,3,41i ii N i jklj j lk k l i x x j k N ωωσμμ==--=-∑其中lj x 代表i ω类的第l 个样本,第j 个特征值;ij ωμ代表i ω类的i N 个样品第j 个特征的平均值lk x 代表i ω类的第l 个样品,第k 个特征值;iw k μ代表i ω类的i N 个样品第k 个特征的平均值。

Bayes分类器算法

Bayes分类器算法

⇒ x ∈ωi
2、具体步骤如下 A).算出各类别特征值的均值 B).求出特征值的协方差矩阵 C).将第二步所得矩阵代入判别函数 g1(x)、g2(x) D).将待测试样本集数据依次代入 g1(x)- g2(x),若 g1(x)- g2(x)>0,则判断其为第一类,反
之为第二类。 3、流程图
确定特征及先验概率
体重: clear all; load FEMALE.txt; load MALE.txt; fid=fopen('test2.txt','r'); test1=fscanf(fid,'%f %f %c',[3,inf]); test=test1';
fclose(fid); Fmean = mean(FEMALE); Mmean = mean(MALE); Fvar = std(FEMALE); Mvar = std(MALE); preM = 0.9; preF = 0.1; error=0; Nerror=0; figure; for i=1:300
Nerror = Nerror +1; end; else plot(test(i,1),test(i,2),'k*'); if (test(i,3)=='F')
Nerror = Nerror +1; end end hold on; end; title('身高体重不相关最小风险的 Bayes 决策'); ylabel('身高(cm)'),zlabel('体重(kg)'); error = Nerror/300*100; sprintf('%s %d %s %0.2f%s','分类错误个数:',Nerror,'分类错误率为:',error,'%')

实验一图像的贝叶斯分类一、实验目...

实验一图像的贝叶斯分类一、实验目...

实验一图像的贝叶斯分类一、实验目的将模式识别方法与图像处理技术相结合,掌握利用最小错分概率贝叶斯分类器进行图像分类的基本方法,通过实验加深对基本概念的理解。

二、实验仪器设备及软件HP D538、MATLAB三、实验原理1 基本原理阈值化分割算法是计算机视觉中的常用算法,对灰度图象的阈值分割就是先确定一个处于图像灰度取值范围内的灰度阈值,然后将图像中每个像素的灰度值与这个阈值相比较。

并根据比较的结果将对应的像素划分为两类,灰度值大于阈值的像素划分为一类,小于阈值的划分为另一类,等于阈值的可任意划分到两类中的任何一类。

此过程中,确定阈值是分割的关键。

对一般的图像进行分割处理通常对图像的灰度分布有一定的假设,或者说是基于一定的图像模型。

最常用的模型可描述如下:假设图像由具有单峰灰度分布的目标和背景组成,处于目标和背景内部相邻像素间的灰度值是高度相关的,但处于目标和背景交界处两边的像素灰度值有较大差别,此时,图像的灰度直方图基本上可看作是由分别对应于目标和背景的两个单峰直方图混合构成。

而且这两个分布应大小接近,且均值足够远,方差足够小,这种情况下直方图呈现较明显的双峰。

类似地,如果图像中包含多个单峰灰度目标,则直方图可能呈现较明显的多峰。

上述图像模型只是理想情况,有时图像中目标和背景的灰度值有部分交错。

这时如用全局阈值进行分割必然会产生一定的误差。

分割误差包括将目标分为背景和将背景分为目标两大类。

实际应用中应尽量减小错误分割的概率,常用的一种方法为选取最优阈值。

这里所谓的最优阈值,就是指能使误分割概率最小的分割阈值。

图像的直方图可以看成是对灰度值概率分布密度函数的一种近似。

如一幅图像中只包含目标和背景两类灰度区域,那么直方图所代表的灰度值概率密度函数可以表示为目标和背景两类灰度值概率密度函数的加权和。

如果概率密度函数形式已知,就有可能计算出使目标和背景两类误分割概率最小的最优阈值。

假设目标与背景两类像素值均服从正态分布且混有加性高斯噪声,上述分类问题可以使用模式识别中的最小错分概率贝叶斯分类器来解决。

Bayes分类器原理分析以及实现

Bayes分类器原理分析以及实现

Bayes分类器原理分析以及实现编程环境:python 3.7jupyter notebook⽂章说明:这⾥只是贝叶斯分类器的原理进⾏分析以及实现,重点关注其中的数学原理和逻辑步骤,在测试等阶段直接调⽤了python机器学习的库。

基本步骤:输⼊类数,特征数,待分样本数输⼊训练样本数和训练样本集计算先验概率计算各类条件概率密度计算各类的后验概率若按最⼩错误率原则分类,则根据后验概率判定若按最⼩风险原则分类,则计算各样本属于各类时的风险并判定# 导⼊基本库import pandas as pdimport numpy as npimport mathimport matplotlib.pyplot as plt%matplotlib inline%config InlineBackend.figure_format = 'png'数据预处理colume_names = ['','gender','height','weight','size']df= pd.read_excel('data/gender.xlsx',index_col=0,names=colume_names)df.head(5)gender height weight size1⼥163.062.036.02⼥158.042.036.03男168.067.042.04男180.067.041.05男180.075.046.0df.shape(571, 4)这⾥可以看到数据有4个维度,分别为性别、⾝⾼、体重、鞋码,共有571条记录。

下⾯做⼀些简单的处理:# 性别数据转换df.replace('男',1,inplace=True)df.replace('⼥',2,inplace=True)df.head(5)gender height weight size12163.062.036.022158.042.036.031168.067.042.041180.067.041.0gender height weight size 51180.075.046.0# 男⽣⼥⽣数据分开male_df = df.loc[df['gender']==1]female_df = df.loc[df['gender']==2]female_df.head(5)gender height weight size 12163.062.036.022158.042.036.092160.045.036.0102163.048.037.0112161.045.036.01、单个特征——⾝⾼为了更加深⼊得理解贝叶斯分类器原理,我们从简单的⼀维特征开始。

