纳米二氧化钛材料的物理特性
光催化纳米二氧化钛 与光照的关系
光催化纳米二氧化钛与光照的关系光催化纳米二氧化钛与光照的关系光催化纳米二氧化钛是一种应用广泛的光催化材料,其性质与光照密切相关。
光照可以提供能量激发纳米二氧化钛中的电子和空穴,从而促进催化反应的进行。
本文将从纳米二氧化钛的结构和性质入手,探讨光照对其催化效果的影响。
我们来了解一下纳米二氧化钛的基本特性。
纳米二氧化钛是一种具有高度结晶性的半导体材料,具有优良的光催化性能。
其晶体结构为四方晶系,晶格中的氧原子围绕着钛原子排列形成三维网状结构。
而纳米二氧化钛的晶粒尺寸通常在1-100纳米之间,具有较大的比表面积和较高的光吸收率。
这使得纳米二氧化钛能够有效地吸收光能并产生电子空穴对。
在光照条件下,纳米二氧化钛表面被吸收的光子能量可以激发其原子或分子中的电子从价带跃迁到导带,形成电子空穴对。
这些电子和空穴对具有高度的活性,可以参与催化反应。
光照可以提供足够的能量,使得纳米二氧化钛中的电子和空穴得以激发,从而促进光催化反应的进行。
光照还可以改变纳米二氧化钛的表面状态,进一步影响其催化性能。
光照下,纳米二氧化钛表面的电荷状态和氧含量会发生变化,从而改变其表面活性位点的密度和分布。
这些表面活性位点可以吸附反应物分子,提供催化反应所需的活化能。
因此,光照可以调控纳米二氧化钛的表面性质,从而影响其催化效果。
光照条件下的纳米二氧化钛还可以发生光生电化学反应。
在光照条件下,纳米二氧化钛表面吸附的水分子可以被光激发产生电子和空穴。
这些电子和空穴可以在纳米二氧化钛表面发生氧化还原反应,从而促进水的分解或有机物的降解。
光生电化学反应是光催化过程中的一个重要环节,光照的强度和波长对其效果有着重要影响。
需要注意的是,光照强度和波长对光催化纳米二氧化钛的影响是复杂的。
过强的光照会导致电子和空穴的复合速率增加,从而降低光催化反应的效率。
而不同波长的光照对纳米二氧化钛的激发效果也有差异,不同催化反应所需的光照条件也不尽相同。
因此,合理选择光照条件对于光催化纳米二氧化钛的催化效果至关重要。
纳米二氧化钛简介
纳米二氧化钛一、简介纳米二氧化钛是金红石型白色疏松粉末,屏蔽紫外线作用强,有良好的分散性和耐候性。
可用于化妆品、功能纤维、塑料、涂料、油漆等领域,作为紫外线屏蔽剂,防止紫外线的侵害。
也可用于高档汽车面漆,具有随角异色效应。
纳米级二氧化钛,亦称钛白粉。
物理性质为细小微粒,直径在100纳米以下,产品外观为白色疏松粉末。
具有抗线、抗菌、自洁净、抗老化性能,可用于化妆品、功能纤维、塑料、油墨、涂料、油漆、精细陶瓷等领域。
纳米二氧化钛主要有两种结晶形态:锐钛型(Anatase)和金红石型(Rutile)。
金红石型二氧化钛比锐钛型二氧化钛稳定而致密,有较高的硬度、密度、介电常数及折射率,其遮盖力和着色力也较高。
而锐钛型二氧化钛在可见光短波部分的反射率比金红石型二氧化钛高,带蓝色色调,并且对紫外线的吸收能力比金红石型低,光催化活性比金红石型高。
在一定条件下,锐钛型二氧化钛可转化为金红石型二氧化钛。
二、分类1.按照晶型可分为:金红石型纳米钛白粉和锐钛型纳米钛白粉。
2.按照其表面特性可分为:亲水性纳米钛白粉和亲油性纳米钛白粉。
3.按照外观来分:有粉体和液体之分,粉体一般都是白色,液体有白色和半透明状。
三、功能纳米TiO2具有十分宝贵的光学性质,在汽车工业及诸多领域都显示出美好的发展前景。
纳米TiO2还具有很高的化学稳定性、热稳定性、无毒性、超亲水性、非迁移性,且完全可以与食品接触,所以被广泛应用于抗紫外材料、纺织、光催化触媒、自洁玻璃、防晒霜、涂料、油墨、食品包装材料、造纸工业、航天工业中、锂电池中。
1.、杀菌功能在光线中紫外线的作用下长久杀菌。
