2010湖北高考数学卷(理科)附答案__free

合集下载

2010年湖北卷(理科数学)

2010年湖北卷(理科数学)

2010年普通高等学校招生全国统一考试理科数学(湖北卷)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若i 为虚数单位,图中复平面内点Z 表示复数z ,则表示复数1zi+的点是 A .E B .F C .G D .H2.设集合22{(,)|1}416x y A x y =+=,{(,)|3}x B x y y ==,则A B 的子集的个数是 A .4 B .3 C .2 D .1 3.在ABC ∆中,15a =,10b =,60A ∠=,则cos B = A.223-B.22366- 4.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰于向上的点数是3”为事件B ,则事件A ,B 中至少有一件发生的概率是 A.512 B.12 C.712 D.34 5已知ABC ∆和点M 满足0MA MB MC ++=.若存在实数m 使得AB AC +=mAM 成立,则m =A .2B .3C .4D .5 6将参加夏令营的600名学生编号为:001,002,,600.采用系统抽样疗法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第1营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区.三个营区被抽中的人数依次为A .26,16,8B .25,17,8C .25,16,9D .24,17,9x y o FE G H117如图,在半径为r 的圆内作内接正六边形,再作正六边形的内切圆,又在此内切圆内作内接正六边形,如此无限继续下去.设n S 为前n 个圆的面积之和,则lim n x S →∞=A .22r π B.283r π C.24r π D.26r π8现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、 导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事 其他三项工作,丙、丁、戊都能胜四项工作,则不同安排方案的种数是A .152B .126C .90D .54 9.若直线y x b =+与曲线234y x x =--有公共点,则b 的取值范围是 A.[1,122]-+ B.[122,122]-+ C.[122,3]- D.[12,3]- 10.记实数1x ,2x ,…,n x 中的最大数为{}12max ,,n x x x …,,最小数为 {}12min ,,n x x x …,.已知ABC ∆的三边长为a ,b ,c (a b c ≤≤),定义它的倾斜度为max{,,}min{,,}a b c a b cl b c a b c a=⋅则“1l =”是“ABC ∆为等边三角形”A.必要而不充分的条件B.充分而不必要的条件C.充要条件D.既不充分也不必要的条件 二、填空题:本大题共5小题,每小题5分,共25分.11.在204(3)x +展开式中,系数为有理数的项共有 项.12己知2z x y =-,式中变量,x y 满足约束条件12y xx y x ≤⎧⎪+≥⎨⎪≤⎩,则z 的最大值为 .13.圆柱形容器内部盛有高度为8cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是 cm .Or14.某射手射击所得环数ξ的分布列如下:ξ 78 9 10Px0.10.3y已知ξ的期望8.9E ξ=,则y 的值为 . 15.设0a >,0b >,称2aba b+为a ,b 的调和平均数.如图,C 为线殴AB 上的点,且AC a =,CB b =,O 为AB 中点,以AB 为直径作半圆.过点C 作OD 的垂线,垂足为E .连结OD ,AD ,BD .过点C 作OD 的垂线,垂足为E .则图中线段OD 的长度是a ,b 的算术平均数,线段 的长度是a ,b 的几何平均数,线段 的长度是a ,b 的调和平均数.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)已知函数()cos()cos()33f x x x ππ=+-,11()sin 224g x x =-.(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()()()h x f x g x =-的最大值,并求使()h x 取得最大值的x 的集合. 17.(本小题满分12分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万ABDOE元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm )满足关系:()35kC x x =+(010x ≤≤),若不建隔热层,每年能源消耗费用为8万元.设()f x 为隔热层建造费用与20年的能源消耗费用之和. (Ⅰ)求k 的值及()f x 的表达式;(Ⅱ)隔热层修建多厚对,总费用()f x 达到最小,并求最小值. 18.(本小题满分12分)如图,在四面体ABOC 中,OC OA ⊥,OC OB ⊥,120AOB ∠=,且OA OB =1OC ==.(Ⅰ)设P 为AC 的中点.证明:在AB 上存在一点Q ,使PQ OA ⊥,并计算ABAQ的值;(Ⅱ)求二面角O AC B --的平面角的余弦值.19.(本小题满分12分)已知一条曲线C 在y 轴右边,C 上没一点到点(1,0)F 的距离减去它到y 轴距离的差是1.(Ⅰ)求曲线C 的方程;(Ⅱ)是否存在正数m ,对于过点(,0)M m 且与曲线C 有连个交点A ,B 的任一直线,都有0FA FB ⋅<?若存在,求出m 的取值范围;若不存在,请说明理由. 20.(本小题满分13分)已知数列{}n a 满足:112a =,()()11312111n n n n a a a a ++++=--, 10n n a a +⋅<(1n ≥);数列{}n b 满足:221n n n b a a +=-(1n ≥).AOBC(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)证明:数列{}n b 中的任意三项不可能成等差数列.21.(本小题满分14分)已知函数()bf x ax c x =++(0a >)的图象在点(1,(1))f 处的切线方程为1y x =-y.(Ⅰ)用a 表示出b ,c ;(Ⅱ)若()ln f x x >在[1,)+∞上恒成立,求a 的取值范围;(Ⅲ)证明:1+1111ln(1)232(1)n n n n ++++>+++(1n ≥).。

普通高等学校招生全国统一考试数学理科试题(湖北卷)真题精品解析

普通高等学校招生全国统一考试数学理科试题(湖北卷)真题精品解析

2010年普通高等学校招生全国统一考试(湖北卷)数 学(理工农医类)本试题卷共4页,三大题21小题。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★【名师简评】本套试卷切实领会了湖北省最新高考《考试说明》的要旨,是在认真研究近几年全国各地高考试题趋势与本省考生的实际情况的基础上精心命制的一份高水平试卷.本试卷既注重了对基础知识的考查,又突出考查了重点和热点知识,整套试卷基本上按照由易到难的顺序编排,充分发挥了各种题型的考查功能.在试题的具体设计上,也有诸多独到之处,如弟1、7、10、13、15、17、20、21题;第10、13题是信息迁移题,着重考查考生阅读理解能力和分析问题、解决问题的能力.2、9、15、16、20、21等题是综合题,着重考查考生综合运用数学知识的能力.第4、6、8、13、17题用现实生活中身边的事例命题,第19题是探索性开放题,立意新颖,构思精巧,极富思考性和挑战性.本试卷对常用的数学思想方法,如函数和方程、数形结合、分类讨论、转化与化归等考查的也相当充分,同时兼顾了对考生数学思维品质和个性品质的考查. 注意事项:1答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上.并将准考证 号条形码粘贴在答题卡上的指定位置,用2B 铅笔将答题卡上试卷类型B 后的方框涂黑。

2选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

咎在试题卷、草稿纸上无效。

3填空题和解答题用0.5毫米黑色墨水箍字笔将答案直接答在答题卡上对应的答题区 域内。

答在试题卷、草稿纸上无效。

4考生必须保持答题卡的整洁。

考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共l0小题.每小题5分,共50分在每小题给出的四个选项中,只有一项是满足题目要求的.1.若i 为虚数单位,图中复平面内点z 表示复数z ,则表 示复数1zi+的点是A.EB.FC.GD. H 【答案】D【命题意图】本题不仅考查了复平面的概念,而且考查了复数运算.复平面中,x 轴表示实数,y 轴对应虚数. 【解析】i z +=3,i i i i i i i z -=-=-+=++=+2)24(21)1)(3(21131,为H 点,选D . 2.设集合A =22{(,)|1}416x y x y +=,B ={(,)|3}x x y y =,则A ∩B 的子集的个数是 A. 4 B.3 C.2 D.1 【答案】A【命题意图】本题从集合角度出发,考查函数的基本图像以及集合子集个数的运算.对于含3.在△ABC 中,a =15,b =10, ∠A =060,则cos B =A.3-B.3C. 【答案】D【命题意图】本题考查了正弦定理的运用、三角形边角关系.要熟记大角对大边,小角对小边.【解析】由正弦定理:36cos 31sin sin sin =⇒=⇒=B B A a B b (注意B A b a >⇒>).4投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰于向上 的点数是3”为事件B ,则事件A ,B 中至少有一件发生的概率是 A.512 B.12 C.712D.345已知ABC V 和点M 满足0MA MB MC ++=uuu r uuu r uuu r .若存在实数m 使得AB AC mAM +=uu u r uu u r uuu r成立,则m =A .2 B. 3 C. 4 D. 5 【答案】B 【命题意图】本题通过向量和差运算考查了考生对向量化简的理解程度,三角形中各边的关系,AC BC AB =+BC AC AB -=⇔.【解析】()()03MA MB MC MA AB AM AC AM AM AB AC ++=+-+-=⇒=+,因此m =3.故选B .6将参加夏令营的600名学生编号为:001,002,… ,600.采用系统抽样疗法抽取一个 容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001 到300在第1营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区.三个营区被 抽中的人数依次为A .26,16,8 B. 25,17,8 C. 25,16,9 D. 24,17, 9 【答案】B 【命题意图】本题考查了考生对系统抽样的掌握.系统抽样法系依据一定的抽样距离从母体中抽取样本的方法.【解析】设间距为d ,由600)150(3≤-+d 得4991249597=≤d ,因此12=d .又25=n 时291)1(123=-+n ;当42=n 时,495)1(123=-+n ,因此抽出的人数依次为8,17,25,故选B .7如图,在半径为r 的圆内作内接正六边形,再作正六边形的内切圆,又在此内切圆内作内接正六边形,如此无限继续下去.设n S 为前n 个圆的面积之和,则lim n x S →∞=A .22r π B. 283r πC.24r πD.26r π8现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、 导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事 其他三项工作,丙、丁、戊都能胜四项工作,则不同安排方案的种数是A . 152 B. 126 C. 90 D. 54 【答案】B【命题意图】本题考查排列组合的综合计算.常见解题方法有:相邻问题捆绑法、相邻问题插空法、定序问题缩倍法、标号排布问题分步法等. 【解析】讨论:(1)当甲、乙分在一起时,由于甲乙不能做司机,因此只能在翻译、导游与礼仪中选择,有13A 种,之后丙、丁、戊分配在剩余三项行业中,有33A 种,根据乘法原理共9若直线y x b =+与曲线3y =b 的取值范围是A . 1,1⎡-+⎣ B. 1⎡-+⎣C. 1⎡⎤-⎣⎦D. 1⎡⎤⎣⎦10.记实数1x ,2x ,…,n x 中的最大数为{}12max ,,n x x x …,,最小数为{}12min ,,n x x x …,.已知ABC V 的三边长为,,()a b c a b c ≤≤,定义它的倾斜度为max ,,min ,,a b c a b c b c a b c a ⎧⎫⎧⎫=∙⎨⎬⎨⎬⎩⎭⎩⎭l则“1=l ”是“ABC V 为等边三角形”A.必要而不充分的条件B.充分而不必要的条件C.充要条件D.既不充分也不必要的条件 【答案】A【命题意图】本题通过对倾斜度的定义,将倾斜度与命题逻辑条件联系在一起,综合地考查了考生分析问题、处理问题的能力. 【解析】(1)若AB C ∆为正三角形,则1= ;(2)若1= ,ABC ∆不一定为正三角形.例如等腰直角三角形ABC ,其腰长为1,设2,1===c b a ,那么2,21,1===acc b b a ,则1212},,min{},,max{=⋅=⋅=ac c b b a a cc b b a ,虽然符合1= ,却不是等边三角形,因此“1= ”是“ABC ∆为等边三角形”的必要不充分条件.选A .二、填空题:本大题共5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上,一题两空的题,其答案按先后次序填写.答错位置,书写不清,模棱两可均不得分 11.在20()x 展开式中,系数为有理数的项共有 项.12己知2z x y =-,式中变量,x y 满足约束条件,1,2,y x x y x ≤⎧⎪+≥⎨⎪≤⎩则z 的最大值为 . 【答案】5【命题意图】本题考查考生对线性规划问题的求解能力.求出可行域,绘制出图形,然后作答是解决本类题型的一般方法.【解析】作出可行域,如图所示,然后将y x z -=2平移,即可以得到z 最大时应该是在点(2,-1),得到5max =z .13.圆柱形容器内部盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是 cm . 【答案】4【命题意图】本题通过实际问题考查球体积公式.【解析】设球半径为R ,则23246383R R R R πππ⋅-⨯=,化简后得到:4(cm)R =.14.某射手射击所得环数ξ的分布列如下:已知ξ的期望8.9E ξ=,则y 的值为 .15.设00a b >,>,称2aba b+为a ,b 的调和平均数.如图,C 为线殴AB 上的点,且AC =a ,CB =b ,O 为AB 中点,以AB 为直径作半圆.过点C 作OD 的垂线,垂足为E .连结OD ,AD ,BD .过点C 作OD 的垂线,垂足为E .则图中线段OD 的长度是a ,b 的算术平均数,线段 的长度是a ,b 的几何平均数,线段 的长度是a ,b 的调和平均数. 【答案】CD ;DE【命题意图】本题以基本不等式的几何证明为背景考查考生综合分析问题的能力.这个图形可以用来证明:22ba ab b a ab +<<+. 【解析】(1)由摄影定理可以得到ab CD ab BC AC CD =⇒=⋅=2为几何平均数;(2)根据DEC DOC ∆∆∽有ba abDE DO DC DC DE +=⇒=2.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分) 已知函数()cos cos 33f x x x ππ⎛⎫⎛⎫=+-⎪ ⎪⎝⎭⎝⎭,()11sin 224g x x =-.(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()()()h x f x g x =-的最大值,并求使()h x 取得最大值的x 的集合.17.(本小题满分12分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm )满足关系:()()01035kC x x x =≤≤+,若不建隔热层,每年能源消耗费用为8万元.设()f x 为隔热层建造费用与20年的能源消耗费用之和. (Ⅰ)求k 的值及()f x 的表达式;(Ⅱ)隔热层修建多厚对,总费用()f x 达到最小,并求最小值.【命题意图】本题从实际问题出发,综合了函数最值、导数等基本知识,综合考查考生的基础知识以及运用数学知识解决实际问题的能力.【参考答案】本小题主要考查函数、导数等基础知识,同时考查运用数学知识解决实际问题18. (本小题满分12分)如图, 在四面体ABOC中,OC⊥OA, OC⊥OB,∠AOB=120°,且OA=OB=OC=1.(Ⅰ) 设P为AC的中点.证明:在AB上存在一点Q,使PQ⊥OA,并计算=ABAQ的值;(Ⅱ) 求二面角O-AC-B的平面角的余弦值.【命题意图】本题考查了线线垂直与比值问题的理解与运用,以及二面角的求解方法.【参考答案】本小题主要考查空间直线与直线、直线与平面的位置关系和二面角等基础知识,同时考查空间想象力、推理论证能力和运算求解能力.(满分12分)解法一:(I )在平面OAB 内作ON ⊥OA 交AB 于N ,连结NC . 又OA ⊥OC ,∴OA ⊥平面ONC . ⊂NC 平面ONC , .NC OA ⊥∴取Q 为AN 的中点,则PQ //NC ,OA PQ ⊥∴在等腰,120,︒=∠∆AOB AOB 中,30︒=∠=∠∴OBA OAB在,30,︒=∠∆OAN AON Rt 中.21AQ AN ON ==∴ 在,,3090120,AQ ON NB NBO NOB ONB ==∴∠=︒=︒-︒=∠∆中.3=∴AQAB(II )连结PN ,PO .由OC ⊥OA ,OC ⊥OB 知,OC ⊥平面OAB , 又⊂ON 平面OAB ,∴OC ⊥ON , 又由ON ⊥OA 知:ON ⊥平面AOC , ∴OP 是NP 在平面AOC 内的射影, 在等腰COA Rt ∆中,P 为AC 的中点, .OP AC ⊥∴根据三垂线定理,知:AC ⊥NP .OPN ∠∴为二面角O —AC —B 的平面角, 在等腰COA Rt ∆中,OC =OA =1,22=∴OP , 在,3330tan ,=︒=∆OA ON AON Rt 中 .51563022cos ,630,22===∠∴=+=∆∴PNPOOPN ON OP PN PON Rt 中在解法二:(I )取O 为坐标原点,分别以OA ,OC 所在的直线为x 轴,z 轴,建立空间直角从标系O —xyz (如图所示)且)1,0,1(-=CA ,得13220,30,2n n n -=⎧⎪⎨-+=⎪⎩故可取).1,3,1(=n 又平面OAC 的法向量为)0,1,0(=ecos ,n e ∴<>==二面角O —AC —B 的平面角是锐角,记为.515cos ,=θθ则 【点评】本题的几何体较为简洁,适合考生发挥.线线垂直的探究与比值问题可根据已知求解,二面角求解不应局限于某种方法.立体几何能够较好地考查考生的逻辑推理能力.19. (本小题满分12分)已知一条曲线C 在y 轴右边,C 上没一点到点F (1,0)的距离减去它到y 轴距离的差是1. (Ⅰ)求曲线C 的方程;(Ⅱ)是否存在正数m ,对于过点M (m ,0)且与曲线C 有连个交点A ,B 的任一直线,都有FA FB∙﹤0 ? 若存在,求出m 的取值范围;若不存在,请说明理由.01]2)[(4116)(2122121221<+-+-+⇔y y y y y y y y③由①式,不等式③等价于22416t m m <+-④对任意实数t ,24t 的最小值为0,所以不等式④对于一切t 成立等价于.223223,0162+<<-<+-m m m 即由此可知,存在正数m ,对于过点M (m ,0)且与曲线C 有两个交点A ,B 的任一直线,都有0<⋅,且m 的取值范围是).223,223(+-【点评】本题的题设较为常见,从最常见的题材出发,要求考生联系抛物线的定义求解抛物线方程,联立直线与抛物线方程运用韦达定理求解不等式,解析几何问题的综合性很强.20. (本小题满分13分)已知数列{}n a 满足: 112a =, ()()11312111n n n n a a a a ++++=--, ()101n n n a a +≥;数列{}nb 满足:nb=21n a +-2n a (n ≥1). (Ⅰ)求数列{}na ,{}nb 的通项公式;(Ⅱ)证明:数列{}nb 中的任意三项不可能成等差数列.是首项为41,公比为32的等比数列,于是有t s r b b b >>,则只可能有2t r s b b b =+成立, 1111212122()()()434343t r s ---∴⋅=+,两边同乘,23r t rt +-化简得32223.t r t r s r t s +---+=⋅由于t s r <<,所以上式左边奇数,右边为偶数,故上式不可能成立,导致矛盾. 故数列}{n b 中任意三项不可能成等差数列.【点评】从递推数列的角度命题,题材新颖,要求考生能够正确对递推公式进行化简、计算.21. (本小题满分14分) 已知函数f (x )=ax +bx+c(a >0)的图象在点(1,f (1))处的切线方程为y =x -1. (Ⅰ)用a 表示出b ,c ;(Ⅱ)若f (x )>㏑x 在[1,∞]上恒成立,求a 的取值范围; (Ⅲ)证明:1+12+13+…+1n >㏑(n+1)+()21n n +)(n ≥1). 【命题意图】本题从函数角度考查考生求导能力、解含参不等式的能力以及构造函数证明不等式的能力,综合性强.【参考答案】本题主要考查函数、导数、不等式的证明等基础知识,同时考查综合运用数学知识进行推理论证的能力和分类讨论的思想.(满分14分) 解:(I )⎩⎨⎧-=-=⎩⎨⎧=-==++=-=.21,1,1)1(',0)1(,)('2a c ab b a fc b a f x ba x f 解得则有 (II )由(I )知,.211)(a xa ax x f -+-+= 令[)1()()ln 12ln ,1,,a g x f x x ax a x x x-=-=++--∈+∞ 则,)1)(1()1(11)(',0)1(2222x a ax x a x a x ax x x a a x g g ---=---=---==(i )当.11,210>-<<a aa 时 若)(,0)(',11x g x g aax <-<<则是减函数,所以,0)1()(=<g x g 即[)+∞≥<,1ln )(,ln )(在故x x f x x f 上不恒成立. (ii )当.11,21≤-≥aa a 时 若)(,0)(',1x g x g x >>则是增函数,所以,0)1()(=>g x g 即1,ln )(≥>x x x f 故当时,.ln )(x x f ≥综上所述,所求a 的取值范围为.,21⎪⎭⎫⎢⎣⎡+∞ (Ⅲ)解法一:由(II )知:当)1(ln )(,21≥≥≥x x x f a 有时 令).1(ln )1(21)(,21≥≥-==x x xx x f a 有 且当.ln )1(21,1x xx x >->时由(II )知:当21≥a 时,有).1(ln )(≥≥x x x f 令).1(ln )1(21)(,21≥≥-==x x x x x f a 有令).1ln()2ln(12ln )2112(21:,12+-+=++≥++-++++=k k k k k k k k k k x 得 .)2(21)2ln(11131211.)2(21)2ln()1(22)1ln(++++>++++++∴++++≥++++∴k k k k k k k k k k k这就是说,当n=k+1时,不等式也成立.根据(1)和(2),可知不等式对任何*N n ∈都成立.【点评】题材新颖,综合考查了函数、导数、解不等式、不等式证明等当下热点题型,用函数法证明不等式,是近几年来的热点考题.(II ))42cos(222sin 212cos 21)()()(π+=-=-=x x x x g x f x h 当)(242Z k k x ∈=+ππ时,)(x h 取得最大值.22)(x h 取得最大值时,对应的x 的集合为}.,8|{Z k k x x ∈-=ππ17.本小题主要考查函数、导数等基础知识,同时考查运用数学知识解决实际问题的能力,(满分12分) 解:(I )设隔热层厚度为x cm ,由题设,每年能源消耗费用为53)(+=x kx C , 再由,5340)(,40,8)0(+===x x C k C 因此得 而建造费用为.6)(1x x C =最后得隔热层建造费用与20年的能源消耗费用之和为 )100(6538006534020)()(20)(1≤≤++=++⨯=+=x x x x x x C x C x f(II ),6)53(2400,0)(',)53(24006)('22=+=+-=x x f x x f 即令解得325,5-==x x (舍去). 当50<<x 时,,0)('<x f 当.0)(',105><<x f x 时故x=5是)(x f 的最小值点,对应的最小值为.7051580056)5(=++⨯=f当隔热层修建5cm 厚时,总费用达到最小值70万元..3=∴AQAB(II )连结PN ,PO.由OC ⊥OA ,OC ⊥OB 知,OC ⊥平面OAB , 又⊂ON 平面OAB ,∴OC ⊥ON , 又由ON ⊥OA 知:ON ⊥平面AOC , ∴OP 是NP 在平面AOC 内的射影, 在等腰COA Rt ∆中,P 为AC 的中点, .OP AC ⊥∴根据三垂线定理,知:AC ⊥NP.OPN ∠∴为二面角O —AC —B 的平面角,在等腰COA Rt ∆中,OC=OA=1,22=∴OP , 在,3330tan ,=︒=∆OA ON AON Rt 中.51563022cos ,630,22===∠∴=+=∆∴PNPOOPN ON OP PN PON Rt 中在(II )记平面ABC 的法向量为),,(321n n n n =,则由,,n n ⊥⊥且)1,0,1(-=CA ,得13220,30,2n n n n -=⎧⎪⎨-=⎪⎩故可取).1,3,1(=n 又平面OAC 的法向量为)0,1,0(=ecos ,n e ∴<>==二面角O —AC —B 的平面角是锐角,记为.515cos ,=θθ则 19.本小题主要考查直线与抛物线的位置关系,抛物线的性质等基础知识,同时考查推理运算的能力.(满分12分) 解:(I )设P (x ,y )是曲线C 上任意一点,那么点P (x ,y )满足:).0(1)1(22>=-+-x x y x化简得).0(42>=x x y(II )设过点M (m ,0))0(>m 的直线l 与曲线C 的交点为),(),,(2211y x B y x A设l 的方程为,0)(16,0444,222>+=∆=--⎩⎨⎧=+=+=m t m ty y xy mty x m ty x 得由 于是⎩⎨⎧-==+my y ty y 442121①又).,1(),,1(2211y x y x -=-=01)()1)(1(021********<+++-=+--⇔<⋅y y x x x x y y x x②又,42y x =于是不等式②等价于 2222121212()104444y y y y y y +-++< 01]2)[(4116)(2122121221<+-+-+⇔y y y y y y y y③由①式,不等式③等价于22416t m m <+-④对任意实数t ,24t 的最小值为0,所以不等式④对于一切t 成立等价于.223223,0162+<<-<+-m m m 即由此可知,存在正数m ,对于过点M (m ,0)且与曲线C 有两个交点A ,B 的任一直线,都有0<⋅FB FA ,且m 的取值范围是).223,223(+-20.本小题主要考查等差数列,等比数列等基础知识以及反证法,同时考查推理论证能力.(满分13分)}{n b是首项为41,公比为32的等比数列,于是有t s r b b b >>,则只可能有2t r s b b b =+成立,1111212122()()()434343t r s ---∴⋅=+,两边同乘,23r t rt +-化简得32223.t r t r s r t s +---+=⋅由于t s r <<,所以上式左边奇数,右边为偶数,故上式不可能成立,导致矛盾. 故数列}{n b 中任意三项不可能成等差数列.21.本题主要考查函数、导数、不等式的证明等基础知识,同时考查综合运用数学知识进行推理论证的能力和分类讨论的思想.(满分14分)解:(I )⎩⎨⎧-=-=⎩⎨⎧=-==++=-=.21,1,1)1(',0)1(,)('2a c ab b a fc b a f x ba x f 解得则有 (II )由(I )知,.211)(a x a ax x f -+-+= 令[)1()()ln 12ln ,1,,a g x f x x ax a x x x-=-=++--∈+∞ 则,)1)(1()1(11)(',0)1(2222x a ax x a x a x ax x x a a x g g ---=---=---==即.,,3,2,1),111(21ln )1ln(n k k k k k =++<-+ 将上述n 个不等式依次相加得,)1(21)13121(21)1ln(++++++<+n n n 整理得.)1(2)1ln(131211+++>++++n n n n 解法二:用数学归纳法证明. (1)当n=1时,左边=1,右边,1412ln <+=不等式成立. (2)假设n=k 时,不等式成立,就是.)1(2)1ln(131211+++>++++k k k k 那么11)1(2)1ln(11131211+++++>++++++k k k k k k。