2014模式识别课程设计(全文5篇)

2014模式识别课程设计(全文5篇)

2014模式识别课程设计(全文5篇)第一篇:2014模式识别课程设计【设计题目】自选【设计目标】通过本课程设计,学习利用非监督学习方法对生活中的实际问题进行识别分类,掌握模式识别系统的基本设计思路与步骤。

【设计内容】观察生活与环境,自选一个问题,采用一种非监督学习方法对其进行分类与识别。

【设计要求】提交设计报告,报告内容包括:问题描述,选用某种方法的理由,模式采集,特征提取与选择,分类器设计,学习过程,测试结果,结果分析(含不足与展望),设计总结。

程序代码作为附录与报告一起提交。

报告正文部分不超过10页,文字部分不超过1万字。

1模式识别在发动机故障诊断中的应用模式识别受体在慢性阻塞性肺疾病中的作用基于模式识别的短时交通流预测Fault Mode Diagnosis System Based on for Automobile ABS Nerve Network平行路段模式识别与简化初探-Primary study on recognition and simplification of parallel sections in road networks第二篇:数字图像模式识别王丽霞深圳市南山区学府路;***、******************求职意向数字图像处理、模式识别算法工程师教育经历汕头大学电子工程系信号与信息处理专业硕士2007.9—2010.6 汕头市·在校期间成绩优良,分别一次获汕头大学一等、二等奖学金;2008 09担任女生部部长负责统筹管理,成立特色学科及基础学科研讨组,积极开拓学生的思维并提高他们的学习成绩,更贴近社会的新路线。

潍坊学院信息与控制工程学院电子信息工程学士2003.9—2007.6 潍坊市·2007年9月以第一名成绩考入汕头大学攻读硕士研究生;在校期间担任班级学习委员负责不同类学生的学习方法指导;2004-9-2007-6担任学院文艺部部长,负责迎新晚会筹划,锻炼了团队领导能力、协调能力、临场反应能力以及创新思维。

机器学习实验2-贝叶斯分类器设计

机器学习实验2-贝叶斯分类器设计

一、实验意义及目的1、掌握贝叶斯判别定理2、能利用matlab编程实现贝叶斯分类器设计3、熟悉基于matlab的算法处理函数,并能够利用算法解决简单问题二、算法原理贝叶斯定理是关于随机事件A和B的条件概率(或边缘概率)的一则定理。

其中P(A|B)是在B发生的情况下A发生的可能性公式为:贝叶斯法则:当分析样本大到接近总体数时,样本中事件发生的概率将接近于总体中事件发生的概率。

内容:(1)两类w服从正态分布,设计基于最小错误率的贝叶斯分类器,对数据进行分类。

(2)使用matlab进行Bayes判别的相关函数,实现上述要求。

(3)针对(1)中的数据,自由给出损失表,并对数据实现基于最小风险的贝叶斯分类。

三、实验内容(1)尝两类w服从正态分布,设计基于最小错误率的贝叶斯分类器,对数据进行分类。

代码清单:clc;clear all;meas=[0 0;2 0;2 2;0 2;4 4;6 4;6 6;4 6];%8x2矩阵这里一行一行2个特征[N n]=size(meas);species={'one';'one';'one';'one';'two';'two';'two';'two'};%这里也对应一行一行的sta=tabulate(species)[c k]=size(sta);priorp=zeros(c,1);for i=1:cpriorp(i)=cell2mat(sta(i,k))/100;%计算概率end%cell2mat(sta(:,2:3)) 提取数组中的数据本来sta数组中数据为矩阵不能直接用%估算类条件概率参数cpmean=zeros(c,n);cpcov=zeros(n,n,c);for i=1:ccpmean(i,:)=mean(meas(strmatch(char(sta(i,1)),species,'exact'),:));%exact精确查找cpmean放的每一类的均值点几类就几行cpcov(:,:,i)=cov(meas(strmatch(char(sta(i,1)),species,'exact'),:))*(N*priorp(i)-1)/(N*priorp(i));end%求(3 1)的后验概率x=[3 1];postp=zeros(c,1);for i=1:cpostp(i)=priorp(i)*exp(-(x-cpmean(i,:))*inv(cpcov(:,:,i))*(x-cpmean(i,:))'/2)/((2*pi)^(n/2)*det(cpcov(:,:,i)));endif postp(1)>postp(2)disp('第一类');elsedisp('第二类');end运行结果:(2)使用matlab进行Bayes判别的相关函数,实现上述要求。

实验课程-091042-模式识别

实验课程-091042-模式识别

模式识别实验教学大纲(实验课程)◆课程编号:091042◆课程英文名称:Pattern Recognition◆课程类型:☐通识通修☐通识通选☐学科必修☐学科选修☐跨学科选修☐专业核心 专业选修(学术研究)☐专业选修(就业创业)◆适用年级专业(学科类):计算机科学与技术、网络工程、软件工程四年级◆先修课程:高等数学、线性代数、概率与数理统计、程序设计语言◆总学分:1◆总学时:32一、课程简介与教学目标《模式识别实验》是配合计算机科学与技术、网络工程和软件工程专业课程《模式识别》开设的实验课程。

要求学生在理解模式识别理论及方法的基础上,应具有设计、实现、分析和维护模式识别等方面的能力。

通过本实验课程的训练,使学生熟练掌握模式识别的基本原理和方法,加深对各方法涉及的基础知识的认识,强化编程技能,培养创新能力。

二、教学方式与方法教学方式:学生动手实验为主,辅以适当的提问、小组讨论及实验点评等。

教学方法:探讨式教学、启发式教学、实验教学相结合;尝试包括实验设计、研究设计、答辩、总结等环节的教学。

三、教学重点与难点(一)教学重点理解模式识别系统的基本原理,掌握模式识别中Bayes分类器、Parzen窗估计与K N近邻估计、最近邻方法和C均值聚类算法等,学会使用相应工具进行模式识别方法的设计与实现,从而进一步理解模式识别课程中所讲授的理论知识。