实验证明,以0.1mg/cm3浓度的锐钛型纳米TiO2可彻底地杀死恶性海拉细胞,而且随着超氧化物歧化酶(SOD)添加量的增多,TiO2光催化杀死癌细胞的效率也提高。
对枯草杆菌黑色变种芽孢、绿脓杆菌、大肠杆菌、金色葡萄球菌、沙门氏菌、牙枝菌和曲霉的杀灭率均达到98%以上;用TiO2光催化氧化深度处理自来水,可大大减少水中的细菌数,饮用后无致突变作用,达到安全饮用水的标准;在涂料中添加纳米TiO2可以制造出杀菌、防污、除臭、自洁的抗菌防污涂料,应用于医院病房、手术室及家庭卫生间等细菌密集、易繁殖的场所,可净化空气、防止感染、除臭除味。
混凝土中添加纳米二氧化钛的研究
混凝土中添加纳米二氧化钛的研究一、引言混凝土是建筑业中广泛使用的一种材料,其强度和耐久性是衡量混凝土质量的重要指标。
但是,混凝土在长期使用过程中,容易受到紫外线、酸雨等自然因素的侵蚀,导致混凝土的强度和耐久性下降。
因此,研究如何提高混凝土的耐久性和抗紫外线能力,成为当前建筑材料研究的热点之一。
纳米材料因其具有独特的物理、化学和光学性质,被广泛应用于建筑材料中,其中纳米二氧化钛是一种常用的纳米材料,具有良好的光催化性能和抗紫外线能力,因此,将纳米二氧化钛添加到混凝土中,不仅可以提高混凝土的强度和耐久性,还可以增强混凝土的抗紫外线能力,具有重要的应用价值。
二、纳米二氧化钛的物理、化学和光学性质1. 纳米二氧化钛的物理性质纳米二氧化钛的粒径通常小于100纳米,较普通二氧化钛粒径小得多,具有高比表面积、高活性表面等特点,因此其物理性质与普通二氧化钛有很大差异。
纳米二氧化钛的比表面积很大,可以增加其吸附能力和反应活性,同时也使其表面能和热力学性质发生了变化,导致纳米二氧化钛的化学性质与普通二氧化钛有所不同。
2. 纳米二氧化钛的化学性质纳米二氧化钛的化学性质主要表现在其表面吸附和反应活性上。
由于纳米二氧化钛具有大比表面积,因此可以吸附更多的分子和离子,增强其化学活性。
此外,纳米二氧化钛表面的氧化还原能力也比较强,可以促进许多化学反应发生。
3. 纳米二氧化钛的光学性质纳米二氧化钛的光学性质主要表现在其吸收和反射光谱上。
纳米二氧化钛可以吸收紫外线和蓝紫外线,因此具有良好的光催化性能和抗紫外线能力。
此外,纳米二氧化钛还具有光致发光、非线性光学等特殊的光学性质,这些性质可以被应用于光电子学、生物医学等领域。
三、混凝土中添加纳米二氧化钛的机理1. 提高混凝土强度添加纳米二氧化钛可以提高混凝土的强度,这是由于纳米二氧化钛具有高比表面积、高反应活性和良好的亲水性。
当纳米二氧化钛与水泥反应时,可以产生一系列化学反应,形成新的水化产物,这些产物可以填充混凝土中的孔隙和裂缝,从而提高混凝土的密度和强度。
浅谈二氧化钛
浅谈纳米二氧化钛纳米二氧化钛(Ti02)是一种重要的无机功能材料,由于其粒子具有表面效应、量子尺寸效应、小尺寸效应、宏观量子隧道效应等性质;其晶体具有防紫外线、光吸收性好、随角异色效应和光催化等性能;而且它的耐候性、耐用化学腐蚀性和化学稳定性较好,因此纳米二氧化钛被广泛应用于光催化、太阳能电池、有机污染物降解、涂料等领域。
但纳米二氧化钛也有一定的局限性,可在纳米二氧化钛中添加合适的物质(如树脂、聚苯胺、偶联剂、氟碳树脂等),对其进行改性。
1. 纳米TiO2的制备(纳米TiO2溶胶)纳米TiO2的制备方法一般分为气相法和液相法。
由于气相法制备纳米TiO2有诸多缺点如:能耗大、成本高、设备复杂等,且条件苛刻,大大限制了其发展。
液相法主要包括水解法、沉淀法、溶胶-凝胶法、水热法、微乳液法、微波感应等离子体法等制备技术。
而液相法能耗小、设备简单、成本低,是实验室和工业上广泛使用的制备方法。
由于传统的方法不能或难以制备纳米级二氧化钛,而溶胶-凝胶法则可以在低温下制备高纯度、粒径分布均匀、化学活性大的单组分或多组分分子级纳米催化剂,在此仅介绍用溶胶-凝胶法制备纳米TiO2溶胶。