2010年湖北高考理科数学试题和答案

2010年湖北高考理科数学试题和答案

2010年普通高等学校招生全国统一考试(湖北卷)年普通高等学校招生全国统一考试(湖北卷)数学(理工类)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.i 为虚数单位,则201111i i +æöç÷-èø= A .- iB .-1 C .iD .1 2.已知{}21|log ,1,|,2U y y x x P y yx x ìü==>==>íýîþ,则U C P = A .1[,)2+¥B .10,2æöç÷èøC .()0,+¥D .1(,0][,)2-¥+¥3.已知函数()3sin cos ,f x x x x R =-Î,若()1f x ³,则x 的取值范围为的取值范围为A .|,3x k x k k Z pp p p ìü+££+ÎíýîþB .|22,3x k x k k Z pp p p ìü+££+ÎíýîþC .5{|,}66x k x k k Z p p p p +££+ÎD .5{|22,}66x k x k k Z p pp p +££+Î 4.将两个顶点在抛物线22(0)y px p =>上,另一个顶点是此抛物线焦点的正三角形个数记为n ,则,则A .n=0 B .n=1 C . n=2 D .n ³3 5.已知随机变量x 服从正态分布()22N ,a ,且P(x <4)=0.8,则P(0<x <2)=)=A.0.6 B .0.4 C .0.3 D .0.2 6.已知定义在R 上的奇函数()f x 和偶函数()g x 满足()()222f x g x a a-+=-+(a >0,且0a ¹).若()2g a =,则()2f = A .2 B .154C . 174D .2a7.如图,用K 、1A 、2A 三类不同的元件连接成一个系统。

2010年普通高等学校招生全国统一考试(湖北卷)数学(理科)

2010年普通高等学校招生全国统一考试(湖北卷)数学(理科)

2010年普通高等学校招生全国统一考试(湖北卷)数学(理科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共50.0分)1.若i为虚数单位,图中复平面内点Z表示复数z,则表示复数的点是()A. EB. FC. GD. H【答案】D【解析】由图知Z(3,1),所以z=3+i,故====2-i,对应的点的坐标为(2,-1),所以表示的点为H.2.设集合A={( x,y)|+=1},B={( x,y)| y=3 x},则A∩B的子集的个数是()A.4B.3C.2D.1【答案】A【解析】在同一直角坐标中作出函数y=3 x的图像,画出曲线=1,可知它们有两个交点,即A∩B有两个元素,其子集有4个.3.在△ABC中,a=15,b=10,A=60°,则cos B等于()A.-B.C.-D.【答案】【解析】由正弦定理知sin B===,又b<a B<A,故cos B==.4.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是()A. B. C. D.【答案】C【解析】由已知可得P( A)=,P( B)=,且A、B是相互独立的,所以事件A,B中至少有一件发生的概率是1-P(·)=1-(1-)×(1-)=.5.已知△ABC和点M满足++=0.若存在实数m使得+=m成立,则m等于()A.2B.3C.4D.5【答案】B【解析】设BC的中点为D,由已知条件可得M为△ABC的重心,+=2,又=,故m=3.6.将参加夏令营的600名学生编号为:001,002,…,600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区.三个营区被抽中的人数依次为()A.26,16,8B.25,17,8C.25,16,9D.24,17,9【答案】B【解析】根据系统抽样,将600名学生分成50组,每组12人,因=25,故在第Ⅰ营区抽中25人,从301到492含有=16组,495为第25+16+1=42组中第三个,故第Ⅱ营区抽取17人,故三个营区抽取的人数依次为25,17,8.7.如图,在半径为r的圆内作内接正六边形,再作正六边形的内切圆,又在此内切圆内作内接正六边形,如此无限继续下去,设S n为前n个圆的面积之和,则()A.2πr2B.πr2C.4πr2D.6πr2【答案】C【解析】r1=r,r n+1=r n , S n+1=S n,{ S n}为等比数列,公比为,S n==4πr2.8.现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是()A.152B.126C.90D.54【答案】B【解析】若有2人从事司机工作,不同的方案有·种,若只有1人从事司机工作,不同的方案有··种.故不同方案的种数共有+=3×6+3×6×6=126种.9.若直线y=x+b与曲线y=3-有公共点,则b的取值范围是()A.[-1,1+2]B.[1-2,1+2]C.[1-2,3]D.[1-,3]【答案】C【解析】曲线y=3-表示圆( x-2)2+( y-3)2=4的下半圆,如图所示,当直线y=x +b经过点(0,3)时,b取最大值3,当直线与半圆相切时,b取最小值,由=2b=1-2或1+2(舍),故b min=1-2,b的取值范围为[1-2,3].10.记实数x1,x2,…,x n中的最大数为max{ x1,x2,…,x n},最小数为min{ x1,x2,…,x n}.已知△ABC的三边边长为a,b,c( a≤b≤c),定义它的倾斜度为=max{,,}·min{,,},则“=1”是“△ABC为等边三角形”的()A.必要而不充分的条件B.充分而不必要的条件C.充要条件D.既不充分也不必要的条件【答案】A【解析】当△ABC为等边三角形时,显然=1, 当a=b=1,c=时,max{,,}==,min{,,}==,此时=1,但△ABC不为等边三角形.故选A.二、填空题(本大题共5小题,共25.0分)11.在( x+y)20的展开式中,系数为有理数的项共有__________项.【答案】6【解析】∵T r+1=3x20-r y r( r=0,1,2,…,20)的系数为有理数,∴r=0,4,8,12,16,20,共6项.12.已知z=2 x-y,式中变量x,y满足约束条件则z的最大值为__________.【答案】5【解析】作出其可行域,如图所示为三角形ABC及其内部,其中B(2,-1),C(,),当直线z=2 x-y经过点B时z取最大值,z max=2×2-(-1)=5.13.圆柱形容器内部盛有高度为8cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是________cm.【答案】4【解析】设球的半径为r,则6 r·πr2=8πr2+3×πr3 6 r·πr2=8πr2+4πr3 6 r=8+4 r r=4(cm).14.某射手射击所得环数ξ已知ξ的期望Eξ=8.9,则y的值为______.【答案】0.4【解析】由题意得∴y=0.4.15.设a>0,b>0,称为a,b的调和平均数.如图,C为线段AB上的点,且AC=a,CB=b,O为AB中点,以AB为直径作半圆.过点C作AB的垂线交半圆于D.连结OD,AD,BD.过点C作OD的垂线,垂足为E.则图中线段OD的长度是a,b的算术平均数,线段______的长度是a,b的几何平均数,线段______的长度是a,b的调和平均数.【答案】CD DE∵△ACD∽△DCB,∴=,CD==.∵R t△ECD∽R t△COD,∴DE===.三、解答题(本大题共6小题,共75.0分)16.已知函数f( x)=cos(+x)cos(-x),g( x)=sin2 x-.(1).求函数f( x)的最小正周期;(2).求函数h( x)=f( x)-g( x)的最大值,并求使h( x)取得最大值的x的集合.【答案】解:(1)f( x)=cos(+x)cos(-x)=(cos x-sin x)(cos x+sin x)=cos2x-sin2x=-=cos2x-,f( x)的最小正周期为=π.(2)h( x)=f( x)-g( x)=cos2x-sin2x=cos(2x+),当2x+=2kπ( k∈Z)时,h( x)取得最大值.h( x)取得最大值时,对应的x的集合为{ x| x=kπ-,k∈Z}.【解析】略17.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C( x)=造费用与20年的能源消耗费用之和.(1).求k的值及f( x)的表达式;(2).隔热层修建多厚时,总费用f( x)达到最小,并求最小值.【答案】解:(1)设隔热层厚度为xcm,由题设,每年能源消耗费用为C( x)=,再由C(0)=8,得k=40,因此C( x)=.而建造费用为C1( x)=6x.最后得隔热层建造费用与20年的能源消耗费用之和为f( x)=20C( x)+C1( x)=20×+6x=+6x(0≤x≤10).(2)f′( x)=6-,令f′( x)=0,即=6,解得x=5,x=-(舍去).当0<x<5时,f′( x)<0,当5<x<10时,f′( x)>0,故x=5是f( x)的最小值点,对应的最小值为f(5)=6×5+=70.当隔热层修建5cm厚时,总费用达到最小值70万元.【解析】略18.如图,在四面体ABOC中,OC⊥OA,OC⊥OB,∠AOB=120°,且OA=OB=OC=1.(1).设P为AC的中点,证明:在AB上存在一点Q,使PQ⊥OA,并计算的值;(2).求二面角O-AC-B的平面角的余弦值.【答案】又OA⊥OC,∴OA⊥平面ONC.∵NC平面ONC,∴OA⊥NC.取Q为AN的中点,则PQ∥NC.∴PQ⊥OA.在等腰△AOB中,∠AOB=120°,∴∠OAB=∠OBA=30°.在R t△AON中,∠OAN=30°.∴ON=AN=AQ.在△ONB中,∠NOB=120°-90°=30°=∠NBO,∴NB=ON=AQ.∴=3.解法二:取O为坐标原点,分别以OA,OC所在的直线为x轴,z轴,建立空间直角坐标系O-xyz(如图所示).则A(1,0,0),C(0,0,1),B(-,,0).∵P为AC中点,∴P(,0,).设=λ( λ∈(0,1,∵=(-,,0),∴=+=(1,0,0)+λ(-,,0)=(1-λ,λ,0).∴=-O=(-λ,λ,-).∵PQ⊥OA,∴存在点Q(,,0)使得PQ⊥OA且=3.(2)解法一:连结PN、PO.由OC⊥OA,OC⊥OB知:OC⊥平面OAB.又ON平面OAB,∴OC⊥ON.又由ON⊥OA知:ON⊥平面AOC.∴OP是NP在平面AOC内的射影.在等腰R t△COA中,P为AC的中点,∴AC⊥OP.根据三垂线定理,知:AC⊥NP.∴∠OPN为二面角OACB的平面角.在等腰R t△COA中,OC=OA=1,∴OP=.在R t△AON中,ON=OA tan30°=.∴在R t△PON中,PN==,∴cos∠OPN=.解法二:记平面ABC的法向量为n=( n1,n2,n3),则由n⊥,n⊥,且=(1,0,-1),得故可取n=(1,,1).又平面OAC的法向量为e=(0,1,0),∴cos〈n,e〉==.二面角O-AC-B的平面角是锐角,记为θ,则cosθ=.略19.已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.(1).求曲线C的方程;(2).是否存在正数m,对于过点M( m,0)且与曲线C有两个交点A,B的任一直线,都有·<0?若存在,求出m的取值范围;若不存在,请说明理由.【答案】解:(1)设P( x,y)是曲线C上任意一点,那么点P( x,y)满足:-x=1( x>0).化简得y2=4x( x>0).(2)设过点M( m,0)( m>0)的直线l与曲线C的交点为A( x1,y1),B( x2,y2).设l的方程为x=ty+m,由得y2-4ty-4m=0,Δ=16( t2+m)>0,于是①又F=( x1-1,y1),F=( x2-1,y2).·<0( x1-1)( x2-1)+y1y2=x1x2-( x1+x2)+1+y1y2<0.②又x=,于是不等式②等价于y2-(+)+1<0+y1y2-[( y1+y2)2·+y-2y1y2]+1<0.③由①式,不等式③等价于m2-6m+1<4t2.④对任意实数t,4t2的最小值为0,所以不等式④对于一切t成立等价于m2-6m+1<0,即3-2<m<3+2.由此可知,存在正数m,对于过点M( m,0)且与曲线C有两个交点A,B的任一直线,都有·<0,且m的取值范围是(3-2,3+2).【解析】略20.已知数列{ a n}满足:a1=,=,a n a n+1<0( n≥1);数列{ b n}满足:b n=-( n≥1).(1).求数列{ a n},{ b n}的通项公式;(2).证明:数列{ b n}中的任意三项不可能成等差数列.【答案】解:(1)由题意可知,1-=(1-).令c n=1-,则c n+1=c n.又c1=1-=,则数列{ c n}是首项为c1=,公比为的等比数列,即c n=·() n-1,故1-=·() n-1=1-·() n-1.又a1=>0,a n a n+1<0,故a n=(-1)n-1.b n=-=[1-·() n]-[1-·() n-1]=·() n-1.(2)用反证法证明.假设数列{ b n}存在三项b r,b s,b t( r<s<t)按某种顺序成等差数列,由于数列{ b n}是首项为,公比为的等比数列,于是有b r>b s>b t,则只可能有2b s=b r+b t 成立.∴2·() s-1=() r-1+() t-1,两边同乘3t-121-r,化简得3t-r+2t-r=2·2s-r3t-s.由于r<s<t,∴上式左边为奇数,右边为偶数,故上式不可能成立,导致矛盾.故数列{ b n}中任意三项不可能成等差数列.【解析】略21.已知函数f( x)=ax++c( a>0)的图象在点(1,f(1处的切线方程为y=x-1.(1).用a表示出b,c;(2).若f( x)≥ln x在[1,+∞)上恒成立,求a的取值范围;(3).证明:1+++…+>ln( n+1)+( n≥1).【答案】解:(1)f′( x)=a-,则有解得(2)由(1)知,f( x)=ax++1-2a.令g( x)=f( x)-ln x=ax++1-2a-ln x,x∈[1,+∞).则g(1)=0,g′( x)=a--==.①当0<a<时,>1.若1<x<,则g′( x)<0,g( x)是减函数,所以g( x)<g(1)=0,即f( x)<ln x.故f( x)≥ln x在[1,+∞)上不恒成立.②当a≥时,≤1.若x>1,则g′( x)>0,g( x)是增函数,所以g( x)>g(1)=0,即f( x)>ln x.故当x≥1时,f( x)≥ln x.综上所述,所求a的取值范围为[,+∞).(3)证法一:由(2)知:当a≥时,有f( x)≥ln x( x≥1).令a=,有f( x)=( x-)≥ln x( x≥1),且当x>1时,( x-)>ln x.令x=,有ln<(-)=[(1+)-(1-)],即ln( k+1)-ln k<(+),k=1,2,3,…,n.将上述n个不等式依次相加得ln( n+1)<+(++…+)+,整理得1+++…+>ln( n+1)+( n≥1).证法二:用数学归纳法证明.①当n=1时,左边=1,右边=ln2+<1,不等式成立.②假设n=k时,不等式成立,就是1+++…+>ln( k+1)+. 那么1+++…++>ln( k+1)++=ln( k+1)+.由(2)知:当a≥时,有f( x)≥ln x( x≥1).令a=,有f( x)=( x-)≥ln x( x≥1).令x=,得:(-)≥ln=ln( k+2)-ln( k+1).∴ln( k+1)+≥ln( k+2)+.∴1+++…++>ln( k+2)+.这就是说,当n=k+1时,不等式也成立.根据①和②,可知不等式对任何n∈N*都成立.【解析】略。