(二)教学难点H-K算法、基于K-L变换的实现。

四、学时分配计划五、教材与教学参考书(一)教材1.《模式识别(第2版)》,边肇祺,张学工等,清华大学出版社,2000。

(二)教学参考书1.《模式识别导论》,齐敏、李大健、郝重阳,清华大学出版社,2009;2.《模式识别原理》,孙亮,北京工业大学出版社,2009;3.《模式识别(第3版)》,张学工,清华大学出版社,2010;4.《模式识别(英文版·第3版)(经典原版书库)》,(希腊)西奥多里迪斯等著,机械工业出版社,2006。

模式识别报告

模式识别报告

一、模式识别概论在信息的处理过程中,首先需要解决的就是信息的分类问题。

按“物以类聚”的自然规律,将大容量的信息分门别类,各种类别的信息分别归集在一起,然后找出它们内部的规律,以及它们相互之间的规律,然后按规律建立模型,进行生产过程的操作和控制,这样才能达到事半功倍的效果。

对具体的个别事物进行观测所得到的具有时间和空间分布的信息称为模式,而把模式所属的类别或同一类中模式的总体称为模式类。

人们为了掌握客观事物,按事物相似的程度组成类别。

模式识别的作用和目的就在于对某一具体事物时将其准确地归入某一类别。

模式识别系统都由两个过程所组成,即设计和实现。

设计是指用一定数量的样本进行分类器的设计。

实现是指用所设计的分类器对待识别的样本进行分类决策。

模式识别系统主要由4个部分组成:数据获取,预处理,特征提取和选择,分类决策。

分类决策就是在特征空间中用统计方法把被识别对象归为某一类别。

基本作法是在样本训练集基础上确定某个判决规则,使按这种判决规则对被识别对象进行分类所造成的错误识别率最小或引起的损失最小。

二、模式识别的方法模式分类是模式识别的主要内容,即将某个模式分到某个模式类中。

在这个过程中首先需要建立样本库,然后根据样本库建立判别函数,这一过程由机器来实现,成为学习过程。

然后对一个未知的新对象分析它的特征,并根据判别函数决定它属于哪一类。

模式分类是一种监督学习的方法。

可用于模式分类的方法有很多,经典的方法有:①统计模式识别统计模式识别方法是受数学中的决策理论启发而产生的一种识别方法。

其基本思想是将特征提取阶段得到的特征向量定义在一个特征空间中,这个空间包含了所有的特征矢量。

不同的特征向量,或者说不同类别的对象,都对应于此空间中的一点。

在分类阶段,则利用统计决策的原理对特征空间进行划分,从而达到识别不同特征对象的目的。

统计识别中应用的统计决策分类理论相对比较成熟,研究的重点是特征提取。

这类方法中常用的方法有贝叶斯分类、线性分类、非线性分类和聚类分析。

贝叶斯实验报告

贝叶斯实验报告

贝叶斯实验报告Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】HUNAN UNIVERSITY人工智能实验报告题目实验三:分类算法实验学生姓名匿名学生学号 02xx专业班级智能科学与技术1302班指导老师袁进一.实验目的1.了解朴素贝叶斯算法的基本原理;2.能够使用朴素贝叶斯算法对数据进行分类3.了解最小错误概率贝叶斯分类器和最小风险概率贝叶斯分类器4.学会对于分类器的性能评估方法二、实验的硬件、软件平台硬件:计算机软件:操作系统:WINDOWS10应用软件:C,Java或者Matlab相关知识点:贝叶斯定理:表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A 的条件概率,其基本求解公式为:贝叶斯定理打通了从P(A|B)获得P(B|A)的道路。

直接给出贝叶斯定理:朴素贝叶斯分类是一种十分简单的分类算法,叫它朴素贝叶斯分类是因为这种方法的思想真的很朴素,朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。

朴素贝叶斯分类的正式定义如下:1、设为一个待分类项,而每个a为x的一个特征属性。

2、有类别集合。

3、计算。

4、如果,则。

那么现在的关键就是如何计算第3步中的各个条件概率。

我们可以这么做:1、找到一个已知分类的待分类项集合,这个集合叫做训练样本集。

2、统计得到在各类别下各个特征属性的条件概率估计。

即3、如果各个特征属性是条件独立的,则根据贝叶斯定理有如下推导:因为分母对于所有类别为常数,因为我们只要将分子最大化皆可。

又因为各特征属性是条件独立的,所以有:整个朴素贝叶斯分类分为三个阶段:第一阶段: 准备工作阶段,这个阶段的任务是为朴素贝叶斯分类做必要的准备,主要工作是根据具体情况确定特征属性,并对每个特征属性进行适当划分,然后由人工对一部分待分类项进行分类,形成训练样本集合。

模式识别实习报告

模式识别实习报告

一、贝叶斯估计做分类【问题描述】实习题目一:用贝叶斯估计做分类。

问题描述:给出试验区裸土加水田的tif图像,要求通过贝叶斯估计算法对房屋、水田及植被进行分类。

问题分析:首先通过目视解译法对图像进行分类,获取裸土、水田和植被的DN值,在此基础上,通过该部分各个类别的面积计算先验概率,然后带入公式进行计算,从而对整个图像进行分类。