溶胶一凝胶法制备纳米TiO2:是以钛的醇盐Ti(OR)2,(R为-C2H5、-C3H7、-C4H9等烷基)为原料。
其主要步骤为:钛醇盐溶于溶剂中形成均相溶液,以保证钛醇盐的水解反应在分子均匀的水平上进行,由于钛醇盐在水中的溶解度不大,一般选用醇(乙醇、丙醇、丁醇等)作为溶剂;钛醇盐与水发生水解反应,同时失去水和失醇缩聚反应,生成物聚集成1nm左右的粒子并形成溶胶;经陈化、溶胶形成三维网络而成凝胶;干燥凝胶以除去残余水分、有机基团和有机溶剂,得到干凝胶;干凝胶研磨后煅烧,除去化学吸附的羟基和烷基团,以及物理吸附的有机溶剂和水,得到纳米TiO2粉体。
因为钛醇盐的水解活性很高,所以需添加抑制剂来减缓其水解速度,常用的抑制剂有盐酸、醋酸、氨水、硝酸等。
纳米二氧化钛的性质及应用进展
二、纳米二氧化氧化钛在光学领域具有广泛的应用,其中最具代表性的是光催化。纳 米二氧化钛在紫外光下能够高效降解有机污染物,如挥发性有机物、染料、农药 等。通过光催化反应,这些污染物可以被分解为无害的二氧化碳和水,从而达到 净化环境的目的。此外,纳米二氧化钛还可以用于光电催化制氢、太阳能电池等 领域。
一、纳米二氧化钛的性质
纳米二氧化钛是一种白色粉末,具有高透明度、高分散性和低能耗等特点。 其晶体结构包括锐钛矿型和金红石型两种,前者具有较好的光催化性能,后者则 具有较高的稳定性和耐候性。纳米二氧化钛的制备方法主要包括化学气相沉积、 液相法、溶胶-凝胶法等,其中最为常用的是液相法。
纳米二氧化钛具有优异的光学性能,其带隙能约为3.2 eV,对应于紫外光的 吸收波长范围。因此,纳米二氧化钛在紫外光下具有高效的光催化性能,可用于 降解有机污染物、抗菌消毒等领域。此外,纳米二氧化钛还具有较好的化学稳定 性和耐候性,使其在室外环境下仍能保持较高的活性。
六、结论
纳米二氧化钛作为一种重要的无机纳米材料,由于其独特的物理化学性质, 在光学、电子、医药等领域具有广泛的应用前景。本次演示对纳米二氧化钛的应 用研究进展进行了详细探讨,总结了其研究现状、成果与不足,并指出了未来的 研究方向。随着纳米技术的不断发展和新材料领域的不断创新,相信纳米二氧化 钛在未来将会在更多领域得到广泛应用,为人类社会的发展和进步做出贡献。
然而,纳米二氧化钛的应用仍存在一些问题和不足之处。首先,其制备过程 较为复杂,需要严格控制制备条件,以保证其结构和性能的稳定性。其次,纳米 二氧化钛的应用过程中可能存在一定的环境风险,需要加强对其生态毒理学的研 究和控制。最后,纳米二氧化钛的大规模生产和应用还需要进一步完善产业链和 市场推广。
结论
锂电池专用纳米二氧化钛参数
纳米二氧化钛(锂电池专用)产品介绍纳米二氧化钛颗粒细小、颗粒分布均匀、比表面积大、光催化活性高,在可见光范围内呈现出良好的光电转换特性,同时还具有优异的宽频光吸收特性,具有量子效应、隧道效应、独特的颜色效应,以及光催化作用及紫外等功能,在功能性涂料、汽车、化妆品、卫生保健、废水处理、环保等方面应用广泛。
其具有稳定性好、无毒无害,光电转化率高,是光电太阳能转换电最普遍使用的材料。
产品参数主要技术指标:外观:白色粉末状固体型号:HTTi-01纯度:≥99.0%水份:≤0.5%PH值: 6-7粒径:5nm、20nm、40nm比表面积:270、90、80m2/g纳米二氧化钛在锂电池中的应用锐钛矿纳米二氧化钛(HTTi-01)比表面积大,在光催化,太阳能电池,环境净化,催化剂载体,锂电池以及气体传感器等方面得到广泛的应用。
纳米二氧化钛作为电池材料,其循环性能更好,电化学性能明显提高。
可以用到钛酸锂电池材料和钴酸锂电池材料中HTTi-01具有良好的快速充放电性能和较高的容量。