2010年高考理科数学试题及答案(全国一卷)含答案

2010年高考理科数学试题及答案(全国一卷)含答案

第1/10页2010年普通高等学校招生全国统一考试理科数学(含答案)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

第I 卷1至2页。

第II 卷3至4页。

考试结束后,将本草纲目试卷和答题卡一并交回。

第I 卷注意事项: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无交通工效............。

3.第I 卷共12小题,第小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式)(()()P A BP A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 )(()()P A B P A P B ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 343v R π=n 次独立重复试验中事件A 恰好发生K 次的概率 其中R 表示球的半径 ())((10,1,2,,C ηκηηρκρρκη-AA=-=⋅⋅⋅一. 选择题(1)复数3223ii+-=(A ).i (B ).-i (C ).12—13i (D ).12+13i (2) 记cos (-80°)=k ,那么tan100°=(A )(B ). —(C.)(D ).第2/10页(3)若变量x ,y 满足约束条件则z=x —2y 的最大值为(A ).4 (B )3 (C )2 (D )1(4) 已知各项均为正数比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=(B) 7(C) 6(5)35的展开式中x 的系数是(A) -4 (B) -2 (C) 2 (D) 4(6) 某校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门。

2010年湖北高考数学理科试卷带详解

2010年湖北高考数学理科试卷带详解

y2 16
1},B={( x, y) | y
3x} ,则 A
B 的子集的个数是 (
)
A. 4
B. 3
C. 2
D.1
【测量目标】集合的基本运算.
【考查方式】直接给出 A,B 集合,利用图象法判断它们交集中有 2 个元素,从而判断交
集的子集个数.
【难易程度】容易
【参考答案】A
【试题解析】由题意知 A B 中有两个元素,所以 A B 的子集的个数是 4 个,故选 A.
10. 记 实 数 x1 , x2 , … , xn 中 的 最 大 数 为 max x1, x2 ,… , xn , 最 小 数 为 min x1, x2 ,… , xn .已知△ABC 的三边长为 a,b, c(a „ b „ c) ,定义它的倾斜度为
l max a , b , c gmin a , b , c
OC= ab 故
三、解答题:本大题共 6 小题,共 75 分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分 12 分)
π
π
已知函数 f (x) cos 3 x cos 3 x , g x
1 sin 2x 2
1 4.
(I)求函数 f x 的最小正周期;
(II)求函数 h x f x g x 的最大值,并求使 h x 取得最大值的 x 的集合.
半径为 2 的半圆(步骤 1),当直线 y x b 与此半圆相切时须满足圆心(2,3)到直线
y=x+b 距 离 等 于 2, 解 得 b 1 2 2或 b 1 2 2 , 因 为 是 下 半 圆 故 可 得 b 1 2 2
(舍)(步骤 2),当直线过(0,3)时,解得 b=3,故1 2 2 „ b „ 3, 所以 C 正确.(步 骤 3)

2010年全国高考数学(理)试题及答案(新课标卷) 详解版

2010年全国高考数学(理)试题及答案(新课标卷)  详解版

绝密★启用前2010年普通高等学校招生全国统一考试(课标版) 理科数学第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{}2,RA x x x =≤∈,{}4,ZB x =≤∈,则A B =(A )()0,2 (B )[]0,2 (C ){}0,2 (D ){}0,1,2(2)已知复数1z=,z 是z 的共轭复数,则z z ⋅=(A )14(B )12(C )1 (D )2(3)曲线2xy x =+在点()1,1--处的切线方程为 (A )21y x =+ (B )21y x =- (C )23y x =-- (D )22y x =--(4)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为0P ,角速度为1,那么点P 到x 轴距离d 关于时间t的函数图像大致为(5)已知命题1p :函数22x x y -=-在R 为增函数, 2p :函数22x x y -=+在R 为减函数,则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p -∨和4q :()12p p ∧-中,真命题是(A )1q ,3q (B )2q ,3q (C )1q ,4q (D )2q ,4q(6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为 (A )100 (B )200 (C )300 (D )400 (7)如果执行右面的框图,输入5N=,则输出的数等于 (A )54(B )45(C )65 (D )56(8)设偶函数()f x 满足()()380f x x x =-≥,则(){}20x f x -=>(A ){}2x x x <-或>4 (B ){}0x x x <或>4 (C ){}0x x x <或>6 (D ){}2x x x <-或>2(9)若4cos 5α=-,α是第三象限的角,则1tan 21tan2αα+=-(A )12-(B )12(C )2 (D )2-(10)设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为 (A )2a π (B )273a π (C )2113a π (D )25a π (11)已知函数()lg ,010,16,02x x f x x x ⎧≤⎪=⎨-+⎪⎩<>1若a ,b ,c 互不相等,且()()()f a f b f c ==,则abc 的取值范围是 (A )()1,10 (B )()5,6 (C )()10,12 (D )()20,24(12)已知双曲线E 的中心为原点,F(3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N(-12,-15),则E 的方程为(A )22136x y -= (B ) 22145x y -= (C ) 22163x y -= (D )22154x y -= 第Ⅱ卷二、填空题:本大题共4小题,每小题5分。

2010年全国统一高考数学试卷(理科)(新课标版)答案与解析

2010年全国统一高考数学试卷(理科)(新课标版)答案与解析

2010年全国统一高考数学试卷(理科)(新课标版)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={x∈R||x|≤2}},,则A∩B=()A.(0,2)B.[0,2]C.{0,2]D.{0,1,2}【考点】交集及其运算.【专题】计算题.【分析】先化简集合A和B,注意集合B中的元素是整数,再根据两个集合的交集的意义求解.【解答】解:A={x∈R||x|≤2,}={x∈R|﹣2≤x≤2},故A∩B={0,1,2}.应选D.【点评】本题主要考查集合间的交集运算以及集合的表示方法,涉及绝对值不等式和幂函数等知识,属于基础题.2.(5分)已知复数,是z的共轭复数,则=()A.B.C.1 D.2【考点】复数代数形式的混合运算.【分析】因为,所以先求|z|再求的值.【解答】解:由可得.另解:故选A.【点评】命题意图:本题主要考查复数的运算,涉及复数的共轭复数知识,可以利用复数的一些运算性质可以简化运算.3.(5分)曲线y=在点(﹣1,﹣1)处的切线方程为()A.y=2x+1 B.y=2x﹣1 C.y=﹣2x﹣3 D.y=﹣2x﹣2【考点】利用导数研究曲线上某点切线方程.【专题】常规题型;计算题.【分析】欲求在点(﹣1,﹣1)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=﹣1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:∵y=,∴y′=,所以k=y′|x=﹣1=2,得切线的斜率为2,所以k=2;所以曲线y=f(x)在点(﹣1,﹣1)处的切线方程为:y+1=2×(x+1),即y=2x+1.故选A.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.4.(5分)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P 0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.【考点】函数的图象.【分析】本题的求解可以利用排除法,根据某具体时刻点P的位置到到x轴距离来确定答案.【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故应选C.【点评】本题主要考查了函数的图象,以及排除法的应用和数形结合的思想,属于基础题.5.(5分)已知命题p1:函数y=2x﹣2﹣x在R为增函数,p2:函数y=2x+2﹣x在R为减函数,则在命题q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2和q4:p1∧(¬p2)中,真命题是()A.q1,q3B.q2,q3C.q1,q4D.q2,q4【考点】复合命题的真假;指数函数与对数函数的关系.【专题】简易逻辑.【分析】先判断命题p1是真命题,P2是假命题,故p1∨p2为真命题,(﹣p2)为真命题,p1∧(﹣p2)为真命题.【解答】解:易知p1是真命题,而对p2:y′=2x ln2﹣ln2=ln2(),当x∈[0,+∞)时,,又ln2>0,所以y′≥0,函数单调递增;同理得当x∈(﹣∞,0)时,函数单调递减,故p2是假命题.由此可知,q1真,q2假,q3假,q4真.故选C.【点评】只有p1与P2都是真命题时,p1∧p2才是真命题.只要p1与p2中至少有一个真命题,p1∨p2就是真命题.6.(5分)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()A.100 B.200 C.300 D.400【考点】离散型随机变量的期望与方差;二项分布与n次独立重复试验的模型.【专题】计算题;应用题.【分析】首先分析题目已知某种种子每粒发芽的概率都为0.9,现播种了1000粒,即不发芽率为0.1,故没有发芽的种子数ξ服从二项分布,即ξ~B(1000,0.1).又没发芽的补种2个,故补种的种子数记为X=2ξ,根据二项分布的期望公式即可求出结果.【解答】解:由题意可知播种了1000粒,没有发芽的种子数ξ服从二项分布,即ξ~B(1000,0.1).而每粒需再补种2粒,补种的种子数记为X故X=2ξ,则EX=2Eξ=2×1000×0.1=200.故选B.【点评】本题主要考查二项分布的期望以及随机变量的性质,考查解决应用问题的能力.属于基础性题目.7.(5分)如果执行右面的框图,输入N=5,则输出的数等于()A.B.C.D.【考点】设计程序框图解决实际问题.【专题】操作型.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选D.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.8.(5分)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4} B.{x|x<0或x>4} C.{x|x<0或x>6} D.{x|x<﹣2或x>2}【考点】偶函数;其他不等式的解法.【专题】计算题.【分析】由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,则f(x﹣2)=f(|x﹣2|)=2|x﹣2|﹣4,要使f(|x﹣2|)>0,只需2|x﹣2|﹣4>0,|x﹣2|>2解得x>4,或x<0.应选:B.【点评】本题主要考查偶函数性质、不等式的解法以及相应的运算能力,解答本题的关键是利用偶函数的性质将函数转化为绝对值函数,从而简化计算.9.(5分)若,α是第三象限的角,则=()A. B.C.2 D.﹣2【考点】半角的三角函数;弦切互化.【专题】计算题.【分析】将欲求式中的正切化成正余弦,还要注意条件中的角α与待求式中角的差别,注意消除它们之间的不同.【解答】解:由,α是第三象限的角,∴可得,则,应选A.【点评】本题主要考查三角恒等变换中的倍角公式的灵活运用、同角的三角函数关系等知识以及相应的运算能力.10.(5分)设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为()A.πa2B.C. D.5πa2【考点】球内接多面体.【专题】计算题.【分析】由题意可知上下底面中心连线的中点就是球心,求出球的半径,即可求出球的表面积.【解答】解:根据题意条件可知三棱柱是棱长都为a的正三棱柱,上下底面中心连线的中点就是球心,则其外接球的半径为,球的表面积为,故选B.【点评】本题主要考查空间几何体中位置关系、球和正棱柱的性质以及相应的运算能力和空间形象能力.11.(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc 的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)【考点】分段函数的解析式求法及其图象的作法;函数的图象;对数的运算性质;对数函数的图像与性质.【专题】作图题;压轴题;数形结合.【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选C.【点评】本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力.12.(5分)已知双曲线E的中心为原点,P(3,0)是E的焦点,过P的直线l与E相交于A,B两点,且AB 的中点为N(﹣12,﹣15),则E的方程式为()A.B.C.D.【考点】双曲线的标准方程;直线与圆锥曲线的综合问题.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】已知条件易得直线l的斜率为1,设双曲线方程,及A,B点坐标代入方程联立相减得x1+x2=﹣24,根据=,可求得a和b的关系,再根据c=3,求得a和b,进而可得答案.【解答】解:由已知条件易得直线l的斜率为k=k PN=1,设双曲线方程为,A(x1,y1),B(x2,y2),则有,两式相减并结合x1+x2=﹣24,y1+y2=﹣30得=,从而==1即4b2=5a2,又a2+b2=9,解得a2=4,b2=5,故选B.【点评】本题主要考查了双曲线的标准方程.考查了学生综合分析问题和解决问题的能力.二、填空题(共4小题,每小题5分,满分20分)13.(5分)设y=f(x)为区间[0,1]上的连续函数,且恒有0≤f(x)≤1,可以用随机模拟方法近似计算积分,先产生两组(每组N个)区间[0,1]上的均匀随机数x1,x2,…x N和y1,y2,…y N,由此得到N个点(x i,y i)(i=1,2,…,N),再数出其中满足y i≤f(x i)(i=1,2,…,N)的点数N1,那么由随机模拟方案可得积分的近似值为.【考点】模拟方法估计概率;定积分在求面积中的应用;几何概型.【专题】计算题.【分析】要求∫f(x)dx的近似值,利用几何概型求概率,结合点数比即可得.【解答】解:由题意可知得,故积分的近似值为.故答案为:.【点评】本题考查几何概型模拟估计定积分值,以及定积分在面积中的简单应用,属于基础题.14.(5分)正视图为一个三角形的几何体可以是三棱锥、三棱柱、圆锥(其他正确答案同样给分)(写出三种)【考点】简单空间图形的三视图.【专题】阅读型.【分析】三棱锥一个侧面的在正视图为一条线段的情形;圆锥;四棱锥有两个侧面在正视图为线段的情形,即可回答本题.【解答】解:正视图为一个三角形的几何体可以是三棱锥、三棱柱(放倒的情形)、圆锥、四棱锥等等.故答案为:三棱锥、圆锥、三棱柱.【点评】本题主要考查三视图以及常见的空间几何体的三视图,考查空间想象能力.15.(5分)过点A(4,1)的圆C与直线x﹣y=1相切于点B(2,1),则圆C的方程为(x﹣3)2+y2=2 .【考点】圆的标准方程;直线与圆的位置关系.【专题】压轴题.【分析】设圆的标准方程,再用过点A(4,1),过B,两点坐标适合方程,圆和直线相切,圆心到直线的距离等于半径,求得圆的方程.【解答】解:设圆的方程为(x﹣a)2+(y﹣b)2=r2,则,解得,故所求圆的方程为(x﹣3)2+y2=2.故答案为:(x﹣3)2+y2=2.【点评】命题意图:本题主要考查利用题意条件求解圆的方程,通常借助待定系数法求解.16.(5分)在△ABC中,D为边BC上一点,BD=DC,∠ADB=120°,AD=2,若△ADC的面积为,则∠BAC=60°.【考点】余弦定理的应用.【专题】计算题;压轴题.【分析】先根据三角形的面积公式利用△ADC的面积求得DC,进而根据三角形ABC的面积求得BD和BC,进而根据余弦定理求得AB.最后在三角形ABC中利用余弦定理求得cos∠BAC,求得∠BAC的值.【解答】解:由△ADC的面积为可得解得,则.AB2=AD2+BD2﹣2AD•BD•cos120°=,,则=.故∠BAC=60°.【点评】本题主要考查解三角形中的边角关系及其面积等基础知识与技能,分析问题解决问题的能力以及相应的运算能力.三、解答题(共8小题,满分90分)17.(12分)设数列满足a1=2,a n+1﹣a n=3•22n﹣1(1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n项和S n.【考点】数列递推式;数列的求和.【专题】计算题.【分析】(Ⅰ)由题意得a n+1=[(a n+1﹣a n)+(a n﹣a n﹣1)+...+(a2﹣a1)]+a1=3(22n﹣1+22n﹣3+ (2)+2=22(n+1)﹣1.由此可知数列{a n}的通项公式为a n=22n﹣1.(Ⅱ)由b n=na n=n•22n﹣1知S n=1•2+2•23+3•25++n•22n﹣1,由此入手可知答案.【解答】解:(Ⅰ)由已知,当n≥1时,a n+1=[(a n+1﹣a n)+(a n﹣a n﹣1)+…+(a2﹣a1)]+a1=3(22n﹣1+22n﹣3+…+2)+2=3×+2=22(n+1)﹣1.而a1=2,所以数列{a n}的通项公式为a n=22n﹣1.(Ⅱ)由b n=na n=n•22n﹣1知S n=1•2+2•23+3•25+…+n•22n﹣1①从而22S n=1•23+2•25+…+n•22n+1②①﹣②得(1﹣22)•S n=2+23+25+…+22n﹣1﹣n•22n+1.即.【点评】本题主要考查数列累加法(叠加法)求数列通项、错位相减法求数列和等知识以及相应运算能力.18.(12分)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD中点(1)证明:PE⊥BC(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.【考点】用向量证明垂直;直线与平面所成的角.【专题】计算题;作图题;证明题;转化思想.【分析】以H为原点,HA,HB,HP分别为x,y,z轴,线段HA的长为单位长,建立空间直角坐标系.(1)表示,,计算,就证明PE⊥BC.(2)∠APB=∠ADB=60°,求出C,P的坐标,再求平面PEH的法向量,求向量,然后求与面PEH的法向量的数量积,可求直线PA与平面PEH所成角的正弦值.【解答】解:以H为原点,HA,HB,HP分别为x,y,z轴,线段HA的长为单位长,建立空间直角坐标系如图,则A(1,0,0),B(0,1,0)(Ⅰ)设C(m,0,0),P(0,0,n)(m<0,n>0)则.可得.因为所以PE⊥BC.(Ⅱ)由已知条件可得m=,n=1,故C(﹣),设=(x,y,z)为平面PEH的法向量则即因此可以取,由,可得所以直线PA与平面PEH所成角的正弦值为.【点评】本题主要考查空间几何体中的位置关系、线面所成的角等知识,考查空间想象能力以及利用向量法研究空间的位置关系以及线面角问题的能力.19.(12分)为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人中,需要志愿帮助的老年人的比例?说明理由.附:【考点】简单随机抽样;独立性检验.【专题】计算题.【分析】(1)由列联表可知调查的500位老年人中有40+30=70位需要志愿者提供帮助,两个数据求比值得到该地区老年人中需要帮助的老年人的比例的估算值.(2)根据列联表所给的数据,代入随机变量的观测值公式,得到观测值的结果,把观测值的结果与临界值进行比较,看出有多大把握说该地区的老年人是否需要帮助与性别有关.(3)从样本数据老年人中需要帮助的比例有明显差异,调查时,可以先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.【解答】解:(1)∵调查的500位老年人中有40+30=70位需要志愿者提供帮助,∴该地区老年人中需要帮助的老年人的比例的估算值为.(2)根据列联表所给的数据,代入随机变量的观测值公式,.∵9.967>6.635,∴有99%的把握认为该地区的老年人是否需要帮助与性别有关.(3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.【点评】本题主要考查统计学知识,考查独立性检验的思想,考查利用数学知识研究实际问题的能力以及相应的运算能力.20.(12分)设F1,F2分别是椭圆的左、右焦点,过F1斜率为1的直线ℓ与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E的离心率;(2)设点P(0,﹣1)满足|PA|=|PB|,求E的方程.【考点】椭圆的简单性质;等差数列的性质;椭圆的标准方程;直线与圆锥曲线的综合问题.【专题】计算题.【分析】(I)根据椭圆的定义可知|AF2|+|BF2|+|AB|=4a,进而根据|AF2|,|AB|,|BF2|成等差数表示出|AB|,进而可知直线l的方程,设A(x1,y1),B(x2,y2),代入直线和椭圆方程,联立消去y,根据韦达定理表示出x1+x2和x1x2进而根据,求得a和b的关系,进而求得a和c的关系,离心率可得.(II)设AB的中点为N(x0,y0),根据(1)则可分别表示出x0和y0,根据|PA|=|PB|,推知直线PN的斜率,根据求得c,进而求得a和b,椭圆的方程可得.【解答】解:(I)由椭圆定义知|AF2|+|BF2|+|AB|=4a,又2|AB|=|AF2|+|BF2|,得,l的方程为y=x+c,其中.设A(x1,y1),B(x2,y2),则A、B两点坐标满足方程组化简的(a2+b2)x2+2a2cx+a2(c2﹣b2)=0则因为直线AB斜率为1,|AB|=|x 1﹣x2|=,得,故a2=2b2所以E的离心率(II)设AB的中点为N(x0,y0),由(I)知,.由|PA|=|PB|,得k PN=﹣1,即得c=3,从而故椭圆E的方程为.【点评】本题主要考查圆锥曲线中的椭圆性质以及直线与椭圆的位置关系,涉及等差数列知识,考查利用方程思想解决几何问题的能力及运算能力21.(12分)设函数f(x)=e x﹣1﹣x﹣ax2.(1)若a=0,求f(x)的单调区间;(2)若当x≥0时f(x)≥0,求a的取值范围.【考点】利用导数研究函数的单调性.【专题】分类讨论.【分析】(1)先对函数f(x)求导,导函数大于0时原函数单调递增,导函数小于0时原函数单调递减.(2)根据e x≥1+x可得不等式f′(x)≥x﹣2ax=(1﹣2a)x,从而可知当1﹣2a≥0,即时,f′(x)≥0判断出函数f(x)的单调性,得到答案.【解答】解:(1)a=0时,f(x)=e x﹣1﹣x,f′(x)=e x﹣1.当x∈(﹣∞,0)时,f'(x)<0;当x∈(0,+∞)时,f'(x)>0.故f(x)在(﹣∞,0)单调减少,在(0,+∞)单调增加(II)f′(x)=e x﹣1﹣2ax由(I)知e x≥1+x,当且仅当x=0时等号成立.故f′(x)≥x﹣2ax=(1﹣2a)x,从而当1﹣2a≥0,即时,f′(x)≥0(x≥0),而f(0)=0,于是当x≥0时,f(x)≥0.由e x>1+x(x≠0)可得e﹣x>1﹣x(x≠0).从而当时,f′(x)<e x﹣1+2a(e﹣x﹣1)=e﹣x(e x﹣1)(e x﹣2a),故当x∈(0,ln2a)时,f'(x)<0,而f(0)=0,于是当x∈(0,ln2a)时,f(x)<0.综合得a的取值范围为.【点评】本题主要考查利用导数研究函数性质、不等式恒成立问题以及参数取值范围问题,考查分类讨论、转化与划归解题思想及其相应的运算能力.22.(10分)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.【考点】圆的切线的判定定理的证明;弦切角.【专题】证明题.【分析】(I)先根据题中条件:“”,得∠BCD=∠ABC.再根据EC是圆的切线,得到∠ACE=∠ABC,从而即可得出结论.(II)欲证BC2=BE x CD.即证.故只须证明△BDC~△ECB即可.【解答】解:(Ⅰ)因为,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故.即BC2=BE×CD.(10分)【点评】本题主要考查圆的切线的判定定理的证明、弦切角的应用、三角形相似等基础知识,考查运化归与转化思想.属于基础题.23.(10分)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.【考点】简单曲线的极坐标方程;轨迹方程;直线和圆的方程的应用;直线的参数方程;圆的参数方程.【专题】综合题;压轴题.【分析】(I)先消去参数将曲线C1与C2的参数方程化成普通方程,再联立方程组求出交点坐标即可,(II)设P(x,y),利用中点坐标公式得P点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线.【解答】解:(Ⅰ)当α=时,C1的普通方程为,C2的普通方程为x2+y2=1.联立方程组,解得C1与C2的交点为(1,0).(Ⅱ)C1的普通方程为xsinα﹣ycosα﹣sinα=0①.则OA的方程为xcosα+ysinα=0②,联立①②可得x=sin2α,y=﹣cosαsinα;A点坐标为(sin2α,﹣cosαsinα),故当α变化时,P点轨迹的参数方程为:,P点轨迹的普通方程.故P点轨迹是圆心为,半径为的圆.【点评】本题主要考查直线与圆的参数方程,参数方程与普通方程的互化,利用参数方程研究轨迹问题的能力.24.(10分)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.【考点】绝对值不等式的解法;函数的图象;其他不等式的解法.【专题】计算题;作图题;压轴题.【分析】(I)先讨论x的范围,将函数f(x)写成分段函数,然后根据分段函数分段画出函数的图象即可;(II)根据函数y=f(x)与函数y=ax的图象可知先寻找满足f(x)≤ax的零界情况,从而求出a的范围.【解答】解:(Ⅰ)由于f(x)=,函数y=f(x)的图象如图所示.(Ⅱ)由函数y=f(x)与函数y=ax的图象可知,极小值在点(2,1)当且仅当a<﹣2或x≥时,函数y=f(x)与函数y=ax的图象有交点.故不等式f(x)≤ax的解集非空时,a的取值范围为(﹣∞,﹣2)∪[,+∞).【点评】本题主要考查了函数的图象,以及利用函数图象解不等式,同时考查了数形结合的数学思想,属于基础题.。