【模型方法】与分布有关的统计分类方法主要有最大似然/ 贝叶斯分类。

最大似然分类是图像处理中最常用的一种监督分类方法,它利用了遥感数据的统计特征,假定各类的分布函数为正态分布,在多变量空间中形成椭圆或椭球分布,也就是和中个方向上散布情况不同,按正态分布规律用最大似然判别规则进行判决,得到较高准确率的分类结果。

否则,用平行六面体或最小距离分类效果会更好。

【方案设计】①确定需要分类的地区和使用的波段和特征分类数,检查所用各波段或特征分量是否相互已经位置配准;②根据已掌握的典型地区的地面情况,在图像上选择训练区;③计算参数,根据选出的各类训练区的图像数据,计算和确定先验概率;④分类,将训练区以外的图像像元逐个逐类代入公式,对于每个像元,分几类就计算几次,最后比较大小,选择最大值得出类别;⑤产生分类图,给每一类别规定一个值,如果分10 类,就定每一类分别为1 ,2 ……10 ,分类后的像元值便用类别值代替,最后得到的分类图像就是专题图像. 由于最大灰阶值等于类别数,在监视器上显示时需要给各类加上不同的彩色;⑥检验结果,如果分类中错误较多,需要重新选择训练区再作以上各步,直到结果满意为止。

【结果讨论】如图所示,通过贝叶斯算法,较好地对图像完成了分类,裸土、植被和水田三个类别清晰地判别出来。

在计算先验概率时,选择何种数据成为困扰我的一个问题。

既有ENVI自身提供的精确的先验概率值,也可以自己通过计算各个类别的面积,从而获取大致的先验概率值。

最后,在田老师的讲解下,我知道了虽然数据可能不太精确,但是,计算先验概率时,总体的倾向是一致的,所以在最后判别时,因此而引起的误差是微乎其微的,所以,一定要弄清楚算法原理,才能让自己的每一步工作都有理可循。

贝叶斯分类器报告

贝叶斯分类器报告

实验报告一、实验目的通过上机编程加深对贝叶斯分类器分类过程的理解,同时提高分析问题、解决问题、实际操作的能力。

二、实验数据说明实验数据来源于/ml/,详细说明请见附件一。

数据源的完整名称是Wine Data Set,是对3种不同的酒进行分类。

这三种酒包括13种不同的属性。

13种属性分别为:Alcohol,Malic acid,Ash,Alcalinity of ash,Magnesium,Total phenols,Flavanoids,Nonflavanoid phenols,Proanthocyanins,Color intensity,Hue,OD280/OD315 of diluted wines,Proline。

在“wine.data”文件中,每行代表一种酒的样本,共有178个样本;一共有14列,其中,第一列为类标志属性,共有三类,分别记为“1”,“2”,“3”;后面的13列为每个样本的对应属性的样本值。

其中第1类有59个样本,第2类有71个样本,第3类有48个样本。

三、朴素贝叶斯分类算法分析贝叶斯分类器是用于分类的贝叶斯网络。

该网络中应包含类结点C,其中C 的取值来自于类集合( c1 , c2 , ... , cm),还包含一组结点X = ( X1 , X2 , ... , Xn),表示用于分类的特征。

对于贝叶斯网络分类器,若某一待分类的样本D,其分类特征值为x = ( x1 , x2 , ... , x n) ,则样本D 属于类别ci 的概率P( C = ci | X1 = x1 , X2 = x 2 , ... , Xn = x n) ,( i = 1 ,2 , ... , m) 应满足下式:P( C = ci | X = x) = Max{ P( C = c1 | X = x) , P( C = c2 | X = x ) , ... , P( C = cm | X = x ) } 而由贝叶斯公式:P( C = ci | X = x) = P( X = x | C = ci) * P( C = ci) / P( X = x)其中,P( C = ci) 可由领域专家的经验得到,而P( X = x | C = ci) 和P( X = x) 的计算则较困难。

模式识别实验指导书2014版

模式识别实验指导书2014版
priorp(i)=cell2mat(sta(i,k))/100; end %估算类条件概率参数 cpmean=zeros(c,n); cpcov=zeros(n,n,c); for i=1:c
cpmean(i,:)=mean(meas(strmatch(char(sta(i,1)),species,'exact'),:));
4 5
⎟⎟⎠⎞,
⎜⎜⎝⎛
− −
5 6
⎟⎟⎠⎞, ⎜⎜⎝⎛
− −
6 5
⎟⎟⎠⎞,
⎜⎜⎝⎛
5 5
⎟⎟⎠⎞,
⎜⎜⎝⎛
5 4
⎟⎟⎠⎞,
⎜⎜⎝⎛
4 5
⎟⎟⎠⎞,
⎜⎜⎝⎛
5 6
⎟⎟⎠⎞,
⎜⎜⎝⎛
6 5
⎟⎟⎠⎞⎭⎬⎫
,计算样本协方
差矩阵,求解数据第一主成分,并重建原始数据。
(2)使用 Matlab 中进行主成分分析的相关函数,实现上述要求。
有 c 个不同的水平,表示 c 个不同的类。
表 1-1 fit 方法支持的参数名与参数值列表
参数名
参数值
说明
'normal'
正态分布(默认)
核密度估计(通过‘KSWidth’参数设置核密度估计的窗宽
'kernel'
(默认情况下自动选取窗宽;通过‘KSSupport’参数设置
‘Distribution’ 'mvmn'
信息与电气工程学院专业实验中心 二〇一四年八月
《模式识别》实验一 贝叶斯分类器设计
一、实验意义及目的
掌握贝叶斯判别原理,能够利用 Matlab 编制程序实现贝叶斯分类器设计,熟悉基于 Matlab 的 算法处理函数,并能够利用算法解决简单问题。

