纳米二氧化钛光催化材料

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.8
-1 ENHE
CdS
ZnO
TiO2 SrTiO3
0
Fe2O3
WO3
1 Si
2 ZnS
3
SnO2
H+/H2
O2/H2O
4
.
各种常用半导体的能带宽度和能带边缘电位示意图(pH = 0)
➢常见的光催化材料
photocatalyst Ebg(eV)
ZnO在水中不稳定,会在 粒子表面生成Zn(OH)2
N型半导体中电子转移示意图
C:\Documents and Settings\Administrator\桌面 \03_02_08_1.Mpeg.swf桌面 \03_02_08_1.Mpeg.swf
PN节
C:\Documents and Settings\Administrator\桌面 \03_02_09_1.swf桌面\03_02_09_1.swf C:\Documents and Settings\Administrator\桌面 \03_02_09_2.swf桌面\03_02_09_2.swf
➢ TiO2光催化材料的特性
优缺点
1. 原料来源丰富,廉价。但光致电子和空穴的分离转移速 度慢,复合率高,导致光催化量子效率低
类缺陷,使电子和空穴束缚在其周围,成为捕获电子和空穴的陷 阱,产生局域化的电子态,在禁带中引入相应电子态的能级。N 型半导体的缺陷能级Ed靠近导带,P型半导体的Ea靠近价带。
导带
Ec Ed
Ev
价带
N型半导体的能级
导带
Ec
Ea Ev
价带
P型半导体的能级
P型半导体中电子转移示意图
C:\Documents and Settings\Administrator\桌 面\03_02_07_1.swf桌面\03_02_07_1.swf
➢光催化技术的发展历史
1972年,Fujishima 在N-型半导体TiO2电极上发现 了水的光催化分解作用,从而开辟了半导体光催化这 一新的领域。
1977年,Yokota T等发现了光照条件下,TiO2对环 丙烯环氧化具有光催化活性,从而拓宽了光催化反应 的应用范围,为有机物的氧化反应提供了一条新思路。
➢为什么要用纳米半导体光催化剂?(量子限域效应)
粒子半导体
团簇(表面界面效应)
导带
///////////////////////////////////////
浅陷阱
E0

深陷阱

///////////////////////////////////////
价带 距离
- -
非定域分子轨道
— 表面态 深陷阱
ac
Lengths of Ti-O bond Eg/eV
/nm
anatase 3.84 Tetragonal 5.27 9.37 0.195 3.2 system
rutile 4.22 Tetragonal 9.05 5.8 0.199
3
system
brookite 4.13 Rhombic system
纳米TiO2是一种新型的无机金属氧化物材料,它是一种N型半导体材料,由
于具有较大的比表面积和合适的禁带宽度,因此具有光催化氧化降解一些化合物
的能力,纳米TiO2具有优异的光催化活性,并且价格便宜,无毒无害等优点因此
被广泛的应用。
纳米TiO2粉体
半导体是指电导率在金属电导率(约104~106Ω/cm)和电 介质电导率( <1-10 Ω/cm)之间的物质,一般的它的禁带宽 度Eg小于3eV。
半导体
本征半导体(纯的半导体,不含有任何杂质,禁带中不存在 半导体电子的状态,即缺陷能级)
掺杂半导体
N型半导体 (正电荷中心起提供电子的作用, 依靠自由电子进行导电)
P型半导体(负电荷中心起提供电子的作用, 依靠空穴进行导电)
半导体的能带结构
导带
Eg< 3eV
禁带 价带
实际半导体中,由于半导体材料中不可避免地存在杂质和各
➢锐钛矿相和金红石相TiO2的能带结构
CB/e-
0.2eV CB/e-
两者的价带位置相同,光生 空穴具用相同的氧化能力;但
锐钛矿相导带的电位更负, 光生电子还原能力更强
3.2eV VB/h+
3.0eV VB/h+
混晶效应:锐钛矿相与金红 石相混晶氧化钛中,锐钛矿 表面形成金红石薄层,这种 包覆型复合结构能有效地提 高电子-空穴的分离效率
4.可以利用太阳能作为光源激活光催化剂
5.结构简单,操作容易控制,氧化能力强,无二次污染
➢TiO2的结构与性质
TiO6
Ti
O
金红石型
锐钛矿型
TiO2晶型结构示意图
➢TiO2晶体的基本物性
Crystal Relative Type of structures density lattice
Lattice constant
近年来,光催化技术在环保、卫生保健、自洁净 等方面的应用研究发展迅速,半导体光催化成为国际 上最活跃的研究领域之一。
➢TiO2光催化剂的优点
1.水中所含多种有机污染物可被完全降解成CO2,H2O等, 无机污染物被氧化或还原为无害物
2.不需要另外的电子受体
3.合适的光催化剂具有廉价无毒,稳定及可重复利用等优 点
深陷阱 — 表面态
直径
非定域分子轨道
大的半导体粒子和微粒(分子簇)的空间电子状态
原子 轨道
N=1
分子 轨道
N=2
簇物
N=10
量子化 粒子
半导体
N=2000 N>>2000
LUMO




价 带
HOMO
半导体能带宽度与粒子大小N(Å)的关系示意图
1.1 2.2
2.4 3. 2 2.8 3.03
3. 2 3.6
纳米TiO2光催化剂简介※ 纳米TiO2光催化剂的制备※ 纳米TiO2光催化剂的表征 纳米TiO2光催化剂的应用 总结
纳米TiO2光催化剂简介
➢什么是多相光催化剂?
多相光催化是指在有光参与的情况下,发生在催化剂及表面吸附物(如H2O, O2分子和被分解物等)多相之间的一种光化学反应。
光催化反应是光和物质之间相互作用的多种方式之一,是光反应和催化反应 的融合,是光和催化剂同时作用下所进行的化学反应。
photocatalyst Ebg(eV)
Si
1.1
TiO2(Rutile)
3.0
ቤተ መጻሕፍቲ ባይዱWO3
2.7
ZnS
3.7
SiC
3.0
Fe2O3
2.2
铁的氧化物会发生阴极光腐蚀
ZnO
3.2
TiO2(Anatase)
3.2
CdS
2.4
SnO2
3.8
CdSe
1.7
α-Fe2O3
3.1
金属硫化物在水溶液中不稳定, 会发生阳极光腐蚀,且有毒!
相关文档
最新文档