2010年全国统一高考真题数学试卷(理科)(大纲版ⅱ)(含答案及解析)

2010年全国统一高考真题数学试卷(理科)(大纲版ⅱ)(含答案及解析)

2010年全国统一高考数学试卷(理科)(大纲版Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)复数()2=()A.﹣3﹣4i B.﹣3+4i C.3﹣4i D.3+4i2.(5分)函数的反函数是()A.y=e2x﹣1﹣1(x>0)B.y=e2x﹣1+1(x>0)C.y=e2x﹣1﹣1(x∈R)D.y=e2x﹣1+1(x∈R)3.(5分)若变量x,y满足约束条件,则z=2x+y的最大值为()A.1B.2C.3D.44.(5分)如果等差数列{a n}中,a3+a4+a5=12,那么a1+a2+…+a7=()A.14B.21C.28D.355.(5分)不等式>0的解集为()A.{x|x<﹣2,或x>3}B.{x|x<﹣2,或1<x<3}C.{x|﹣2<x<1,或x>3}D.{x|﹣2<x<1,或1<x<3} 6.(5分)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有()A.12种B.18种C.36种D.54种7.(5分)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin(2x+)的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位8.(5分)△ABC中,点D在边AB上,CD平分∠ACB,若=,=,||=1,||=2,则=()A.+B.+C.+D.+9.(5分)已知正四棱锥S﹣ABCD中,SA=2,那么当该棱锥的体积最大时,它的高为()A.1B.C.2D.310.(5分)若曲线y=在点(a,)处的切线与两个坐标围成的三角形的面积为18,则a=()A.64B.32C.16D.811.(5分)与正方体ABCD﹣A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离相等的点()A.有且只有1个B.有且只有2个C.有且只有3个D.有无数个12.(5分)已知椭圆T:+=1(a>b>0)的离心率为,过右焦点F且斜率为k(k>0)的直线与T相交于A,B两点,若=3,则k=()A.1B.C.D.2二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知a是第二象限的角,tan(π+2α)=﹣,则tanα=.14.(5分)若(x﹣)9的展开式中x3的系数是﹣84,则a=.15.(5分)已知抛物线C:y2=2px(p>0)的准线l,过M(1,0)且斜率为的直线与l相交于A,与C的一个交点为B,若,则p=.16.(5分)已知球O的半径为4,圆M与圆N为该球的两个小圆,AB为圆M 与圆N的公共弦,AB=4,若OM=ON=3,则两圆圆心的距离MN=.三、解答题(共6小题,满分70分)17.(10分)△ABC中,D为边BC上的一点,BD=33,sinB=,cos∠ADC=,求AD.18.(12分)已知数列{a n}的前n项和S n=(n2+n)•3n.(Ⅰ)求;(Ⅱ)证明:++…+>3n.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC,AA1=AB,D为BB1的中点,E为AB1上的一点,AE=3EB1.(Ⅰ)证明:DE为异面直线AB1与CD的公垂线;(Ⅱ)设异面直线AB1与CD的夹角为45°,求二面角A1﹣AC1﹣B1的大小.20.(12分)如图,由M到N的电路中有4个元件,分别标为T1,T2,T3,T4,电流能通过T1,T2,T3的概率都是P,电流能通过T4的概率是0.9,电流能否通过各元件相互独立.已知T1,T2,T3中至少有一个能通过电流的概率为0.999.(Ⅰ)求P;(Ⅱ)求电流能在M与N之间通过的概率.21.(12分)已知斜率为1的直线l与双曲线C:相交于B、D两点,且BD的中点为M(1,3).(Ⅰ)求C的离心率;(Ⅱ)设C的右顶点为A,右焦点为F,|DF|•|BF|=17,证明:过A、B、D三点的圆与x轴相切.22.(12分)设函数f(x)=1﹣e﹣x.(Ⅰ)证明:当x>﹣1时,f(x)≥;(Ⅱ)设当x≥0时,f(x)≤,求a的取值范围.2010年全国统一高考数学试卷(理科)(大纲版Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)复数()2=()A.﹣3﹣4i B.﹣3+4i C.3﹣4i D.3+4i【考点】A5:复数的运算.【专题】11:计算题.【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,把复数整理成整式形式,再进行复数的乘方运算,合并同类项,得到结果.【解答】解:()2=[]2=(1﹣2i)2=﹣3﹣4i.故选:A.【点评】本题主要考查复数的除法和乘方运算,是一个基础题,解题时没有规律和技巧可寻,只要认真完成,则一定会得分.2.(5分)函数的反函数是()A.y=e2x﹣1﹣1(x>0)B.y=e2x﹣1+1(x>0)C.y=e2x﹣1﹣1(x∈R)D.y=e2x﹣1+1(x∈R)【考点】4H:对数的运算性质;4R:反函数.【专题】11:计算题;16:压轴题.【分析】从条件中中反解出x,再将x,y互换即得.解答本题首先熟悉反函数的概念,然后根据反函数求解三步骤:1、换:x、y换位,2、解:解出y,3、标:标出定义域,据此即可求得反函数.【解答】解:由原函数解得x=e 2y﹣1+1,∴f﹣1(x)=e 2x﹣1+1,又x>1,∴x﹣1>0;∴ln(x﹣1)∈R∴在反函数中x∈R,故选:D.【点评】求反函数,一般应分以下步骤:(1)由已知解析式y=f(x)反求出x=Ф(y);(2)交换x=Ф(y)中x、y的位置;(3)求出反函数的定义域(一般可通过求原函数的值域的方法求反函数的定义域).3.(5分)若变量x,y满足约束条件,则z=2x+y的最大值为()A.1B.2C.3D.4【考点】7C:简单线性规划.【专题】31:数形结合.【分析】先根据约束条件画出可行域,设z=2x+y,再利用z的几何意义求最值,只需求出直线z=2x+y过可行域内的点B时,从而得到m值即可.【解答】解:作出可行域,作出目标函数线,可得直线与y=x与3x+2y=5的交点为最优解点,∴即为B(1,1),当x=1,y=1时z max=3.故选:C.【点评】本题考查了线性规划的知识,以及利用几何意义求最值,属于基础题.4.(5分)如果等差数列{a n}中,a3+a4+a5=12,那么a1+a2+…+a7=()A.14B.21C.28D.35【考点】83:等差数列的性质;85:等差数列的前n项和.【分析】由等差数列的性质求解.【解答】解:a3+a4+a5=3a4=12,a4=4,∴a1+a2+…+a7==7a4=28故选:C.【点评】本题主要考查等差数列的性质.5.(5分)不等式>0的解集为()A.{x|x<﹣2,或x>3}B.{x|x<﹣2,或1<x<3}C.{x|﹣2<x<1,或x>3}D.{x|﹣2<x<1,或1<x<3}【考点】73:一元二次不等式及其应用.【专题】11:计算题.【分析】解,可转化成f(x)•g(x)>0,再利用根轴法进行求解.【解答】解:⇔⇔(x﹣3)(x+2)(x﹣1)>0利用数轴穿根法解得﹣2<x<1或x>3,故选:C.【点评】本试题主要考查分式不等式与高次不等式的解法,属于不等式的基础题.6.(5分)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有()A.12种B.18种C.36种D.54种【考点】D9:排列、组合及简单计数问题.【专题】11:计算题.【分析】本题是一个分步计数问题,首先从3个信封中选一个放1,2有3种不同的选法,再从剩下的4个数中选两个放一个信封有C42,余下放入最后一个信封,根据分步计数原理得到结果.【解答】解:由题意知,本题是一个分步计数问题,∵先从3个信封中选一个放1,2,有=3种不同的选法;根据分组公式,其他四封信放入两个信封,每个信封两个有=6种放法,∴共有3×6×1=18.故选:B.【点评】本题考查分步计数原理,考查平均分组问题,是一个易错题,解题的关键是注意到第二步从剩下的4个数中选两个放到一个信封中,这里包含两个步骤,先平均分组,再排列.7.(5分)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin(2x+)的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】1:常规题型.【分析】先将2提出来,再由左加右减的原则进行平移即可.【解答】解:y=sin(2x+)=sin2(x+),y=sin(2x﹣)=sin2(x﹣),所以将y=sin(2x+)的图象向右平移个长度单位得到y=sin(2x﹣)的图象,故选:B.【点评】本试题主要考查三角函数图象的平移.平移都是对单个的x来说的.8.(5分)△ABC中,点D在边AB上,CD平分∠ACB,若=,=,||=1,||=2,则=()A.+B.+C.+D.+【考点】9B:向量加减混合运算.【分析】由△ABC中,点D在边AB上,CD平分∠ACB,根据三角形内角平分线定理,我们易得到,我们将后,将各向量用,表示,即可得到答案.【解答】解:∵CD为角平分线,∴,∵,∴,∴故选:B.【点评】本题考查了平面向量的基础知识,解答的核心是三角形内角平分线定理,即若AD为三角形ABC的内角A的角平分线,则AB:AC=BD:CD9.(5分)已知正四棱锥S﹣ABCD中,SA=2,那么当该棱锥的体积最大时,它的高为()A.1B.C.2D.3【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题;16:压轴题.【分析】设出底面边长,求出正四棱锥的高,写出体积表达式,利用求导求得最大值时,高的值.【解答】解:设底面边长为a,则高h==,所以体积V=a2h=,设y=12a4﹣a6,则y′=48a3﹣3a5,当y取最值时,y′=48a3﹣3a5=0,解得a=0或a=4时,当a=4时,体积最大,此时h==2,故选:C.【点评】本试题主要考查椎体的体积,考查高次函数的最值问题的求法.是中档题.10.(5分)若曲线y=在点(a,)处的切线与两个坐标围成的三角形的面积为18,则a=()A.64B.32C.16D.8【考点】6H:利用导数研究曲线上某点切线方程.【专题】31:数形结合.【分析】欲求参数a值,必须求出在点(a,)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=a处的导函数值,再结合导数的几何意义即可求出切线的斜率得到切线的方程,最后求出与坐标轴的交点坐标结合三角形的面积公式.从而问题解决.【解答】解:y′=﹣,∴k=﹣,切线方程是y﹣=﹣(x﹣a),令x=0,y=,令y=0,x=3a,∴三角形的面积是s=•3a•=18,解得a=64.故选:A.【点评】本试题主要考查求导法则、导数的几何意义、切线的求法和三角形的面积公式,考查考生的计算能力.11.(5分)与正方体ABCD﹣A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离相等的点()A.有且只有1个B.有且只有2个C.有且只有3个D.有无数个【考点】LO:空间中直线与直线之间的位置关系.【专题】16:压轴题.【分析】由于点D、B1显然满足要求,猜想B1D上任一点都满足要求,然后想办法证明结论.【解答】解:在正方体ABCD﹣A1B1C1D1上建立如图所示空间直角坐标系,并设该正方体的棱长为1,连接B1D,并在B1D上任取一点P,因为=(1,1,1),所以设P(a,a,a),其中0≤a≤1.作PE⊥平面A1D,垂足为E,再作EF⊥A1D1,垂足为F,则PF是点P到直线A1D1的距离.所以PF=;同理点P到直线AB、CC1的距离也是.所以B1D上任一点与正方体ABCD﹣A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离都相等,所以与正方体ABCD﹣A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离相等的点有无数个.故选:D.【点评】本题主要考查合情推理的能力及空间中点到线的距离的求法.12.(5分)已知椭圆T:+=1(a>b>0)的离心率为,过右焦点F且斜率为k(k>0)的直线与T相交于A,B两点,若=3,则k=()A.1B.C.D.2【考点】KH:直线与圆锥曲线的综合.【专题】11:计算题;16:压轴题.【分析】设A(x1,y1),B(x2,y2),根据求得y1和y2关系根据离心率设,b=t,代入椭圆方程与直线方程联立,消去x,根据韦达定理表示出y1+y2和y1y2,进而根据y1和y2关系求得k.【解答】解:A(x1,y1),B(x2,y2),∵,∴y1=﹣3y2,∵,设,b=t,∴x2+4y2﹣4t2=0①,设直线AB方程为,代入①中消去x,可得,∴,,解得,故选:B.【点评】本题主要考查了直线与圆锥曲线的综合问题.此类题问题综合性强,要求考生有较高地转化数学思想的运用能力,能将已知条件转化到基本知识的运用.二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知a是第二象限的角,tan(π+2α)=﹣,则tanα=.【考点】GO:运用诱导公式化简求值;GS:二倍角的三角函数.【专题】11:计算题.【分析】根据诱导公式tan(π+α)=tanα得到tan2α,然后利用公式tan(α+β)=求出tanα,因为α为第二象限的角,判断取值即可.【解答】解:由tan(π+2a)=﹣得tan2a=﹣,又tan2a==﹣,解得tana=﹣或tana=2,又a是第二象限的角,所以tana=﹣.故答案为:.【点评】本试题主要考查三角函数的诱导公式、正切的二倍角公式和解方程,考查考生的计算能力.14.(5分)若(x﹣)9的展开式中x3的系数是﹣84,则a=1.【考点】DA:二项式定理.【专题】11:计算题.【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为3得展开式中x3的系数,列出方程解得.【解答】解:展开式的通项为=(﹣a)r C9r x9﹣2r令9﹣2r=3得r=3∴展开式中x3的系数是C93(﹣a)3=﹣84a3=﹣84,∴a=1.故答案为1【点评】本试题主要考查二项展开式的通项公式和求指定项系数的方法.15.(5分)已知抛物线C:y2=2px(p>0)的准线l,过M(1,0)且斜率为的直线与l相交于A,与C的一个交点为B,若,则p=2.【考点】K8:抛物线的性质.【专题】11:计算题;16:压轴题.【分析】设直线AB的方程与抛物线方程联立消去y得3x2+(﹣6﹣2p)x+3=0,进而根据,可知M为A、B的中点,可得p的关系式,解方程即可求得p.【解答】解:设直线AB:,代入y2=2px得3x2+(﹣6﹣2p)x+3=0,又∵,即M为A、B的中点,∴x B+(﹣)=2,即x B=2+,得p2+4P﹣12=0,解得p=2,p=﹣6(舍去)故答案为:2【点评】本题考查了抛物线的几何性质.属基础题.16.(5分)已知球O的半径为4,圆M与圆N为该球的两个小圆,AB为圆M 与圆N的公共弦,AB=4,若OM=ON=3,则两圆圆心的距离MN=3.【考点】JE:直线和圆的方程的应用;ND:球的性质.【专题】11:计算题;16:压轴题.【分析】根据题意画出图形,欲求两圆圆心的距离,将它放在与球心组成的三角形MNO中,只要求出球心角即可,通过球的性质构成的直角三角形即可解得.【解答】解法一:∵ON=3,球半径为4,∴小圆N的半径为,∵小圆N中弦长AB=4,作NE垂直于AB,∴NE=,同理可得,在直角三角形ONE中,∵NE=,ON=3,∴,∴,∴MN=3.故填:3.解法二:如下图:设AB的中点为C,则OC与MN必相交于MN中点为E,因为OM=ON=3,故小圆半径NB为C为AB中点,故CB=2;所以NC=,∵△ONC为直角三角形,NE为△ONC斜边上的高,OC=∴MN=2EN=2•CN•=2××=3故填:3.【点评】本题主要考查了点、线、面间的距离计算,还考查球、直线与圆的基础知识,考查空间想象能力、运算能力和推理论证能力,属于基础题.三、解答题(共6小题,满分70分)17.(10分)△ABC中,D为边BC上的一点,BD=33,sinB=,cos∠ADC=,求AD.【考点】GG:同角三角函数间的基本关系;HP:正弦定理.【分析】先由cos∠ADC=确定角ADC的范围,因为∠BAD=∠ADC﹣B所以可求其正弦值,最后由正弦定理可得答案.【解答】解:由cos∠ADC=>0,则∠ADC<,又由知B<∠ADC可得B<,由sinB=,可得cosB=,又由cos∠ADC=,可得sin∠ADC=.从而sin∠BAD=sin(∠ADC﹣B)=sin∠ADCcosB﹣cos∠ADCsinB==.由正弦定理得,所以AD==.【点评】三角函数与解三角形的综合性问题,是近几年高考的热点,在高考试题中频繁出现.这类题型难度比较低,一般出现在17或18题,属于送分题,估计以后这类题型仍会保留,不会有太大改变.解决此类问题,要根据已知条件,灵活运用正弦定理或余弦定理,求边角或将边角互化.18.(12分)已知数列{a n}的前n项和S n=(n2+n)•3n.(Ⅰ)求;(Ⅱ)证明:++…+>3n.【考点】6F:极限及其运算;R6:不等式的证明.【专题】11:计算题;14:证明题.【分析】(1)由题意知,由此可知答案.(2)由题意知,==,由此可知,当n≥1时,.【解答】解:(1),所以=;(2)当n=1时,;当n>1时,===所以,n≥1时,.【点评】本题考查数列的极限问题,解题时要注意公式的灵活运用.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC,AA1=AB,D为BB1的中点,E为AB1上的一点,AE=3EB1.(Ⅰ)证明:DE为异面直线AB1与CD的公垂线;(Ⅱ)设异面直线AB1与CD的夹角为45°,求二面角A1﹣AC1﹣B1的大小.【考点】LM:异面直线及其所成的角;LQ:平面与平面之间的位置关系.【专题】11:计算题;14:证明题.【分析】(1)欲证DE为异面直线AB1与CD的公垂线,即证DE与异面直线AB1与CD垂直相交即可;(2)将AB1平移到DG,故∠CDG为异面直线AB1与CD的夹角,作HK⊥AC1,K 为垂足,连接B1K,由三垂线定理,得B1K⊥AC1,因此∠B1KH为二面角A1﹣AC1﹣B1的平面角,在三角形B1KH中求出此角即可.【解答】解:(1)连接A1B,记A1B与AB1的交点为F.因为面AA1BB1为正方形,故A1B⊥AB1,且AF=FB1,又AE=3EB1,所以FE=EB1,又D为BB1的中点,故DE∥BF,DE⊥AB1.作CG⊥AB,G为垂足,由AC=BC知,G为AB中点.又由底面ABC⊥面AA1B1B.连接DG,则DG∥AB1,故DE⊥DG,由三垂线定理,得DE⊥CD.所以DE为异面直线AB1与CD的公垂线.(2)因为DG∥AB1,故∠CDG为异面直线AB1与CD的夹角,∠CDG=45°设AB=2,则AB1=,DG=,CG=,AC=.作B1H⊥A1C1,H为垂足,因为底面A1B1C1⊥面AA1CC1,故B1H⊥面AA1C1C.又作HK⊥AC1,K为垂足,连接B1K,由三垂线定理,得B1K⊥AC1,因此∠B1KH 为二面角A1﹣AC1﹣B1的平面角.B1H=,C1H=,AC1=,HK=tan∠B1KH=,∴二面角A1﹣AC1﹣B1的大小为arctan.【点评】本试题主要考查空间的线面关系与空间角的求解,考查考生的空间想象与推理计算的能力.三垂线定理是立体几何的最重要定理之一,是高考的热点,它是处理线线垂直问题的有效方法,同时它也是确定二面角的平面角的主要手段.通过引入空间向量,用向量代数形式来处理立体几何问题,淡化了传统几何中的“形”到“形”的推理方法,从而降低了思维难度,使解题变得程序化,这是用向量解立体几何问题的独到之处.20.(12分)如图,由M到N的电路中有4个元件,分别标为T1,T2,T3,T4,电流能通过T1,T2,T3的概率都是P,电流能通过T4的概率是0.9,电流能否通过各元件相互独立.已知T1,T2,T3中至少有一个能通过电流的概率为0.999.(Ⅰ)求P;(Ⅱ)求电流能在M与N之间通过的概率.【考点】C5:互斥事件的概率加法公式;C8:相互独立事件和相互独立事件的概率乘法公式.【专题】11:计算题.【分析】(1)设出基本事件,将要求事件用基本事件的来表示,将T1,T2,T3至少有一个能通过电流用基本事件表示并求出概率即可求得p.(Ⅱ)根据题意,B表示事件:电流能在M与N之间通过,根据电路图,可得B=A4+(1﹣A4)A1A3+(1﹣A4)(1﹣A1)A2A3,由互斥事件的概率公式,代入数据计算可得答案.【解答】解:(Ⅰ)根据题意,记电流能通过T i为事件A i,i=1、2、3、4,A表示事件:T1,T2,T3,中至少有一个能通过电流,易得A1,A2,A3相互独立,且,P()=(1﹣p)3=1﹣0.999=0.001,计算可得,p=0.9;(Ⅱ)根据题意,B表示事件:电流能在M与N之间通过,有B=A4+(1﹣A4)A1A3+(1﹣A4)(1﹣A1)A2A3,则P(B)=P(A4+(1﹣A4)A1A3+(1﹣A4)(1﹣A1)A2A3)=0.9+0.1×0.9×0.9+0.1×0.1×0.9×0.9=0.9891.【点评】本题考查了概率中的互斥事件、对立事件及独立事件的概率,注意先明确事件之间的关系,进而选择对应的公式来计算.21.(12分)已知斜率为1的直线l与双曲线C:相交于B、D两点,且BD的中点为M(1,3).(Ⅰ)求C的离心率;(Ⅱ)设C的右顶点为A,右焦点为F,|DF|•|BF|=17,证明:过A、B、D三点的圆与x轴相切.【考点】J9:直线与圆的位置关系;KC:双曲线的性质;KH:直线与圆锥曲线的综合.【专题】11:计算题;14:证明题;16:压轴题.【分析】(Ⅰ)由直线过点(1,3)及斜率可得直线方程,直线与双曲线交于BD 两点的中点为(1,3),可利用直线与双曲线消元后根据中点坐标公式找出a,b的关系式即求得离心率.(Ⅱ)利用离心率将条件|FA||FB|=17,用含a的代数式表示,即可求得a,则A点坐标可得(1,0),由于A在x轴上所以,只要证明2AM=BD即证得.【解答】解:(Ⅰ)由题设知,l的方程为:y=x+2,代入C的方程,并化简,得(b2﹣a2)x2﹣4a2x﹣a2b2﹣4a2=0,设B(x1,y1),D(x2,y2),则,,①由M(1,3)为BD的中点知.故,即b2=3a2,②故,∴C的离心率.(Ⅱ)由①②知,C的方程为:3x2﹣y2=3a2,A(a,0),F(2a,0),.故不妨设x1≤﹣a,x2≥a,,,|BF|•|FD|=(a﹣2x1)(2x2﹣a)=﹣4x1x2+2a(x1+x2)﹣a2=5a2+4a+8.又|BF|•|FD|=17,故5a2+4a+8=17.解得a=1,或(舍去),故=6,连接MA,则由A(1,0),M(1,3)知|MA|=3,从而MA=MB=MD,且MA⊥x轴,因此以M为圆心,MA为半径的圆经过A、B、D三点,且在点A处与x轴相切,所以过A、B、D三点的圆与x轴相切.【点评】本题考查了圆锥曲线、直线与圆的知识,考查学生运用所学知识解决问题的能力.22.(12分)设函数f(x)=1﹣e﹣x.(Ⅰ)证明:当x>﹣1时,f(x)≥;(Ⅱ)设当x≥0时,f(x)≤,求a的取值范围.【考点】6E:利用导数研究函数的最值.【专题】15:综合题;16:压轴题.【分析】(1)将函数f(x)的解析式代入f(x)≥整理成e x≥1+x,组成新函数g(x)=e x﹣x﹣1,然后根据其导函数判断单调性进而可求出函数g(x)的最小值g(0),进而g(x)≥g(0)可得证.(2)先确定函数f(x)的取值范围,然后对a分a<0和a≥0两种情况进行讨论.当a<0时根据x的范围可直接得到f(x)≤不成立;当a≥0时,令h(x)=axf(x)+f(x)﹣x,然后对函数h(x)进行求导,根据导函数判断单调性并求出最值,求a的范围.【解答】解:(1)当x>﹣1时,f(x)≥当且仅当e x≥1+x令g(x)=e x﹣x﹣1,则g'(x)=e x﹣1当x≥0时g'(x)≥0,g(x)在[0,+∞)是增函数当x≤0时g'(x)≤0,g(x)在(﹣∞,0]是减函数于是g(x)在x=0处达到最小值,因而当x∈R时,g(x)≥g(0)时,即e x≥1+x所以当x>﹣1时,f(x)≥(2)由题意x≥0,此时f(x)≥0当a<0时,若x>﹣,则<0,f(x)≤不成立;当a≥0时,令h(x)=axf(x)+f(x)﹣x,则f(x)≤当且仅当h(x)≤0因为f(x)=1﹣e﹣x,所以h'(x)=af(x)+axf'(x)+f'(x)﹣1=af(x)﹣axf (x)+ax﹣f(x)(i)当0≤a≤时,由(1)知x≤(x+1)f(x)h'(x)≤af(x)﹣axf(x)+a(x+1)f(x)﹣f(x)=(2a﹣1)f(x)≤0,h(x)在[0,+∞)是减函数,h(x)≤h(0)=0,即f(x)≤;(ii)当a>时,由y=x﹣f(x)=x﹣1+e﹣x,y′=1﹣e﹣x,x>0时,函数y递增;x<0,函数y递减.可得x=0处函数y取得最小值0,即有x≥f(x).h'(x)=af(x)﹣axf(x)+ax﹣f(x)≥af(x)﹣axf(x)+af(x)﹣f(x)=(2a ﹣1﹣ax)f(x)当0<x<时,h'(x)>0,所以h'(x)>0,所以h(x)>h(0)=0,即f(x)>综上,a的取值范围是[0,]【点评】本题主要考查导数的应用和利用导数证明不等式,考查考生综合运用知识的能力及分类讨论的思想,考查考生的计算能力及分析问题、解决问题的能力;导数常作为高考的压轴题,对考生的能力要求非常高,它不仅要求考生牢固掌握基础知识、基本技能,还要求考生具有较强的分析能力和计算能力.估计以后对导数的考查力度不会减弱.作为压轴题,主要是涉及利用导数求最值解决恒成立问题,利用导数证明不等式等,常伴随对参数的讨论,这也是难点之所在.。