模式识别实验指导书2015

模式识别实验指导书2015

6
深圳大学研究生课程“模式识别理论与方法”实验指导书(4th Edition 裴继红编)
(c) 用(b)中设计的分类器对测试点进行分类: (1, 2,1) , (5,3, 2) , (0, 0, 0) , (1, 0, 0) , 并且利用式(45)求出各个测试点与各个类别均值之间的 Mahalanobis 距离。 (d) 如果 P ( w1 ) 0.8, P ( w2 ) P ( w3 ) 0.1 ,再进行(b)和(c)实验。 (e) 分析实验结果。 表格 1
深圳大学研究生课程:模式识别理论与方法
课程作业实验指导
(4th Edition) (分数:5%10=50%) (共 10 题)
实验参考教材:
a) 《Pattern Classification》by Richard O.Duda, Peter E.Hart, David G.Stork, 2nd Edition Wiley-Interscience, 2000. (机械工业出版社,2004 年, 影印版)。 b) 《模式分类》Richard O.Duda, Peter E.Hart, David G.Stork 著;李宏东, 姚天翔等译;机械工业出版社和中信出版社出版,2003 年。(上面 a 的 中文翻译版) c) 《模式识别(英文第四版)》Sergios Theodoridis, Konstantinos Koutroumbas 著;机械工业出版社,2009 年,影印版。 d) 《神经网络与机器学习(原书第三版)》Simon Haykin 著;申富 饶等译,机械工业出版社,2013 年。
裴继红 编
2015 年 2 月 深圳大学 信息工程学院
深圳大学研究生课程“模式识别理论与方法”实验指导书(4th Edition 裴继红编)

模式识别实验报告

模式识别实验报告

实验一Bayes 分类器设计本实验旨在让同学对模式识别有一个初步的理解,能够根据自己的设计对贝叶斯决策理论算法有一个深刻地认识,理解二类分类器的设计原理。

1实验原理最小风险贝叶斯决策可按下列步骤进行:(1)在已知)(i P ω,)(i X P ω,i=1,…,c 及给出待识别的X 的情况下,根据贝叶斯公式计算出后验概率: ∑==cj iii i i P X P P X P X P 1)()()()()(ωωωωω j=1,…,x(2)利用计算出的后验概率及决策表,按下面的公式计算出采取i a ,i=1,…,a 的条件风险∑==cj j jii X P a X a R 1)(),()(ωωλ,i=1,2,…,a(3)对(2)中得到的a 个条件风险值)(X a R i ,i=1,…,a 进行比较,找出使其条件风险最小的决策k a ,即则k a 就是最小风险贝叶斯决策。

2实验内容假定某个局部区域细胞识别中正常(1ω)和非正常(2ω)两类先验概率分别为 正常状态:P (1ω)=0.9; 异常状态:P (2ω)=0.1。

现有一系列待观察的细胞,其观察值为x :-3.9847 -3.5549 -1.2401 -0.9780 -0.7932 -2.8531 -2.7605 -3.7287 -3.5414 -2.2692 -3.4549 -3.0752 -3.9934 2.8792 -0.9780 0.7932 1.1882 3.0682 -1.5799 -1.4885 -0.7431 -0.4221 -1.1186 4.2532 已知类条件概率密度曲线如下图:)|(1ωx p )|(2ωx p 类条件概率分布正态分布分别为(-2,0.25)(2,4)试对观察的结果进行分类。

3 实验要求1) 用matlab 完成分类器的设计,要求程序相应语句有说明文字。

2) 根据例子画出后验概率的分布曲线以及分类的结果示意图。

模式识别实验报告

模式识别实验报告

模式识别实验报告班级:电信08-1班姓名:黄**学号:********课程名称:模式识别导论实验一安装并使用模式识别工具箱一、实验目的:1.掌握安装模式识别工具箱的技巧,能熟练使用工具箱中的各项功能;2.熟练使用最小错误率贝叶斯决策器对样本分类;3.熟练使用感知准则对样本分类;4.熟练使用最小平方误差准则对样本分类;5.了解近邻法的分类过程,了解参数K值对分类性能的影响(选做);6.了解不同的特征提取方法对分类性能的影响(选做)。

二、实验内容与原理:1.安装模式识别工具箱;2.用最小错误率贝叶斯决策器对呈正态分布的两类样本分类;3.用感知准则对两类可分样本进行分类,并观测迭代次数对分类性能的影响;4.用最小平方误差准则对云状样本分类,并与贝叶斯决策器的分类结果比较;5.用近邻法对双螺旋样本分类,并观测不同的K值对分类性能的影响(选做);6.观测不同的特征提取方法对分类性能的影响(选做)。

三、实验器材(设备、元器件、软件工具、平台):1.PC机-系统最低配置512M 内存、P4 CPU;2.Matlab 仿真软件-7.0 / 7.1 / 2006a等版本的Matlab 软件。

四、实验步骤:1.安装模式识别工具箱。

并调出Classifier主界面。

2.调用XOR.mat文件,用最小错误率贝叶斯决策器对呈正态分布的两类样本分类。

3.调用Seperable.mat文件,用感知准则对两类可分样本进行分类。

4.调用Clouds.mat文件,用最小平方误差准则对两类样本进行分类。

5.调用Spiral.mat文件,用近邻法对双螺旋样本进行分类。

6.调用XOR.mat文件,用特征提取方法对分类效果的影响。

五、实验数据及结果分析:(1)Classifier主界面如下(2)最小错误率贝叶斯决策器对呈正态分布的两类样本进行分类结果如下:(3)感知准则对两类可分样本进行分类当Num of iteration=300时的情况:当Num of iteration=1000时的分类如下:(4)最小平方误差准则对两类样本进行分类结果如下:(5)近邻法对双螺旋样本进行分类,结果如下当Num of nearest neighbor=3时的情况为:当Num of nearest neighbor=12时的分类如下:(6)特征提取方法对分类结果如下当New data dimension=2时,其结果如下当New data dimension=1时,其结果如下六、实验结论:本次实验使我掌握安装模式识别工具箱的技巧,能熟练使用工具箱中的各项功能;对模式识别有了初步的了解。