2010年普通高考湖北卷理科数学参考答案

2010年普通高考湖北卷理科数学参考答案
2 2 1 2 n-1 于是,an+1-an= ,对正整数 n 赋值得 43
2 2 1 2 0 a2-a1= 43
2 2 1 2 1 a3-a2= 43 2 2 1 2 2 a4-a3= 43
…………
2 1 2 n-2 2 an-an-1= 43
D
A
A
Q
B
18 题(Ⅰ)图
1
(Ⅱ)在棱 AC 上任取一点 E,过 E 点在平面 ACO 内作 EF⊥AC 交 AO 于点 F,过 E 点 在平面 ACB 内作 EG⊥AC 交 AB 于点 G,则∠GEF 为二面角 O-AC-B 的平面角. 连 FG,设 AE=a,则易知 EF=x,AF= 2x, 而 cos∠CAB=cos∠CAO·cos∠BAO=cos45° ·cos30° = 6 , 4
G
B
18 题(Ⅱ)图
15x2 -2x2 3 3
15 x 3

2x·
15 . 5
即二面角 O-AC-B 的余弦值为
19.本小题主要考查直线与抛物线的位置关系、抛物线的性质等基础知识,同时考查推理运 算能力.(满分 12 分) 解:(Ⅰ)设 P(x,y)是曲线 C 上任意一点,那么点 P(x,y)满足: (x-1)2+y2-x=1(x>0).化简得 y2=4x (x>0) (Ⅱ)设过点 M(m,0) (m>0)的直线 l 与曲线 C 的交点为 A(x1,y1),B(x2,y2)
m2-6m+1<0,即3-2 2<m<3+2 2 由此可知,存在正数 m,对于过点 M(m,0)且与曲线 C 有两个交点 AB 任一直线, → → 都有FA·FB<0,且 m 的取值范围是(3-2 2,3+2 2).
2
2

2010年普通高等学校招生全国统一考试湖北卷

2010年普通高等学校招生全国统一考试湖北卷

2010年普通高等学校招生全国统一考试(湖北卷)数学(理工农医类)本试题卷共4页,三大题21小题。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型B后的方框涂黑。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

答在试题卷、草稿纸上无效。

3.填空题和解答题用0.5毫米黑色墨水签字笔将答案直接答在答题卡上对于应的答题区域内。

答在试题卷、草稿纸上无效。

4.考生必须保持答题卡的整洁。

考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共10小题,每小题5分,共50 分,在每小题给出的四个选项中,只有一项是满足题目要求的。

1. 若i 为虚数单位,图中复平面内点Z表示复数z,则表示复数1zi的点是A. E B. F C. G D. H2. 设合集A={(x,y)| 24x +216y =1}, B={(x,y)|y=3x },则 B={(x,y)|y=3x }, A B I 的子集的个数是A. 4B. 3C. 2D.13.在△ABC 中, a =15, b=10 , A=60,则cosB=A. -22 B.22 C.-6 D.6 4.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰子向上的点数是3”为事件B ,则事件A ,B 中至少有一件发生的概率是 A.512 B.12 C.712 D.345.已知△ABC 和点M 满足MA u u u r +MB u u u r +MC u u u u r = 0。

若存在实数m 使得AB u u u r +AC u u u r = m AM u u u u r 成立,则m =A. 2B. 3C. 4D. 56. 将参加夏令营的600名学生编号为:001,002…600。

2010年高考试题——数学理(湖北卷)解析

2010年高考试题——数学理(湖北卷)解析

2010年高考试题——数学理(湖北卷)解析版1.【答案】D【解析】观察图形可知3z i =+,则3211z ii i i+==-++,即对应点H (2,-1),故D 正确. 2.【答案】A【解析】画出椭圆221416x y +=和指数函数3x y =图象,可知其有两个不同交点,记为A 1、A 2,则AB 的子集应为{}{}{}1212,,,,A A A A ∅共四种,故选A.3.【答案】D【解析】根据正弦定理sin sin a b A B =可得1510sin60sin B=解得sin B ,又因为b a <,则B A <,故B 为锐角,所以cos B =,故D 正确.8.【答案】B【解析】分类讨论:若有2人从事司机工作,则方案有233318C A ⨯=;若有1人从事司机工作,则方案有123343108C C A ⨯⨯=种,所以共有18+108=126种,故B 正确 9.【答案】C【解析】曲线方程可化简为22(2)(3)4(13)x y y -+-=≤≤,即表示圆心为(2,3)半径为2的半圆,依据数形结合,当直线y x b =+与此半圆相切时须满足圆心(2,3)到直线y=x+b 距离等于2,解得11b b =+=-1b =+,当直线过(0,3)时,解得b=3,故13,b -≤所以C 正确.10.【答案】A【解析】若△ABC 为等边三角形时,即a=b=c ,则m a x ,,1m i n ,,a b c a b c b c a b c a ⎧⎫⎧⎫==⎨⎬⎨⎬⎩⎭⎩⎭则l =1;若△ABC 为等腰三角形,如a=2,b=2,c=3时,则32max ,,,min ,,23a b c a b c b c a b c a ⎧⎫⎧⎫==⎨⎨⎬⎪⎭⎩⎭⎩,此时l =1仍成立但△ABC 不为等边三角形,所以A 正确.11.【答案】6【解析】二项式展开式的通项公式为202012020)(020)r r r r r r r r T C x C x y r --+==≤≤要使系数为有理数,则r 必为4的倍数,所以r 可为0.、4、8、12、16、20共6种,故系数为有理数的项共有6项.12.【答案】5【解析】依题意,画出可行域(如图示),则对于目标函数y=2x-z , 当直线经过A (2,-1)时,z 取到最大值,max 5Z =.13.【答案】4【解析】设球半径为r ,则由3V V V +=球水柱可得33224863r r r r πππ⨯+⨯=⨯,解得r=4.14.【答案】0.4【解析】由表格可知:0.10.39, 780.190.3108.9x y x y +++=+⨯+⨯+⨯=联合解得0.4y =. 15.【答案】CD DE【解析】在Rt △ADB 中DC 为高,则由射影定理可得2CD AC CB =⋅,故CD ,即CD 长度为a,b 的几何平均数,将OC=, 222a b a b a ba CD OD +-+-==代入OD CE OC CD⋅=⋅可得CE=故2()2()a bOEa b-==+,所以ED=OD-OE=2aba b+,故DE的长度为a,b的调和平均数.。

2010年全国统一高考数学试卷(理科)(新课标)(含解析版)

2010年全国统一高考数学试卷(理科)(新课标)(含解析版)