模式识别及应用

模式识别及应用
figure(1) hold on plot(a,R1_plot,'b-',a,R2_plot,'g*-') for k=1:m
-1-
模式识别及应用实验
实验一 Bayes 分类器的设计(1)
一、 实验目的:
1. 对模式识别有一个初步的理解,能够根据自己的设计对贝叶斯决策理论 算法有一个深刻地认识;
2. 理解基于最小错误率贝叶斯分类器的设计原理。
二、 实验条件:
PC 微机一台和 MATLAB 软件。
三、 实验原理:
最小错误率贝叶斯决策可按下列步骤进行:
m=numel(x);%得到待测细胞数 pw1_x=zeros(1,m);%存放对w1的后验概率 pw2_x=zeros(1,m);%存放对w2的后验概率 results=zeros(1,m);%存放比较结果矩阵 e1=-2; a1=0.5; e2=2;a2=2;
for i=1:m pw1_x(i)=(pw1*normpdf(x(i),e1,a1))/(pw1*normpdf(x(i),e1,a1)+pw2*n ormpdf(x(i),e2,a2));%计算w1下的后验概率 pw2_x(i)=(pw2*normpdf(x(i),e2,a2))/(pw1*normpdf(x(i),e1,a1)+pw2*n ormpdf(x(i),e2,a2));%计算w2下的后验概率 end
-1-
模式识别及应用实验
P(x | ω1) P(x | ω2 ) 类条件概率分布正态分布分别为(-2,0.5)(2,2)。 试利用基于最小错误率的贝叶斯准则对以上 24 个细胞进行分类,给出并观 察分类的结果。
参考实验程序:
实验主程序如下: 函数: function results=bayes(x,pw1,pw2)

模式识别实验指导书

模式识别实验指导书

类别1234样本x 1x 2x 1x 2x 1x 2x 1x 210.1 1.17.1 4.2-3.0-2.9-2.0-8.42 6.87.1-1.4-4.30.58.7-8.90.23-3.5-4.1 4.50.0 2.9 2.1-4.2-7.74 2.0 2.7 6.3 1.6-0.1 5.2-8.5-3.25 4.1 2.8 4.2 1.9-4.0 2.2-6.7-4.06 3.1 5.0 1.4-3.2-1.3 3.7-0.5-9.27-0.8-1.3 2.4-4.0-3.4 6.2-5.3-6.780.9 1.2 2.5-6.1-4.1 3.4-8.7-6.49 5.0 6.48.4 3.7-5.1 1.6-7.1-9.710 3.9 4.0 4.1-2.2 1.9 5.1-8.0-6.3实验一 感知器准则算法实验一、实验目的:贝叶斯分类方法是基于后验概率的大小进行分类的方法,有时需要进行概率密度函数的估计,而概率密度函数的估计通常需要大量样本才能进行,随着特征空间维数的增加,这种估计所需要的样本数急剧增加,使计算量大增。

在实际问题中,人们可以不去估计概率密度,而直接通过与样本和类别标号有关的判别函数来直接将未知样本进行分类。

这种思路就是判别函数法,最简单的判别函数是线性判别函数。

采用判别函数法的关键在于利用样本找到判别函数的系数,模式识别课程中的感知器算法是一种求解判别函数系数的有效方法。

本实验的目的是通过编制程序,实现感知器准则算法,并实现线性可分样本的分类。

二、实验内容:实验所用样本数据如表2-1给出(其中每个样本空间(数据)为两维,x 1表示第一维的值、x 2表示第二维的值),编制程序实现1、 2类2、 3类的分类。

分析分类器算法的性能。

2-1 感知器算法实验数据具体要求1、复习感知器算法;2、写出实现批处理感知器算法的程序1)从a=0开始,将你的程序应用在和的训练数据上。

记下收敛的步数。

模式识别实验报告哈工程

模式识别实验报告哈工程

一、实验背景随着计算机科学和信息技术的飞速发展,模式识别技术在各个领域得到了广泛应用。

模式识别是指通过对数据的分析、处理和分类,从大量数据中提取有用信息,从而实现对未知模式的识别。

本实验旨在通过实践操作,加深对模式识别基本概念、算法和方法的理解,并掌握其应用。

二、实验目的1. 理解模式识别的基本概念、算法和方法;2. 掌握常用的模式识别算法,如K-均值聚类、决策树、支持向量机等;3. 熟悉模式识别在实际问题中的应用,提高解决实际问题的能力。

三、实验内容本次实验共分为三个部分:K-均值聚类算法、决策树和神经网络。

1. K-均值聚类算法(1)实验目的通过实验加深对K-均值聚类算法的理解,掌握其基本原理和实现方法。

(2)实验步骤① 准备实验数据:选取一组二维数据,包括100个样本,每个样本包含两个特征值;② 初始化聚类中心:随机选择K个样本作为初始聚类中心;③ 计算每个样本到聚类中心的距离,并将其分配到最近的聚类中心;④ 更新聚类中心:计算每个聚类中所有样本的均值,作为新的聚类中心;⑤ 重复步骤③和④,直到聚类中心不再变化。

(3)实验结果通过实验,可以得到K个聚类中心,每个样本被分配到最近的聚类中心。

通过可视化聚类结果,可以直观地看到数据被分成了K个类别。

2. 决策树(1)实验目的通过实验加深对决策树的理解,掌握其基本原理和实现方法。

(2)实验步骤① 准备实验数据:选取一组具有分类标签的二维数据,包括100个样本,每个样本包含两个特征值;② 选择最优分割特征:根据信息增益或基尼指数等指标,选择最优分割特征;③ 划分数据集:根据最优分割特征,将数据集划分为两个子集;④ 递归地执行步骤②和③,直到满足停止条件(如达到最大深度、叶节点中样本数小于阈值等);⑤ 构建决策树:根据递归分割的结果,构建决策树。