2010 年全国统一高考数学试卷(理科)(新课标)一、选择题(共12 小题,每小题5 分,满分60 分)1.(5 分)已知集合A={x∈R||x|≤2}},,则A∩B=()A.(0,2)B.[0,2] C.{0,2} D.{0,1,2} 2.(5分)已知复数,是z 的共轭复数,则=()A.B.C.1 D.23.(5 分)曲线y=在点(﹣1,﹣1)处的切线方程为()A.y=2x+1 B.y=2x﹣1 C.y=﹣2x﹣3 D.y=﹣2x﹣2 4.(5分)如图,质点P 在半径为2 的圆周上逆时针运动,其初始位置为P0(,-),角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图象大致为()A.B.C.D.5.(5分)已知命题p1:函数y=2x﹣2﹣x 在R 为增函数,p2:函数y=2x+2﹣x 在R 为减函数,则在命题q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2 和q4:p1∧(¬p2)中,真命题是()A.q1,q3 B.q2,q3 C.q1,q4 D.q2,q46.(5分)某种种子每粒发芽的概率都为0.9,现播种了1000 粒,对于没有发芽的种子,每粒需再补种2 粒,补种的种子数记为X,则X 的数学期望为()A.100 B.200 C.300 D.4007.(5 分)如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.8.(5分)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2 或x>4} B.{x|x<0 或x>4}C.{x|x<0 或x>6} D.{x|x<﹣2 或x>2}9.(5 分)若,α是第三象限的角,则=()A.B.C.2D.﹣210.(5 分)设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为()A.πa2B.C.D.5πa211.(5 分)已知函数,若a,b,c 互不相等,且f(a)=f(b)=f(c),则abc 的取值范围是()1 n +1 n A .(1,10) B .(5,6) C .(10,12) D .(20,24)12.(5 分)已知双曲线 E 的中心为原点,P (3,0)是 E 的焦点,过 P 的直线 l 与 E 相交于 A ,B 两点,且 AB 的中点为 N (﹣12,﹣15),则 E 的方程式为 ()A .B .C .D .二、填空题(共 4 小题,每小题 5 分,满分 20 分)13.(5 分)设 y=f (x )为区间[0,1]上的连续函数,且恒有 0≤f (x )≤1,可以用随机模拟方法近似计算积分,先产生两组(每组 N 个)区间[0,1]上的均匀随机数 x 1,x 2,…x N 和 y 1,y 2,…y N ,由此得到 N 个点(x i , y i )(i=1,2,…,N ),再数出其中满足 y i ≤f (x i )(i=1,2,…,N )的点数 N 1,那么由随机模拟方案可得积分的近似值为. 14.(5 分)正视图为一个三角形的几何体可以是(写出三种)15.(5 分)过点 A (4,1)的圆 C 与直线 x ﹣y=1 相切于点 B (2,1),则圆 C 的方程为.16.(5 分)在△ABC 中,D 为边 BC 上一点,BD=DC ,∠ADB=120°,AD=2,若 △ADC 的面积为,则∠BAC= .三、解答题(共 8 小题,满分 90 分)17.(12 分)设数列满足 a =2,a ﹣a =3•22n ﹣1 (1) 求数列{a n }的通项公式;(2) 令 b n =na n ,求数列{b n }的前 n 项和 S n .18.(12 分)如图,已知四棱锥 P ﹣ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为 H ,PH 是四棱锥的高,E 为 AD 中点(I ) 证明:PE ⊥BC(II ) 若∠APB=∠ADB=60°,求直线 PA 与平面 PEH 所成角的正弦值.19.(12 分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方 法从该地区调查了 500 位老年人,结果如表:性别 是否需要志愿者男 女需要 40 30 不需要160270(1) 估计该地区老年人中,需要志愿者提供帮助的比例;(2) 能否有 99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3) 根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.附:K 2=.20.(12 分)设 F 1,F 2 分别是椭圆的左、右焦点,过 F 1P (K 2≥k )0.050 0.010 0.0013.8416.63510.828斜率为1 的直线ℓ 与E 相交于A,B 两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E 的离心率;(2)设点P(0,﹣1)满足|PA|=|PB|,求E 的方程.21.(12分)设函数f(x)=e x﹣1﹣x﹣ax2.(1)若a=0,求f(x)的单调区间;(2)若当x≥0 时f(x)≥0,求a 的取值范围.22.(10 分)如图:已知圆上的弧,过C 点的圆的切线与BA 的延长线交于E 点,证明:(I)∠ACE=∠BCD.(II)BC2=BE•CD.23.(10 分)已知直线C1(t 为参数),C2(θ为参数),(I)当α=时,求C1 与C2 的交点坐标;(II)过坐标原点O 做C1 的垂线,垂足为A,P 为OA 中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.24.(10 分)设函数f(x)=|2x﹣4|+1.(I)画出函数y=f(x)的图象:(II)若不等式f(x)≤ax 的解集非空,求a 的取值范围.2010 年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题(共12 小题,每小题5 分,满分60 分)1.(5 分)已知集合A={x∈R||x|≤2}},,则A∩B=()A.(0,2)B.[0,2] C.{0,2} D.{0,1,2}【考点】1E:交集及其运算.【专题】11:计算题.【分析】先化简集合A 和B,注意集合B 中的元素是整数,再根据两个集合的交集的意义求解.【解答】解:A={x∈R||x|≤2,}={x∈R|﹣2≤x≤2},故A∩B={0,1,2}.应选D.【点评】本题主要考查集合间的交集运算以及集合的表示方法,涉及绝对值不等式和幂函数等知识,属于基础题.2.(5分)已知复数,是z 的共轭复数,则=()A.B.C.1 D.2【考点】A5:复数的运算.【分析】因为,所以先求|z|再求的值.【解答】解:由可得.另解:故选:A.【点评】命题意图:本题主要考查复数的运算,涉及复数的共轭复数知识,可以利用复数的一些运算性质可以简化运算.3.(5分)曲线y=在点(﹣1,﹣1)处的切线方程为()A.y=2x+1B.y=2x﹣1C.y=﹣2x﹣3D.y=﹣2x﹣2【考点】6H:利用导数研究曲线上某点切线方程.【专题】1:常规题型;11:计算题.【分析】欲求在点(﹣1,﹣1)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=﹣1 处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:∵y=,∴y′=,所以k=y′|x==2,得切线的斜率为2,所以k=2;﹣1所以曲线y=f(x)在点(﹣1,﹣1)处的切线方程为:y+1=2×(x+1),即y=2x+1.故选:A.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.4.(5分)如图,质点P 在半径为2 的圆周上逆时针运动,其初始位置为P0(,-),角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图象大致为()A.B.C.D.【考点】3A:函数的图象与图象的变换.【分析】本题的求解可以利用排除法,根据某具体时刻点P 的位置到到x 轴距离来确定答案.【解答】解:通过分析可知当t=0 时,点P 到x 轴距离d 为,于是可以排除答案A,D,再根据当时,可知点P 在x 轴上此时点P 到x 轴距离d 为0,排除答案B,故选:C.【点评】本题主要考查了函数的图象,以及排除法的应用和数形结合的思想,属于基础题.5.(5分)已知命题p1:函数y=2x﹣2﹣x 在R 为增函数,p2:函数y=2x+2﹣x 在R 为减函数,则在命题q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2 和q4:p1∧(¬p2)中,真命题是()A.q1,q3 B.q2,q3 C.q1,q4 D.q2,q4【考点】2E:复合命题及其真假;4Q:指数函数与对数函数的关系.【专题】5L:简易逻辑.【分析】先判断命题p1 是真命题,P2 是假命题,故p1∨p2 为真命题,(﹣p2)为真命题,p1∧(﹣p2)为真命题.【解答】解:易知p1 是真命题,而对p2:y′=2x ln2﹣ln2=ln2(),当x∈[0,+∞)时,,又ln2>0,所以y′≥0,函数单调递增;同理得当x∈(﹣∞,0)时,函数单调递减,故p2 是假命题.由此可知,q1 真,q2 假,q3 假,q4真.故选:C.【点评】只有p1 与P2 都是真命题时,p1∧p2 才是真命题.只要p1 与p2 中至少有一个真命题,p1∨p2 就是真命题.6.(5分)某种种子每粒发芽的概率都为0.9,现播种了1000 粒,对于没有发芽的种子,每粒需再补种2 粒,补种的种子数记为X,则X 的数学期望为()A.100 B.200 C.300 D.400【考点】CH:离散型随机变量的期望与方差;CN:二项分布与n 次独立重复试验的模型.【专题】11:计算题;12:应用题.【分析】首先分析题目已知某种种子每粒发芽的概率都为0.9,现播种了1000粒,即不发芽率为0.1,故没有发芽的种子数ξ服从二项分布,即ξ~B(1000,0.1).又没发芽的补种2 个,故补种的种子数记为X=2ξ,根据二项分布的期望公式即可求出结果.【解答】解:由题意可知播种了1000 粒,没有发芽的种子数ξ 服从二项分布,即ξ~B(1000,0.1).而每粒需再补种2 粒,补种的种子数记为X故X=2ξ,则EX=2Eξ=2×1000×0.1=200.故选:B.【点评】本题主要考查二项分布的期望以及随机变量的性质,考查解决应用问题的能力.属于基础性题目.7.(5 分)如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.【考点】EF:程序框图.【专题】28:操作型.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选:D.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.8.(5 分)设偶函数 f (x )满足 f (x )=2x ﹣4(x ≥0),则{x |f (x ﹣2)>0}=( ) A .{x |x <﹣2 或 x >4} B .{x |x <0 或 x >4} C .{x |x <0 或x >6}D .{x |x <﹣2 或 x >2}【考点】3K :函数奇偶性的性质与判断. 【专题】11:计算题.【分析】由偶函数 f (x )满足 f (x )=2x ﹣4(x ≥0),可得 f (x )=f (|x |)=2|x |﹣4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案. 【解答】解:由偶函数 f (x )满足 f (x )=2x ﹣4(x ≥0),可得 f (x )=f (|x |)=2|x |﹣4,则f (x﹣2)=f(|x﹣2|)=2|x﹣2|﹣4,要使|x ﹣2|>2 解得 x >4,或 x <0.应选:B .【点评】本题主要考查偶函数性质、不等式的解法以及相应的运算能力,解答本题的关键是利用偶函数的性质将函数转化为绝对值函数,从而简化计算.9.(5 分)若,α 是第三象限的角,则 =( )A .B .C .2D .﹣2【考点】GF :三角函数的恒等变换及化简求值;GW :半角的三角函数.【专题】11:计算题.【分析】将欲求式 中的正切化成正余弦,还要注意条件中的角 α 与待求式中角的差别,注意消除它们之间的不同.【解答】解:由,α是第三象限的角,∴可得,则,应选A.【点评】本题主要考查三角恒等变换中的倍角公式的灵活运用、同角的三角函数关系等知识以及相应的运算能力.10.(5 分)设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为()A.πa2B.C.D.5πa2【考点】LR:球内接多面体.【专题】11:计算题.【分析】由题意可知上下底面中心连线的中点就是球心,求出球的半径,即可求出球的表面积.【解答】解:根据题意条件可知三棱柱是棱长都为a 的正三棱柱,上下底面中心连线的中点就是球心,则其外接球的半径为,球的表面积为,故选:B.【点评】本题主要考查空间几何体中位置关系、球和正棱柱的性质以及相应的运算能力和空间形象能力.11.(5 分)已知函数,若a,b,c 互不相等,且f(a)=f(b)=f(c),则abc 的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)【考点】3A:函数的图象与图象的变换;3B:分段函数的解析式求法及其图象的作法;4H:对数的运算性质;4N:对数函数的图象与性质.【专题】13:作图题;16:压轴题;31:数形结合.【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc 的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选:C.【点评】本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力.12.(5 分)已知双曲线E 的中心为原点,P(3,0)是E 的焦点,过P 的直线l 与E 相交于A,B 两点,且AB 的中点为N(﹣12,﹣15),则E 的方程式为()A.B.C.D.【考点】KB :双曲线的标准方程;KH :直线与圆锥曲线的综合. 【专题】11:计算题;5D :圆锥曲线的定义、性质与方程.【分析】已知条件易得直线 l 的斜率为 1,设双曲线方程,及 A ,B 点坐标代入方程联立相减得x 1+x2=﹣24,根据=,可求得 a 和【解答】解:由已知条件易得直线 l 的斜率为 k=k PN =1, 设双曲线方程为,A (x 1,y 1),B (x 2,y 2),则有 ,两式相减并结合 x 1+x 2=﹣24,y 1+y 2=﹣30 得 =,从而 k==1即 4b 2=5a 2,又 a 2+b 2=9, 解得 a 2=4,b 2=5,故选:B . 【点评】本题主要考查了双曲线的标准方程.考查了学生综合分析问题和解决问题的能力.二、填空题(共 4 小题,每小题 5 分,满分 20 分) 13.(5 分)设 y=f (x )为区间[0,1]上的连续函数,且恒有 0≤f (x )≤1,可以用随机模拟方法近似计算积分 ,先产生两组(每组 N 个)区间[0,1]上的均匀随机数x1,x2,…x N 和y1,y2,…y N,由此得到N 个点(x i,y i)(i=1,2,…,N),再数出其中满足y i≤f(x i)(i=1,2,…,N)的点数N1,那么由随机模拟方案可得积分的近似值为.【考点】69:定积分的应用;CE:模拟方法估计概率;CF:几何概型.【专题】11:计算题.【分析】要求∫f(x)dx 的近似值,利用几何概型求概率,结合点数比即可得.【解答】解:由题意可知得,故积分的近似值为.故答案为:.【点评】本题考查几何概型模拟估计定积分值,以及定积分在面积中的简单应用,属于基础题.14.(5 分)正视图为一个三角形的几何体可以是三棱锥、三棱柱、圆锥(其他正确答案同样给分)(写出三种)【考点】L7:简单空间图形的三视图.【专题】21:阅读型.【分析】三棱锥一个侧面的在正视图为一条线段的情形;圆锥;四棱锥有两个侧面在正视图为线段的情形,即可回答本题.【解答】解:正视图为一个三角形的几何体可以是三棱锥、三棱柱(放倒的情形)、圆锥、四棱锥等等.故答案为:三棱锥、圆锥、三棱柱.【点评】本题主要考查三视图以及常见的空间几何体的三视图,考查空间想象能力.15.(5 分)过点A(4,1)的圆C 与直线x﹣y=1 相切于点B(2,1),则圆C 的方程为(x﹣3)2+y2=2.【考点】J1:圆的标准方程;J9:直线与圆的位置关系.【专题】16:压轴题.【分析】设圆的标准方程,再用过点A(4,1),过B,两点坐标适合方程,圆和直线相切,圆心到直线的距离等于半径,求得圆的方程.【解答】解:设圆的方程为(x﹣a)2+(y﹣b)2=r2,则(4﹣a)2+(1﹣b)2=r2,(2﹣a)2+(1﹣b)2=r2,=﹣1,解得a=3,b=0,r=,故所求圆的方程为(x﹣3)2+y2=2.故答案为:(x﹣3)2+y2=2.【点评】命题意图:本题主要考查利用题意条件求解圆的方程,通常借助待定系数法求解.16.(5 分)在△ABC 中,D 为边BC 上一点,BD=DC,∠ADB=120°,AD=2,若△ADC 的面积为,则∠BAC= 60°.【考点】HR:余弦定理.【专题】11:计算题;16:压轴题.【分析】先根据三角形的面积公式利用△ADC 的面积求得DC,进而根据三角形ABC 的面积求得BD 和BC,进而根据余弦定理求得AB.最后在三角形ABC 中利用余弦定理求得cos∠BAC,求得∠BAC 的值.【解答】解:由△ADC 的面积为可得解得,则.AB2=AD2+BD2﹣2AD•BD•cos120°=,1 n +1 n n n n n n,则=.故∠BAC=60°.【点评】本题主要考查解三角形中的边角关系及其面积等基础知识与技能,分析问题解决问题的能力以及相应的运算能力.三、解答题(共 8 小题,满分 90 分)17.(12 分)设数列满足 a =2,a ﹣a =3•22n ﹣1 (1) 求数列{a n }的通项公式;(2) 令 b n =na n ,求数列{b n }的前 n 项和 S n .【考点】8E :数列的求和;8H :数列递推式. 【专题】11:计算题.【分析】(Ⅰ)由题意得 a n +1=[(a n +1﹣a n )+(a n ﹣a n ﹣1)+…+(a 2﹣a 1)]+a 1=3(22n﹣1+22n ﹣3+…+2)+2=22(n +1)﹣1.由此可知数列{a}的通项公式为 a =22n ﹣1.(Ⅱ)由 b =na =n•22n ﹣1 知 S =1•2+2•23+3•25++n•22n ﹣1,由此入手可知答案. 【解答】解:(Ⅰ)由已知,当 n ≥1 时,a n +1=[(a n +1﹣a n )+(a n ﹣a n ﹣1)+…+(a 2﹣a 1)]+a 1=3(22n ﹣1+22n ﹣3+…+2)+2=3×+2=22(n +1)﹣1.而 a 1=2,所以数列{a n }的通项公式为 a n =22n ﹣1.(Ⅱ)由 b n =na n =n•22n ﹣1 知 S n =1•2+2•23+3•25+…+n•22n ﹣1①n n 从而 22S =1•23+2•25+…+n•22n +1② ①﹣②得(1﹣22)•S =2+23+25+…+22n ﹣1﹣n•22n +1. 即.【点评】本题主要考查数列累加法(叠加法)求数列通项、错位相减法求数列和等知识以及相应运算能力.18.(12 分)如图,已知四棱锥 P ﹣ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为 H ,PH 是四棱锥的高,E 为 AD 中点(I ) 证明:PE ⊥BC(II ) 若∠APB=∠ADB=60°,求直线 PA 与平面 PEH 所成角的正弦值.【考点】MA :向量的数量积判断向量的共线与垂直;MI :直线与平面所成的角.【专题】11:计算题;13:作图题;14:证明题;35:转化思想.【分析】以 H 为原点,HA ,HB ,HP 分别为 x ,y ,z 轴,线段 HA 的长为单位长,建立空间直角坐标系.(1) 表示,,计算,就证明 PE ⊥BC .(2) ∠APB=∠ADB=60°,求出 C ,P 的坐标,再求平面 PEH 的法向量,求向量,然后求与面 PEH 的法向量的数量积,可求直线 PA 与平面 PEH 所成角的正弦值.【解答】解:以 H 为原点,HA ,HB ,HP 分别为 x ,y ,z 轴,线段 HA 的长为单 位长,建立空间直角坐标系如图,则 A (1,0,0),B (0,1,0) (Ⅰ)设 C (m ,0,0),P (0,0,n )(m <0,n >0)则.可得.因为所以PE⊥BC.(Ⅱ)由已知条件可得m= ,n=1 ,故 C (﹣),设=(x,y,z)为平面PEH 的法向量则即因此可以取,由,可得所以直线PA 与平面PEH 所成角的正弦值为.【点评】本题主要考查空间几何体中的位置关系、线面所成的角等知识,考查空间想象能力以及利用向量法研究空间的位置关系以及线面角问题的能力.19.(12 分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500 位老年人,结果如表:性别男女是否需要志愿者需要40 30不需要160 270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P(K2≥k)0.050 0.010 0.0013.841 6.635 10.828附:K2=.【考点】BL:独立性检验.【专题】11:计算题;5I:概率与统计.【分析】(1)由样本的频率率估计总体的概率,(2)求K2的观测值查表,下结论;(3)由99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关,则可按性别分层抽样.【解答】解:(1)调查的500 位老年人中有70 位需要志愿者提供帮助,因此在该地区老年人中,需要帮助的老年人的比例的估计值为(2)K2的观测值因为9.967>6.635,且P(K2≥6.635)=0.01,所以有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关.(3)根据(2)的结论可知,该地区的老年人是否需要志愿者提供帮助与性别有关,并且从样本数据能够看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男女两层,并采取分层抽样方法比简单随机抽样方法更好.【点评】本题考查了抽样的目的,独立性检验的方法及抽样的方法选取,属于基础题.20.(12 分)设F1,F2 分别是椭圆的左、右焦点,过F1斜率为1 的直线ℓ 与E 相交于A,B 两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E 的离心率;(2)设点P(0,﹣1)满足|PA|=|PB|,求E 的方程.【考点】83:等差数列的性质;K3:椭圆的标准方程;K4:椭圆的性质;KH:直线与圆锥曲线的综合.【专题】11:计算题.【分析】(I)根据椭圆的定义可知|AF2|+|BF2|+|AB|=4a,进而根据|AF2|,|AB|,|BF2|成等差数表示出|AB|,进而可知直线l 的方程,设A(x1,y1),B(x2,y2),代入直线和椭圆方程,联立消去y,根据韦达定理表示出x1+x2 和x1x2进而根据,求得a 和b 的关系,进而求得a 和c 的关系,离心率可得.(II)设AB 的中点为N(x0,y0),根据(1)则可分别表示出x0 和y0,根据|PA|=|PB|,推知直线PN 的斜率,根据求得c,进而求得a 和b,椭圆的方程可得.【解答】解:(I)由椭圆定义知|AF2|+|BF2|+|AB|=4a,又2|AB|=|AF2|+|BF2|,得,l 的方程为y=x+c,其中.设A(x1,y1),B(x2,y2),则A、B 两点坐标满足方程组化简的(a2+b2)x2+2a2cx+a2(c2﹣b2)=0则, 因为直线 AB 斜率为 1,|AB |=|x 1﹣x 2|=,得,故 a 2=2b 2 所以 E 的离心率(I ) 设 AB 的中点为 N (x 0,y 0),由(I )知. 由|PA |=|PB |,得 k PN =﹣1,即得 c=3,从而故椭圆 E 的方程为. 【点评】本题主要考查圆锥曲线中的椭圆性质以及直线与椭圆的位置关系,涉及等差数列知识,考查利用方程思想解决几何问题的能力及运算能力21.(12 分)设函数f (x )=e x ﹣1﹣x ﹣ax 2.(1) 若 a=0,求 f (x )的单调区间;(2) 若当 x ≥0 时 f (x )≥0,求 a 的取值范围.【考点】6B :利用导数研究函数的单调性.【专题】32:分类讨论.【分析】(1)先对函数 f (x )求导,导函数大于 0 时原函数单调递增,导函数小于 0 时原函数单调递减.(2)根据 e x ≥1+x 可得不等式 f′(x )≥x ﹣2ax=(1﹣2a )x ,从而可知当 1﹣2a ≥0,即时,f′(x )≥0 判断出函数 f (x )的单调性,得到答案.【解答】解:(1)a=0 时,f (x )=e x ﹣1﹣x ,f′(x )=e x ﹣1.当 x ∈(﹣∞,0)时,f'(x )<0;当 x ∈(0,+∞)时,f'(x )>0.故f(x)在(﹣∞,0)单调减少,在(0,+∞)单调增加(II)f′(x)=e x﹣1﹣2ax由(I)知e x≥1+x,当且仅当x=0 时等号成立.故f′(x)≥x﹣2ax=(1﹣2a)x,从而当1﹣2a≥0,即时,f′(x)≥0(x≥0),而f(0)=0,于是当x≥0 时,f(x)≥0.由e x>1+x(x≠0)可得e﹣x>1﹣x(x≠0).从而当时,f′(x)<e x﹣1+2a(e﹣x﹣1)=e﹣x(e x﹣1)(e x﹣2a),故当x∈(0,ln2a)时,f'(x)<0,而f(0)=0,于是当x∈(0,ln2a)时,f (x)<0.综合得a 的取值范围为.【点评】本题主要考查利用导数研究函数性质、不等式恒成立问题以及参数取值范围问题,考查分类讨论、转化与划归解题思想及其相应的运算能力.22.(10 分)如图:已知圆上的弧,过C 点的圆的切线与BA 的延长线交于E 点,证明:(I)∠ACE=∠BCD.(II)BC2=BE•CD.【考点】N9:圆的切线的判定定理的证明;NB:弦切角.【专题】14:证明题.【分析】(I)先根据题中条件:“”,得∠BCD=∠ABC.再根据EC 是圆的切线,得到∠ACE=∠ABC,从而即可得出结论.(II)欲证BC2=BE x CD.即证.故只须证明△BDC~△ECB 即可.【解答】解:(Ⅰ)因为,所以∠BCD=∠ABC.又因为EC 与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5 分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故.即BC2=BE×CD.(10 分)【点评】本题主要考查圆的切线的判定定理的证明、弦切角的应用、三角形相似等基础知识,考查运化归与转化思想.属于基础题.23.(10 分)已知直线C1(t 为参数),C2(θ为参数),(I)当α=时,求C1 与C2 的交点坐标;(II)过坐标原点O 做C1 的垂线,垂足为A,P 为OA 中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.【考点】J3:轨迹方程;JE:直线和圆的方程的应用;Q4:简单曲线的极坐标方程;QJ:直线的参数方程;QK:圆的参数方程.【专题】15:综合题;16:压轴题.【分析】(I)先消去参数将曲线C1 与C2 的参数方程化成普通方程,再联立方程组求出交点坐标即可,(II)设P(x,y),利用中点坐标公式得P 点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线.【解答】解:(Ⅰ)当α=时,C1 的普通方程为,C2 的普通方程为x2+y2=1.联立方程组,解得C1 与C2 的交点为(1,0).(Ⅱ)C1 的普通方程为xsinα﹣ycosα﹣sinα=0①.则OA 的方程为xcosα+ysinα=0②,联立①②可得x=sin2α,y=﹣cosαsinα;A 点坐标为(sin2α,﹣cosαsinα),故当α变化时,P 点轨迹的参数方程为:,P 点轨迹的普通方程.故P 点轨迹是圆心为,半径为的圆.【点评】本题主要考查直线与圆的参数方程,参数方程与普通方程的互化,利用参数方程研究轨迹问题的能力.24.(10 分)设函数f(x)=|2x﹣4|+1.(I)画出函数y=f(x)的图象:(II)若不等式f(x)≤ax 的解集非空,求a 的取值范围.【考点】3A:函数的图象与图象的变换;7E:其他不等式的解法;R5:绝对值不等式的解法.【专题】11:计算题;13:作图题;16:压轴题.【分析】(I)先讨论x 的范围,将函数f(x)写成分段函数,然后根据分段函数分段画出函数的图象即可;(II)根据函数y=f(x)与函数y=ax 的图象可知先寻找满足f(x)≤ax 的零界情况,从而求出a 的范围.【解答】解:(Ⅰ)由于f(x)=,函数y=f(x)的图象如图所示.(Ⅱ)由函数y=f(x)与函数y=ax 的图象可知,极小值在点(2,1)当且仅当a<﹣2 或a≥ 时,函数y=f(x)与函数y=ax 的图象有交点.故不等式f(x)≤ax 的解集非空时,a的取值范围为(﹣∞,﹣2)∪[,+∞).【点评】本题主要考查了函数的图象,以及利用函数图象解不等式,同时考查了数形结合的数学思想,属于基础题.。