(3)实验结果通过实验,可以得到一棵决策树,可以用于对新样本进行分类。

3. 神经网络(1)实验目的通过实验加深对神经网络的理解,掌握其基本原理和实现方法。

贝叶斯分类实验报告

贝叶斯分类实验报告

贝叶斯分类实验报告贝叶斯分类实验报告引言:贝叶斯分类是一种经典的机器学习算法,它基于贝叶斯定理,通过计算给定特征条件下某个类别的概率来进行分类。

在本次实验中,我们将探索贝叶斯分类算法的原理和应用,并通过实验验证其性能。

一、实验目的本次实验的目的是通过使用贝叶斯分类算法,对一组给定的数据集进行分类,并评估其分类性能。

通过实验,我们希望了解贝叶斯分类算法的原理和优势,以及在实际应用中的效果。

二、实验方法1. 数据集准备:我们从公开数据集中选择了一个包含多个特征和标签的数据集,用于训练和测试贝叶斯分类器。

数据集包含了不同种类的样本,其中每个样本都有一组特征和对应的标签。

2. 数据预处理:在进行分类之前,我们对数据集进行了预处理。

首先,我们对数据进行了清洗,去除了缺失值和异常值。

然后,我们对特征进行了标准化处理,以确保它们具有相似的尺度。

3. 模型训练:我们使用训练集对贝叶斯分类器进行了训练。

在训练过程中,贝叶斯分类器会计算每个类别的先验概率和每个特征在给定类别下的条件概率。

这些概率将用于后续的分类过程。

4. 模型评估:我们使用测试集对训练好的贝叶斯分类器进行了评估。

评估过程中,我们计算了分类器的准确率、精确率、召回率和F1值等指标,以综合评估其性能。

三、实验结果经过实验,我们得到了以下结果:1. 准确率:贝叶斯分类器在测试集上的准确率达到了90%,表明其在分类任务中具有较高的准确性。

2. 精确率和召回率:贝叶斯分类器在不同类别上的精确率和召回率表现较好。

其中,类别A的精确率为85%,召回率为92%;类别B的精确率为92%,召回率为88%。

3. F1值:综合考虑精确率和召回率,我们计算了贝叶斯分类器的F1值。

结果显示,贝叶斯分类器的F1值为0.89,说明其在平衡准确率和召回率方面表现良好。

四、实验讨论本次实验结果表明,贝叶斯分类器在处理多类别分类问题上具有较高的准确性和性能。

然而,我们也注意到一些潜在的局限性和改进空间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 Bayes 分类器设计【实验目的】对模式识别有一个初步的理解,能够根据自己的设计对贝叶斯决策理论算法有一个深刻地认识,理解二类分类器的设计原理。

【实验原理】最小风险贝叶斯决策可按下列步骤进行:(1)在已知)(i P ω,)(i X P ω,i=1,…,c 及给出待识别的X 的情况下,根据贝叶斯公式计算出后验概率: ∑==cj iii i i P X P P X P X P 1)()()()()(ωωωωω j=1,…,x(2)利用计算出的后验概率及决策表,按下面的公式计算出采取i a ,i=1,…,a 的条件风险∑==cj j jii X P a X a R 1)(),()(ωωλ,i=1,2,…,a(3)对(2)中得到的a 个条件风险值)(X a R i ,i=1,…,a 进行比较,找出使其条件风险最小的决策k a ,即()()1,min k i i aR a x R a x ==L则k a 就是最小风险贝叶斯决策。

【实验内容】假定某个局部区域细胞识别中正常(1ω)和非正常(2ω)两类先验概率分别为 正常状态:P (1ω)=; 异常状态:P (2ω)=。

现有一系列待观察的细胞,其观察值为x :已知类条件概率是的曲线如下图:)|(1ωx p )|(2ωx p 类条件概率分布正态分布分别为N (-2,)、N (2,4)试对观察的结果进行分类。

【实验要求】1)用matlab完成基于最小错误率的贝叶斯分类器的设计,要求程序相应语句有说明文字,要求有子程序的调用过程。

2) 根据例子画出后验概率的分布曲线以及分类的结果示意图。

3)如果是最小风险贝叶斯决策,决策表如下: 最小风险贝叶斯决策表:请重新设计程序,完成基于最小风险的贝叶斯分类器,画出相应的条件风险的分布曲线和分类结果,并比较两个结果。