2010年普通高等学校招生全国统一考试(全国新课标卷)数学试题 (理科)(解析版)

2010年普通高等学校招生全国统一考试(全国新课标卷)数学试题 (理科)(解析版)

2010年普通高等学校招生全国统一考试理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,其中第II 卷第(22)-(24)题为选考题,其他题为必考题。

考生作答时,将答案答在答题卡上,在本试卷上答题无效。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1、答题前,考生务必先将自己的姓名,准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。

2、选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号,非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚。

3、请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。

4、保持卷面清洁,不折叠,不破损。

5、做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑。

参考公式:样本数据n x x x ,,21的标准差锥体体积公式s =13V Sh=其中x 为样本平均数其中S 为底面面积,h 为高柱体体积公式球的表面积,体积公式V Sh=24S R π=343V R π=其中S 为底面面积,h 为高其中R 为球的半径第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{}2,R A x x x =≤∈,{}4,Z B x =≤∈,则A B = ()(A)()0,2(B)[]0,2(C){}0,2(D){}0,1,2【答案】D【解析】{22},{0,1,2,3,4}A B={0,1,2}A x x B =-≤≤=∴⋂,,选D 命题意图:考察集合的基本运算(2)已知复数z =,z 是z 的共轭复数,则z z ⋅=()(A)14(B)12(C)1(D)2【答案】A 命题意图:考察复数的四则运算【解析】2323244i iz ===-⨯4z =,14z z ⋅=(3)曲线2xy x =+在点()1,1--处的切线方程为()(A)21y x =+(B)21y x =-(C)23y x =--(D)22y x =--【答案】A【解析】''122,|2(2)x y k y x =-=∴==+ ,切线方程为[](1)2(1)y x --=--,即21y x =+.命题意图:考察导数的几何意义(4)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为0P ,角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图像大致为()【答案】C【解析】当点P 在0P ,即0t =,P 到x。

2010年高考数学(理)试题(新课标)参考答案

2010年高考数学(理)试题(新课标)参考答案

1 2
3 。 2
(Ⅱ) C1 的普通方程为 x sin α − y cos α − sin α = 0。 A 点坐标为 sin
(
2
α − cos α sin α ) ,
故当 α 变化时,P 点轨迹的参数方程为:
1 2 sin α x = 2 (α为参数 ) 1 y = − sin α cos α 2
1 1 2 x− + y = 4 16 。 P 点轨迹的普通方程为
2
0 ,半径为 故 P 点轨迹是圆心为 ,
(24) 解:
1 4

1 的圆。 4
−2 x + 5,x < 2 f ( x) = 2 x − 3,x ≥ 2 则 函 数 (Ⅰ)由于
y = f ( x) 的图像如图所示。
3 3
3 ,0,0) 3
D(0, −
3 1 3 , 0), E ( , − , 0), P(0, 0,1) 3 2 6
设 n = ( x, y, x) 为平面 PEH 的法向量

n ⋅ HE = o, o, n ⋅ HP =
1 x− 3 y= 2 6 0 即 z=0
因此可以取 n = (1, 3, 0) , 由= PA (1, 0, −1) ,
(Ⅱ)由函数 y = f ( x) 与函数 y = ax 的图像可知,当且仅当
a≥
1 2 或 a < −2 时,函数
-5-
天骄文化培训学校
y = f ( x) 与函数 y = ax 的图像有交点。故不等式 f ( x) ≤ ax 的解集非空时,a 的取值范围

− 2) ( −∞,,
1 + ∞ 2 。

2010年湖北高考理科数学B卷试题

2010年湖北高考理科数学B卷试题
2010年高考湖北卷理科数学试题及答案
源头学子 特级教师王新敞 wxckt@
一、 选择题:本大题共10小题,每小题5分,共50分、在每小题给出的四个选项中,只有一项是满足题目要求的。
1.若i为虚数单位,图中复平面内点Z表示复数Z,则表示复数 的点是
A.26, 16, 8 B.25,17,8
C.25,16,9 D.24,17,9
7、如图,在半径为r 的园内作内接正六边形,再作正六边形的内切圆,又在此内切圆内作内接正六边形,如此无限继续下去,设 为前n个圆的面积之和,则 =
A. 2 B. C.4 D.6
8、现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。甲、乙不会开车但能从事其他三项工作,丙丁戌都能胜任四项工作,则不同安排方案的种数是
A.152 B.126 C.90 D.54
则 ,此时l=1仍成立但△ABC不为等边三角形,所以A正确.
11.【答案】6
【解析】二项式展开式的通项公式为 要使系数为有理数,则r必为4的倍数,所以r可为0.、4、8、12、16、20共6种,故系数为有理数的项共有6项.
12.【答案】5
【解析】依题意,画出可行域(如图示),
则对于目标函数y=2x-z,
5.B 【解析】本题考查了平面向量的线性运算.因为 ,所以M为 的重心.如图所示,在 中,点G是边BC 的中点,所以 ,又因为 ,所以 ,故m=3.
6.B 【解析】本题考查了系统抽样的基本方法和等差数列的基本知识.首先考虑系统抽样.从600名学生中选出50名,随机抽取的号码为003,则由系统抽样的特点,被抽取的相邻号码之间的间隔应该是 ,故被抽取的号码成等差数列.其次考虑等差数列.该等差数列是以3为首项,12为公差,则其通项公式为 .所以在第一营区的学生数需满足 ,解得 n 25,故第一营区的有25人;在第二营区的学生数需满足 ,解得可知在第二营区的学生数为17人;在第三营区的学生数需满足 ,解得可知在第三区的学生数为8人.综上可知选择B.

普通高等学校招生全国统一考试湖北数学理

普通高等学校招生全国统一考试湖北数学理

试卷类型:A 2010年普通高等学校招生全国统一考试(湖北卷)数学(理工类)本试卷共4页,三大题21小题,全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上。

并将准考证号条形码横贴在答题卡的指定位置。

在用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷、草稿纸上无效。

3.填空题和解答题的作答:用0.5毫米黑色签字笔直接在答题卡上对应的答题区域内。

答在试题卷、草稿纸上无效。

4.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. i 为虚数单位,则201111i i +⎛⎫ ⎪-⎝⎭=A.- iB.-1C. iD.12.已知{}21|log ,1,|,2U y y x x P y y x x ⎧⎫==>==>⎨⎬⎩⎭,则U C P = A. 1[,)2+∞ B. 10,2⎛⎫ ⎪⎝⎭C. ()0,+∞D. 1(,0][,)2-∞+∞3.已知函数11()cos ,f x x R θθ---∈,若()1f x ≥,则x 的取值范围为 A. |,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭ B. |22,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭C. 5{|,}66x k x k k Z ππππ+≤≤+∈ D. 5{|22,}66x k x k k Z ππππ+≤≤+∈ 4.将两个顶点在抛物线22(0)y px p =>上,另一个顶点是此抛物线焦点的正三角形个数记为n ,则A. n=0B. n=1C. n=2D. n ≥3试卷类型:A5.已知随机变量ξ服从正态分布()22N ,a ,且P(ξ<4)=0.8,则P(0<ξ<2)=A.0.6 B.0.4 C.0.3 D.0.26.已知定义在R 上的奇函数()f x 和偶函数()g x 满足()()222f x g x a a -+=-+(a >0,且0a ≠).若()2g a =,则()2f =A .2 B. 154 C. 174D. 2a 7.如图,用K 、1A 、2A 三类不同的元件连接成一个系统。