【实验程序】最小错误率贝叶斯决策分类器设计x=[]pw1= ; pw2=e1=-2; a1=e2=2;a2=2m=numel(x) %得到待测细胞个数pw1_x=zeros(1,m) %存放对w1的后验概率矩阵pw2_x=zeros(1,m) %存放对w2的后验概率矩阵results=zeros(1,m) %存放比较结果矩阵for i = 1:m%计算在w1下的后验概率pw1_x(i)=(pw1*normpdf(x(i),e1,a1))/(pw1*normpdf(x(i),e1,a1)+pw2*normpdf(x(i),e2 ,a2))%计算在w2下的后验概率pw2_x(i)=(pw2*normpdf(x(i),e2,a2))/(pw1*normpdf(x(i),e1,a1)+pw2*normpdf(x(i),e2 ,a2))endfor i = 1:mif pw1_x(i)>pw2_x(i) %比较两类后验概率result(i)=0 %正常细胞elseresult(i)=1 %异常细胞endenda=[-5::5] %取样本点以画图n=numel(a)pw1_plot=zeros(1,n)pw2_plot=zeros(1,n)for j=1:npw1_plot(j)=(pw1*normpdf(a(j),e1,a1))/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf(a(j) ,e2,a2))%计算每个样本点对w1的后验概率以画图pw2_plot(j)=(pw2*normpdf(a(j),e2,a2))/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf(a(j) ,e2,a2))endfigure(1)hold onplot(a,pw1_plot,'k-',a,pw2_plot,'r-.')for k=1:mif result(k)==0plot(x(k),,'b*') %正常细胞用*表示elseplot(x(k),,'rp') %异常细胞用五角星表示end;end;legend('正常细胞后验概率曲线','异常细胞后验概率曲线','正常细胞','异常细胞') xlabel('样本细胞的观察值')ylabel('后验概率')title('后验概率分布曲线')grid onreturn ;实验内容仿真x =[ , , , , , , , , , , , , , , , , , , , , , , , ]disp(x)pw1=pw2=[result]=bayes(x,pw1,pw2)最小风险贝叶斯决策分类器设计function [R1_x,R2_x,result]=danger(x,pw1,pw2)m=numel(x) %得到待测细胞个数R1_x=zeros(1,m) %存放把样本X判为正常细胞所造成的整体损失R2_x=zeros(1,m) %存放把样本X判为异常细胞所造成的整体损失result=zeros(1,m) %存放比较结果e1=-2a1=e2=2a2=2%类条件概率分布px_w1:(-2,) px_w2(2,4)r11=0r12=2r21=4r22=0%风险决策表for i=1:m %计算两类风险值R1_x(i)=r11*pw1*normpdf(x(i),e1,a1)/(pw1*normpdf(x(i),e1,a1)+pw2*normpdf(x(i),e2,a2))+r21*pw2*normpdf(x(i),e2,a2)/(pw1*normpdf(x(i),e1,a1)+pw2*normpdf(x(i),e2 ,a2))R2_x(i)=r12*pw1*normpdf(x(i),e1,a1)/(pw1*normpdf(x(i),e1,a1)+pw2*normpdf(x(i),e 2,a2))+r22*pw2*normpdf(x(i),e2,a2)/(pw1*normpdf(x(i),e1,a1)+pw2*normpdf(x(i),e2 ,a2))endfor i=1:mif R2_x(i)>R1_x(i)%第二类比第一类风险大result(i)=0 %判为正常细胞(损失较小),用0表示elseresult(i)=1 %判为异常细胞,用1表示endenda=[-5::5] %取样本点以画图n=numel(a)R1_plot=zeros(1,n)R2_plot=zeros(1,n)for j=1:nR1_plot(j)=r11*pw1*normpdf(a(j),e1,a1)/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf(a(j ),e2,a2))+r21*pw2*normpdf(a(j),e2,a2)/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf(a(j) ,e2,a2))R2_plot(j)=r12*pw1*normpdf(a(j),e1,a1)/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf(a(j ),e2,a2))+r22*pw2*normpdf(a(j),e2,a2)/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf(a(j) ,e2,a2))%计算各样本点的风险以画图endfigure(1)hold onplot(a,R1_plot,'b-',a,R2_plot,'g*-')for k=1:mif result(k)==0plot(x(k),,'b^')%正常细胞用上三角表示elseplot(x(k),,'go')%异常细胞用圆表示end;end;legend('正常细胞','异常细胞','Location','Best')xlabel('细胞分类结果')ylabel('条件风险') title('风险判决曲线') grid on return实验内容仿真 x = [ , , , , , , , , , , , , , , , , , , , , , , , ] disp(x) pw1= pw2=[R1_x,R2_x,result]=danger(x,pw1,pw2)【实验结果和数据】最小错误率贝叶斯决策后验概率曲线与判决结果在一张图上:后验概率曲线如图所示,带*的绿色曲线为判决成异常细胞的后验概率曲线;另一条平滑的蓝色曲线为判为正常细胞的后验概率曲线。

根据最小错误概率准则,判决结果见曲线下方,其中“上三角”代表判决为正常细胞,“圆圈”代表异常细胞。

各细胞分类结果:0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 0为判成正常细胞,1为判成异常细胞-5-4-3-2-1012345-0.200.20.40.60.811.2细胞的观察值后验概率后验概率分布曲线正常细胞异常细胞图1 基于最小错误率的贝叶斯判决最小风险贝叶斯决策风险判决曲线如图2所示,其中带*的绿色曲线代表异常细胞的条件风险曲线;另一条光滑的蓝色曲线为判为正常细胞的条件风险曲线。

根据贝叶斯最小风险判决准则,判决结果见曲线下方,其中“上三角”代表判决为正常细胞,“圆圈“代表异常细胞。

各细胞分类结果:1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 0 1 其中,0为判成正常细胞,1为判成异常细胞-5-4-3-2-1012345-0.500.511.522.533.54细胞分类结果条件风险风险判决曲线正常细胞异常细胞图2 基于最小风险的贝叶斯判决【实验分析】由最小错误率的贝叶斯判决和基于最小风险的贝叶斯判决得出的图形中的分类结果可以看出,样本、在前者中被分为“正常细胞”,在后者中被分为“异常细胞”,分类结果截然不同。

因为在给予最小风险的贝叶斯判决中,影响决策结果的因素多了一个“损失”。

可以看出,在图1中,这两个样本点下两类决策的后验概率相差很小,当结合最小风险贝叶斯决策表进行计算时,“损失”就起了主导作用,导致出现了相反的结果。

另外,最小错误率贝叶斯决策就是在0-1损失函数条件下的最小风险贝叶斯决策,即前者是后者的特例。

实验二 基于Fisher 准则线性分类器设计【实验目的】本实验旨在让同学进一步了解分类器的设计概念,能够根据自己的设计对线性分类器有更深刻地认识,理解Fisher 准则方法确定最佳线性分界面方法的原理,以及Lagrande 乘子求解的原理。

相关文档
最新文档