2010年湖北省高考数学试卷(理科)及答案

2010年湖北省高考数学试卷(理科)及答案

2010年湖北省高考数学试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)若i为虚数单位,图中复平面内点Z表示复数Z,则表示复数的点是()A.E B.F C.G D.H2.(5分)设集合,B={(x,y)|y=3x},则A∩B的子集的个数是()A.4 B.3 C.2 D.13.(5分)在△ABC中,a=15,b=10,A=60°,则cosB=()A.﹣B.C.﹣D.4.(5分)投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是()A.B.C.D.5.(5分)已知△ABC和点M满足.若存在实数m使得成立,则m=()A.2 B.3 C.4 D.56.(5分)将参加夏令营的600名学生编号为:001,002,…600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495住在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为()A.26,16,8,B.25,17,8 C.25,16,9 D.24,17,97.(5分)如图,在半径为r的圆内作内接正六边形,再作正六边形的内切圆,又在此内切圆内作内接正六边形,如此无限继续下去,设S n为前n个圆的面积之和,则S n=()A.2πr2 B.πr2C.4πr2 D.6πr28.(5分)现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙丁戊都能胜任四项工作,则不同安排方案的种数是()A.152 B.126 C.90 D.549.(5分)若直线y=x+b与曲线有公共点,则b的取值范围是()A.[,]B.[,3]C.[﹣1,]D.[,3] 10.(5分)记实数x1,x2,…x n中的最大数为max{x1,x2,…x n},最小数为min{x1,x2,…x n}.已知△ABC的三边边长为a、b、c(a≤b≤c),定义它的倾斜度为t=max{,,}•min{,,},x,则“t=1”是“△ABC为等边三角形”的()A.充分但不必要的条件B.必要而不充分的条件C.充要条件D.既不充分也不必要的条件二、填空题(共5小题,每小题5分,满分25分)11.(5分)在(x+)20的展开式中,系数为有理数的项共有项.12.(5分)已知z=2x﹣y,式中变量x,y满足约束条件,则z的最大值为.13.(5分)圆柱形容器内部盛有高度为8cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是cm.14.(5分)某射手射击所得环数ξ的分布列如表,已知ξ的期望Eξ=8.9,则y的值为.ξ78910P x0.10.3y 15.(5分)设a>0,b>0,称为a,b的调和平均数.如图,C为线段AB 上的点,且AC=a,CB=b,O为AB中点,以AB为直径做半圆.过点C作AB的垂线交半圆于D.连接OD,AD,BD.过点C作OD的垂线,垂足为E.则图中线段OD的长度是a,b的算术平均数,线段的长度是a,b的几何平均数,线段的长度是a,b的调和平均数.三、解答题(共6小题,满分75分)16.(12分)已知函数f(x)=cos(+x)cos(﹣x),g(x)=sin2x﹣(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)求函数h(x)=f(x)﹣g(x)的最大值,并求使h(x)取得最大值的x 的集合.17.(12分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.(Ⅰ)求k的值及f(x)的表达式.(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.18.(12分)如图,在四面体ABOC中,OC⊥OA,OC⊥OB,∠AOB=120°,且OA=OB=OC=1(Ⅰ)设为P为AC的中点,Q为AB上一点,使PQ⊥OA,并计算的值;(Ⅱ)求二面角O﹣AC﹣B的平面角的余弦值.19.(12分)已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.(Ⅰ)求曲线C的方程;(Ⅱ)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有<0?若存在,求出m的取值范围;若不存在,请说明理由.20.(13分)已知数列{a n}满足:,a n a n+1<0(n≥1),数列{b n}满足:b n=a n+12﹣a n2(n≥1).(Ⅰ)求数列{a n},{b n}的通项公式(Ⅱ)证明:数列{b n}中的任意三项不可能成等差数列.21.(14分)已知函数f(x)=ax++c(a>0)的图象在点(1,f(1))处的切线方程为y=x﹣1.(1)用a表示出b,c;(2)若f(x)≥lnx在[1,+∞)上恒成立,求a的取值范围.2010年湖北省高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2010•湖北)若i为虚数单位,图中复平面内点Z表示复数Z,则表示复数的点是()A.E B.F C.G D.H【分析】首先在图形上看出复数z的代数形式,再进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理成最简形式,在坐标系中看出对应的点.【解答】解:观察图形可知z=3+i,∴,即对应点H(2,﹣1),故选D.2.(5分)(2010•湖北)设集合,B={(x,y)|y=3x},则A∩B的子集的个数是()A.4 B.3 C.2 D.1【分析】由题意集合,B={(x,y)|y=3x},画出A,B集合所表示的图象,看图象的交点,来判断A∩B的子集的个数.【解答】解:∵集合,∴为椭圆和指数函数y=3x图象,如图,可知其有两个不同交点,记为A1、A2,则A∩B的子集应为∅,{A1},{A2},{A1,A2}共四种,故选A.3.(5分)(2010•湖北)在△ABC中,a=15,b=10,A=60°,则cosB=()A.﹣B.C.﹣D.【分析】根据正弦定理先求出sinB的值,再由三角形的边角关系确定∠B的范围,进而利用sin2B+cos2B=1求解.【解答】解:根据正弦定理可得,,解得,又∵b<a,∴B<A,故B为锐角,∴,故选D.4.(5分)(2010•湖北)投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是()A.B.C.D.【分析】根据题意,“事件A,B中至少有一件发生”与“事件A、B一个都不发生”互为对立事件,由古典概型的计算方法,可得P(A)、P(B),进而可得P(),由对立事件的概率计算,可得答案.【解答】解:根据题意,“事件A,B中至少有一件发生”与“事件A、B一个都不发生”互为对立事件,由古典概型的计算方法,可得P(A)=,P(B)=,则P()=(1﹣)(1﹣)=,则“事件A,B中至少有一件发生”的概率为1﹣=;故选C.5.(5分)(2010•湖北)已知△ABC和点M满足.若存在实数m 使得成立,则m=()A.2 B.3 C.4 D.5【分析】解题时应注意到,则M为△ABC的重心.【解答】解:由知,点M为△ABC的重心,设点D为底边BC的中点,则==,所以有,故m=3,故选:B.6.(5分)(2010•湖北)将参加夏令营的600名学生编号为:001,002,…600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495住在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为()A.26,16,8,B.25,17,8 C.25,16,9 D.24,17,9【分析】根据系统抽样的方法的要求,先随机抽取第一数,再确定间隔.【解答】解:依题意可知,在随机抽样中,首次抽到003号,以后每隔12个号抽到一个人,则分别是003、015、027、039构成以3为首项,12为公差的等差数列,故可分别求出在001到300中有25人,在301至495号中共有17人,则496到600中有8人.故选B7.(5分)(2010•湖北)如图,在半径为r的圆内作内接正六边形,再作正六边形的内切圆,又在此内切圆内作内接正六边形,如此无限继续下去,设S n为前n 个圆的面积之和,则S n=()A.2πr2 B.πr2C.4πr2 D.6πr2【分析】依题意可知,图形中内切圆面积依次为:,由此可以求出则S n的值.【解答】解:依题意分析可知,图形中内切圆半径分别为:r,r•cos30°,(r•cos30°)cos30°,(r•cos30°,cos30°)cos30°,即,则面积依次为:,所以.故选C.8.(5分)(2010•湖北)现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙丁戊都能胜任四项工作,则不同安排方案的种数是()A.152 B.126 C.90 D.54【分析】根据题意,按甲乙的分工情况不同分两种情况讨论,①甲乙一起参加除了开车的三项工作之一,②甲乙不同时参加一项工作;分别由排列、组合公式计算其情况数目,进而由分类计数的加法公式,计算可得答案.【解答】解:根据题意,分情况讨论,①甲乙一起参加除了开车的三项工作之一:C31×A33=18种;②甲乙不同时参加一项工作,进而又分为2种小情况;1°丙、丁、戊三人中有两人承担同一份工作,有A32×C32×A22=3×2×3×2=36种;2°甲或乙与丙、丁、戊三人中的一人承担同一份工作:A32×C31×C21×A22=72种;由分类计数原理,可得共有18+36+72=126种,故选B.9.(5分)(2010•湖北)若直线y=x+b与曲线有公共点,则b的取值范围是()A.[,]B.[,3]C.[﹣1,]D.[,3]【分析】本题要借助图形来求参数b的取值范围,曲线方程可化简为(x﹣2)2+(y﹣3)2=4(1≤y≤3),即表示圆心为(2,3)半径为2的半圆,画出图形即可得出参数b的范围.【解答】解:曲线方程可化简为(x﹣2)2+(y﹣3)2=4(1≤y≤3),即表示圆心为(2,3)半径为2的半圆,如图依据数形结合,当直线y=x+b与此半圆相切时须满足圆心(2,3)到直线y=x+b 距离等于2,即解得或,因为是下半圆故可知(舍),故当直线过(0,3)时,解得b=3,故,故选D.10.(5分)(2010•湖北)记实数x1,x2,…x n中的最大数为max{x1,x2,…x n},最小数为min{x1,x2,…x n}.已知△ABC的三边边长为a、b、c(a≤b≤c),定义它的倾斜度为t=max{,,}•min{,,},x,则“t=1”是“△ABC为等边三角形”的()A.充分但不必要的条件B.必要而不充分的条件C.充要条件D.既不充分也不必要的条件【分析】观察两条件的互推性即可求解.【解答】解:若△ABC为等边三角形时,即a=b=c,则则t=1;假设△ABC为等腰三角形,如a=2,b=2,c=3时,则,此时t=1仍成立,但△ABC不为等边三角形,所以“t=1”是“△ABC为等边三角形”的必要而不充分的条件.故选B.二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2010•湖北)在(x+)20的展开式中,系数为有理数的项共有6项.【分析】利用二项展开式的通项公式求出展开式的第r+1项,系数为有理数,r 必为4的倍数.【解答】解:二项式展开式的通项公式为要使系数为有理数,则r必为4的倍数,所以r可为0,4,8,12,16,20共6种,故系数为有理数的项共有6项.故答案为612.(5分)(2010•湖北)已知z=2x﹣y,式中变量x,y满足约束条件,则z的最大值为5.【分析】先根据约束条件画出可行域,设z=2x﹣y,再利用z的几何意义求最值,只需求出直线z=2x﹣y过可行域内的点A时,从而得到z=2x﹣y的最大值即可.【解答】解:依题意,画出可行域(如图示),则对于目标函数y=2x﹣z,当直线经过A(2,﹣1)时,z取到最大值,Z max=5.故答案为:5.13.(5分)(2010•湖北)圆柱形容器内部盛有高度为8cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是4cm.【分析】设出球的半径,三个球的体积和水的体积之和,等于柱体的体积,求解即可.【解答】解:设球半径为r,则由3V球+V水=V柱可得3×,解得r=4.故答案为:414.(5分)(2010•湖北)某射手射击所得环数ξ的分布列如表,已知ξ的期望Eξ=8.9,则y的值为0.4.ξ78910P x0.10.3y【分析】根据分布列的概率之和是1,得到关于x和y之间的一个关系式,由变量的期望值,得到另一个关于x和y的关系式,联立方程,解出要求的y的值.【解答】解:由表格可知:x+0.1+0.3+y=1,7x+8×0.1+9×0.3+10×y=8.9解得y=0.4.故答案为:0.4.15.(5分)(2010•湖北)设a>0,b>0,称为a,b的调和平均数.如图,C为线段AB上的点,且AC=a,CB=b,O为AB中点,以AB为直径做半圆.过点C作AB的垂线交半圆于D.连接OD,AD,BD.过点C作OD的垂线,垂足为E.则图中线段OD的长度是a,b的算术平均数,线段CD的长度是a,b的几何平均数,线段DE的长度是a,b的调和平均数.【分析】在直角三角形中,由DC为高,根据射影定理可得CD2=AC•CB,变形两边开方,得到CD长度为a,b的几何平均数;根据a,b与OC之间的关系,表示出OC的长度,根据直角三角形OCE和直角三角形CDE之间边的关系得到CE 的长,得到OE进而ED,得到结果.【解答】解:在Rt△ADB中DC为高,则由射影定理可得CD2=AC•CB,∴,即CD长度为a,b的几何平均数,将OC=代入OD•CE=OC•CD可得故,∴ED=OD﹣OE=,∴DE的长度为a,b的调和平均数.故选CD;DE三、解答题(共6小题,满分75分)16.(12分)(2010•湖北)已知函数f(x)=cos(+x)cos(﹣x),g(x)=sin2x﹣(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)求函数h(x)=f(x)﹣g(x)的最大值,并求使h(x)取得最大值的x 的集合.【分析】(Ⅰ)对于求函数f(x)的最小正周期,可以先将函数按照两角和,两角差的余弦公式展开后,再利用降幂公式化成一个角一个函数的形式后,用公式T=周期即可求出.(Ⅱ)对于函数h(x)=f(x)﹣g(x),把f(x)与g(x)解析式代入后,依照两角和余弦公式的逆用化成一个角一个函数为h(x)=cos(2x+),由于定义域为全体实数R,故易知最值为,而此时角2x+应为x轴正半轴的所有角的取值,即2x+=2kπ,k∈Z.由此确定角x的取值几何即可.【解答】解:(1)f(x)=cos(+x)cos(﹣x)=(cosx﹣sinx)(cosx+sinx)=cos2x﹣=﹣=cos2x﹣,∴f(x)的最小正周期为=π(2)h(x)=f(x)﹣g(x)=cos2x﹣sin2x=(cos2x﹣sin2x)=(cos cox2x﹣sin sin2x)=cos(2x+)∴当2x+=2kπ,k∈Z,即x=kπ﹣,k∈Z时,h(x)取得最大值,且此时x取值集合为{x|x=kπ﹣,k∈Z}17.(12分)(2010•湖北)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.(Ⅰ)求k的值及f(x)的表达式.(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.【分析】(I)由建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=,若不建隔热层,每年能源消耗费用为8万元.我们可得C(0)=8,得k=40,进而得到.建造费用为C1(x)=6x,则根据隔热层建造费用与20年的能源消耗费用之和为f(x),我们不难得到f(x)的表达式.(II)由(1)中所求的f(x)的表达式,我们利用导数法,求出函数f(x)的单调性,然后根据函数单调性易求出总费用f(x)的最小值.【解答】解:(Ⅰ)设隔热层厚度为x cm,由题设,每年能源消耗费用为.再由C(0)=8,得k=40,因此.而建造费用为C1(x)=6x,最后得隔热层建造费用与20年的能源消耗费用之和为(Ⅱ),令f'(x)=0,即.解得x=5,(舍去).当0<x<5时,f′(x)<0,当5<x<10时,f′(x)>0,故x=5是f(x)的最小值点,对应的最小值为.当隔热层修建5cm厚时,总费用达到最小值为70万元.18.(12分)(2010•湖北)如图,在四面体ABOC中,OC⊥OA,OC⊥OB,∠AOB=120°,且OA=OB=OC=1(Ⅰ)设为P为AC的中点,Q为AB上一点,使PQ⊥OA,并计算的值;(Ⅱ)求二面角O﹣AC﹣B的平面角的余弦值.【分析】解法一:(1)要计算的值,我们可在平面OAB内作ON⊥OA交AB 于N,连接NC.则根据已知条件结合平面几何中三角形的性质我们易得NB=ON=AQ,则易求出的值.(2)要求二面角O﹣AC﹣B的平面角的余弦值,我们可连接PN,PO,根据三垂线定理,易得∠OPN为二面角O﹣AC﹣B的平面角,然后解三角形OPN得到二面角O﹣AC﹣B的平面角的余弦值.解法二:取O为坐标原点,分别以OA,OC所在的直线为x轴,z轴,建立空间直角坐标系O﹣xyz,我们易根据已知给出四面体中各点的坐标,利用向量法进行求解,(1)由A、Q、B三点共线,我们可设,然后根据已知条件,构造关于λ的方程,解方程即可得到λ的值,即的值;(2)要求二面角O﹣AC﹣B的平面角的余弦值,我们可以分别求出平面OAC及平面ABC的法向量,然后根据求二面角O﹣AC﹣B的平面角的余弦值等于两个法向量夹角余弦的绝对值进行求解.【解答】解:法一:(Ⅰ)在平面OAB内作ON⊥OA交AB于N,连接NC.又OA⊥OC,∴OA⊥平面ONC∵NC⊂平面ONC,∴OA⊥NC.取Q为AN的中点,则PQ∥NC.∴PQ⊥OA在等腰△AOB中,∠AOB=120°,∴∠OAB=∠OBA=30°在Rt△AON中,∠OAN=30°,∴在△ONB中,∠NOB=120°﹣90°=30°=∠NBO,∴NB=ON=AQ.∴解:(Ⅱ)连接PN,PO,由OC⊥OA,OC⊥OB知:OC⊥平面OAB.又ON⊂平面OAB,∴OC⊥ON又由ON⊥OA,ON⊥平面AOC.∴OP是NP在平面AOC内的射影.在等腰Rt△COA中,P为AC的中点,∴AC⊥OP根据三垂线定理,知:∴AC⊥NP∴∠OPN为二面角O﹣AC﹣B的平面角在等腰Rt△COA中,OC=OA=1,∴在Rt△AON中,,∴在Rt△PON中,.∴解法二:(I)取O为坐标原点,分别以OA,OC所在的直线为x轴,z轴,建立空间直角坐标系O﹣xyz(如图所示)则∵P为AC中点,∴设,∵.∴,∴.∵,∴即,.所以存在点使得PQ⊥OA且.(Ⅱ)记平面ABC的法向量为=(n1,n2,n3),则由,,且,得,故可取又平面OAC的法向量为=(0,1,0).∴cos<,>=.两面角O﹣AC﹣B的平面角是锐角,记为θ,则19.(12分)(2010•湖北)已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.(Ⅰ)求曲线C的方程;(Ⅱ)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有<0?若存在,求出m的取值范围;若不存在,请说明理由.【分析】(Ⅰ)设P(x,y)是曲线C上任意一点,然后根据等量关系列方程整理即可.(Ⅱ)首先由于过点M(m,0)的直线与开口向右的抛物线有两个交点A、B,则设该直线的方程为x=ty+m(包括无斜率的直线);然后与抛物线方程联立方程组,进而通过消元转化为一元二次方程;再根据韦达定理及向量的数量积公式,实现•<0的等价转化;最后通过m、t的不等式求出m的取值范围.【解答】解:(Ⅰ)设P(x,y)是曲线C上任意一点,那么点P(x,y)满足:化简得y2=4x(x>0).(Ⅱ)设过点M(m,0)(m>0)的直线l与曲线C的交点为A(x1,y1),B(x2,y2).设l的方程为x=ty+m,由得y2﹣4ty﹣4m=0,△=16(t2+m)>0,于是①又.⇔(x1﹣1)(x2﹣1)+y1y2=x1x2﹣(x1+x2)+1+y1y2<0②又,于是不等式②等价于③由①式,不等式③等价于m2﹣6m+1<4t2④对任意实数t,4t2的最小值为0,所以不等式④对于一切t成立等价于m2﹣6m+1<0,解得.由此可知,存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有,且m的取值范围.20.(13分)(2010•湖北)已知数列{a n}满足:,a n a n+1<0(n≥1),数列{b n}满足:b n=a n+12﹣a n2(n≥1).(Ⅰ)求数列{a n},{b n}的通项公式(Ⅱ)证明:数列{b n}中的任意三项不可能成等差数列.【分析】(1)对化简整理得,令c n=1﹣a n2,进而可推断数列{c n}是首项为,公比为的等比数列,根据等比数列通项公式求得c n,则a2n可得,进而根据a n a n+1<0求得a n.(2)假设数列{b n}存在三项b r,b s,b t(r<s<t)按某种顺序成等差数列,由于数列{b n}为等比数列,于是有b r>b s>b t,则只有可能有2b s=b r+b t成立,代入通项公式,化简整理后发现等式左边为2,右边为分数,故上式不可能成立,导致矛盾.【解答】解:(Ⅰ)由题意可知,令c n=1﹣a n2,则又,则数列{c n}是首项为,公比为的等比数列,即,故,又,a n a n+1<0故因为=,故(Ⅱ)假设数列{b n}存在三项b r,b s,b t(r<s<t)按某种顺序成等差数列,由于数列{b n}是首项为,公比为的等比数列,于是有2b s=b r+b t成立,则只有可能有2b r=b s+b t成立,∴化简整理后可得,2=()r﹣s+()t﹣s,由于r<s<t,且为整数,故上式不可能成立,导致矛盾.故数列{b n}中任意三项不可能成等差数列.21.(14分)(2010•湖北)已知函数f(x)=ax++c(a>0)的图象在点(1,f (1))处的切线方程为y=x﹣1.(1)用a表示出b,c;(2)若f(x)≥lnx在[1,+∞)上恒成立,求a的取值范围.【分析】(Ⅰ)根据导数的几何意义求出函数f(x)在x=1处的导数,从而求得切线的斜率,以及切点在函数f(x)的图象上,建立方程组,解之即可;(Ⅱ)先构造函数g(x)=f(x)﹣lnx=ax++1﹣2a﹣lnx,x∈[1,+∞),利用导数研究g(x)的最小值,讨论a的范围,分别进行求解即可求出a的取值范围.【解答】解:(Ⅰ),则有,解得.(Ⅱ)由(Ⅰ)知,,令g(x)=f(x)﹣lnx=ax++1﹣2a﹣lnx,x∈[1,+∞)则g(1)=0,(i)当,若,则g′(x)<0,g(x)是减函数,所以g(x)<g(1)=0,f(x)>lnx,故f(x)≤lnx在[1,+∞)上恒不成立.(ii)时,若f(x)>lnx,故当x≥1时,f(x)≥lnx综上所述,所求a的取值范围为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年普通高等学校招生全国统一考试(湖北卷)数学(理工类)一、选择题:本大题共10小题,每小题5分,共50 分.1.若i 为虚数单位,图中复平面内点Z表示复数z,则表示复数1zi的点是A. E B. FC. GD. H2.设合集A={(x,y)|24x+216y=1},B={(x,y)|y=3x},则BA 的子集的个数是A.4B.3C.2D.13.在△ABC中,a=15,b=10 ,A=60度,则cosB=A. -223B.223C.-63D.634.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是A.512B.12C.712D.345.已知△ABC和点M满足MA+MB+MC=0.若存在实数m使得AB+AC=m AM成立,则m=A.2 B.3 C.4 D.56.将参加夏令营的600名学生编号为:001,002…600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第I 营区,从301到495在第II营区,从496到600在第III营区.三个营区被抽中的人数依次为A.26,16,8 B.25,17,8 C.25,16,9 D.24,17,9注:考查系统抽样的概念,这里一定要弄清楚抽取的规则,属于简单题。

7.如图,在半径为r的圆内作内接正六边形,再作正六边形的内切圆,又在此内切圆内作内接正六边形,如此无限继续下去,设ns为前n个圆的面积之和,则n n s ∞→lim =A .22r π B .283rπC .24r π D .6r π8.现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。

甲、乙不会开车但能从事业其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是 A .152 B .126 C .90 D .549.若直线b x y +=与曲线243x x y --=有公共点,则b 的取 值范围是A .[1,122]-+B . [122,122]-+C . ]3,221[-D .[12,3]-10.记实数12,,x x …,n x 中的最大数为max {12,,x x …,n x }, 最小数为min {12,,x x …,n x }.已知△ABC 的三边边长为,,a b c (a b c ≤≤), 定义它的倾斜度为L =max {,,a b c b c a }⨯min {,,a b cb c a},则“L =1” 是“△ABC 为等边三角形“的A .必要而不充分的条件B .充分而不必要的条件C .充要条件D .既不充分也不必要的条件二、填空题:本大题共5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上,一题两空的题,其答案按先后次序填写.答错位置,书写不清,模棱两可均不得分.11.在204(3)x y +的展开式中,系数为有理数的项共有 项.12.已知Z =y x -2,式中变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤≥+≤21x y x x y ,则Z 的最大值=_________;13.圆柱形容器内部盛有高度为8cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示)。

则球的半径是 cm . ξ789 10 p x 0.1 0.3y的值为 .15.设0,0a b >>,则2aba b+为,a b 的调和平均数。

如图,C 为线段AB 上的点,AC =a ,CB =b ,O为AB 的中点,以AB为直径作半圆。

过点C 做AB 的垂线交半圆于D,连结OD ,AD ,BD 。

过点C做OD 的垂线,垂足为E 。

则图中线段OD的长度为,a b 的算术平均数,线段 的长度是,a b 的几何平均数,线段 的长度是,a b 的调和平均数.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤。

16.(本小题满分12分) 已知函数f (x )=cos (3x π+)cos (3x π-),g (x )=12sin2x -14. (1)求函数f (x )的最小正周期;(2)求函数h (x )=f (x )-g (x )的最大值,并求使h (x )取得最大值的x 的集合。

17.(本小题满分12分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的房顶和外墙需要建造隔热层,某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元,该建筑物每年的能源消耗费用为C (单位:万元)与隔热层厚度x (单位:cm )满足关系:C (x )=35kx +(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元。

设f (x )为隔热层建造费用与 20年的能源消耗费用之和。

(Ⅰ)求k 的值及f(x)的表达式;(Ⅱ)隔热层修建多厚时,总费用f (x )达到最小,并求最小值。

18.(本小题满分12分)如图,在四面体ABOC 中,OC ⊥OA ,OC ⊥OB .∠AOB =120,且OA =OB =OC =1.(1)设P 为AC 的中点,证明:在AB 上存在一点Q ,使PQ ⊥OA ,并计算ABAQ的值; (2)求二面角O -AC -B 的平面角的余弦值.19.(本小题满分12分)已知一条曲线C 在y 轴右边,C 上每一点到点F (1,0)的距离减去它到y 轴距离的差都是1.(1)求曲线C 的方程;(2)是否存在正数m ,对于过点M (m ,0)且与曲线C 有两个交点A ,B 的任一直线,都有FA ·FB <0?若存在,求出m 的取值范围;若不存在,请说明理由.20.(13分)数列{n a }满足:1a =21,n n a a -++1)1(31=11)1(2+-+n n a a ,n a 1+n a <0.数列{n b }满足:n b =21+n a -2n a )1(≥n .(1)求数列{n a }、{n b }的通项公式;(2)求证:数列{n b }中的任意三项不可能成等差数列. 21.(本小题满分14分) 已知函数)(x f =ax +c xb+)0(>a 的图像在点(1,f (1))处的切线方程为y =x -1.(1)用a 表示出b ,c ;(2)若)(x f ≥x ln 在[1,+∞)上恒成立,求a 的取值范围;(3)证明:11123+++…+>n 1ln(1)(1)2(1)n n n n ++≥+.2010高考——湖北数学(理工类)一、选择题:本大题共10小题,每小题5分,共50 分.1.若i 为虚数单位,图中复平面内点Z表示复数z,则表示复数1zi+的点是A. E B. FC. GD. H解:由z=3+i⇒1zi+=iiiiii-=-=-+=++22242)1)(3(13,所以选D.注:考查了两个知识点,一个是复数在复平面的表示,及复数的简单运算,我们知道,复数的除法只需要分母乘以其共轭即可得到答案,属于简单题。

2.设合集A={(x,y)|24x+216y=1},B={(x,y)|y=3x},则BA 的子集的个数是A.4B.3C.2D.1解:选A.注:考查数形结合的思想,即椭圆与指数函数的交点问题,及子集的有关性质,属于简单题3.在△ABC中,a=15,b=10 ,A=60度,则cosB=A. -22B.22C.-63 D.63解:由正弦定理:⇒=BbA a sin sin 33sin sin 1060sin 150=⇒=B B 36cos -=⇒B ,或36cos =B . ∵b =10<a =15,∴B <A 36cos =⇒B ,所以选D .注:考查三角函数的简单运算,利用正弦定理得出sin B 的值,然后得出cos B 的值,这里需要判断值的正负,利用大边对大角,即可得出答案,属于简单题。

4.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰子向上的点数是3”为事件B ,则事件A ,B 中至少有一件发生的概率是A .512 B .12 C .712 D .34解:21)(=A P ,65)(=B P ⇒事件A ,B 中至少有一件发生的概率=1-A P (·)B =1-)211(-·)651(-=712,选C .注:考查独立事件的运算,我们知道两种独立事件的概率等于各自的概率加上两种同时发生的概率,或者用全概率减去都不发生得概率即可得出答案,属于简单题。

5.已知△ABC 和点M 满足MA +MB +MC =0.若存在实数m 使得AB +AC =m AM 成立,则m = A .2 B .3C .4D .5解:由MA +MB +MC =0⇒点M 是△ABC 的重心; 由向量的平行四边形合成法则:AB +AC =AD ; 由△ABC 的重心性质:=AM 32AO =32·(21·AD )=31·AD ⇒ m =3,所以选B . 注:考查向量的运算,我们从条件中可以得到m 点为三角形的重心,根据重心的坐标公式,我们即可得到答案,属于中等题。

6.将参加夏令营的600名学生编号为:001,002…600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第I 营区,从301到495在第II 营区,从496到600在第III 营区.三个营区被抽中的人数依次为A .26,16,8B .25,17,8C .25,16,9D .24,17,9 解:由600名学生中抽取一个容量为50的样本⇒抽取“比例”=12160050=; ∵随机抽得的号码为003,得系统抽样规则为:312+k (0=k ,1,2,…); 所以:第I 营区(从001到300)抽取的号码为:003,015,…,291,共25人; 第II 营区(从301到495)抽取的号码为:303,315,…,495,共17人; 第III 营区抽取的人数为:50-25-17=8人.故选B.注:考查系统抽样的概念,这里一定要弄清楚抽取的规则,属于简单题。

7.如图,在半径为r 的圆内作内接正六边形,再作正六边形的内切圆,又在此内切圆内作内接正六边形,如此无限继续下去,设n s 为前n 个圆的面积之和,则n n s ∞→lim =A .22r π B .283rπC .24r π D .6r π解:圆的面积构成以:21a r π=为首项,以4330cos 02==q 为公比的等比数列,则nn s ∞→lim =4312-r π=24r π,所以选C.注:考查极限的性质及运算,从第一个圆的半径开始推第二个圆的半径,然后得到圆的面积是成等比数列的,所以根据等比数列的求和公式即可得到答案。

相关文档
最新文档