经循环伏安研究表明,锂离子在纳米二氧化钛中同时存在两种动力学过程,即扩散控制的锂离子嵌入-脱出国产和赝电容性的动力学过程,更好地释放锂嵌入和脱嵌过程中的应力,提高循环寿命,这也是与纳米二氧化钛的特殊结构相关的。
由于纳米二氧化钛具有很好的化学稳定性和热稳定性,因此具有更广泛的应用范围。
纳米二氧化钛是一种优秀的锂嵌入载体,插锂电位在 1.5-1.6V,形成Li0.91TiO2-B,具有优异的可逆循环容量。
有意思的是,它的比容量要优于同种相的直径跟纳米线直径相仿的纳米性能特点:1、可以制成透明的产品,从而可应用在窗子、屋顶、汽车顶以及显示器上;2、由于所使用的染料敏化剂可以在很低的光能量下达到饱和,因此可以在各种光照条件下使用;3、光的利用效率高,对光线的入射角度不敏感,可充分利用折射光和反射光;4、对光阴影不敏感;5、可在很宽温度范围内正常工作,允许工作温度可高达70℃。
浅谈二氧化钛
浅谈纳米二氧化钛纳米二氧化钛(Ti02)是一种重要的无机功能材料,由于其粒子具有表面效应、量子尺寸效应、小尺寸效应、宏观量子隧道效应等性质;其晶体具有防紫外线、光吸收性好、随角异色效应和光催化等性能;而且它的耐候性、耐用化学腐蚀性和化学稳定性较好,因此纳米二氧化钛被广泛应用于光催化、太阳能电池、有机污染物降解、涂料等领域。
但纳米二氧化钛也有一定的局限性,可在纳米二氧化钛中添加合适的物质(如树脂、聚苯胺、偶联剂、氟碳树脂等),对其进行改性。
1. 纳米TiO2的制备(纳米TiO2溶胶)纳米TiO2的制备方法一般分为气相法和液相法。
由于气相法制备纳米TiO2有诸多缺点如:能耗大、成本高、设备复杂等,且条件苛刻,大大限制了其发展。
液相法主要包括水解法、沉淀法、溶胶-凝胶法、水热法、微乳液法、微波感应等离子体法等制备技术。
而液相法能耗小、设备简单、成本低,是实验室和工业上广泛使用的制备方法。
由于传统的方法不能或难以制备纳米级二氧化钛,而溶胶-凝胶法则可以在低温下制备高纯度、粒径分布均匀、化学活性大的单组分或多组分分子级纳米催化剂,在此仅介绍用溶胶-凝胶法制备纳米TiO2溶胶。
溶胶一凝胶法制备纳米TiO2:是以钛的醇盐Ti(OR)2,(R为-C2H5、-C3H7、-C4H9等烷基)为原料。
其主要步骤为:钛醇盐溶于溶剂中形成均相溶液,以保证钛醇盐的水解反应在分子均匀的水平上进行,由于钛醇盐在水中的溶解度不大,一般选用醇(乙醇、丙醇、丁醇等)作为溶剂;钛醇盐与水发生水解反应,同时失去水和失醇缩聚反应,生成物聚集成1nm左右的粒子并形成溶胶;经陈化、溶胶形成三维网络而成凝胶;干燥凝胶以除去残余水分、有机基团和有机溶剂,得到干凝胶;干凝胶研磨后煅烧,除去化学吸附的羟基和烷基团,以及物理吸附的有机溶剂和水,得到纳米TiO2粉体。
因为钛醇盐的水解活性很高,所以需添加抑制剂来减缓其水解速度,常用的抑制剂有盐酸、醋酸、氨水、硝酸等。
4.典型的纳米材料(二)-纳米氧化物
纳米氧化锌的应用
1.橡胶工业中的应用 2.国防工业中的应用 3.纺织工业中的应用 4.涂料防腐中的应用 5.生物医学中的应用
橡胶工业中的应用
纳米氧化锌可以提高 橡胶制品的光洁性、 耐磨性、机械强度和 抗老化性能性能指标。
橡胶工业中的应用
纳米氧化锌粒子较细,对胶料的硫化起 步延迟作用较大。 随着纳米氧化锌用量增加,其聚集倾向 增强,硫化起步的延迟作用逐渐减慢,拉伸 强度逐渐增高并趋于稳定,拉断伸长率逐渐 降低并趋于稳定。 当用量增大到超过5份时,出现填充效 应,硫化起步的延迟作用开始变小,综合性 能最佳。
4.对有机废水的处理功能
纳米TiO2复合材料对有机废水的处理,效果十分理想。潭湘萍采
用新型载银TiO2的TSA复合催化剂,对印染和精炼废水生化处理 后的出水进行深度处理,光照120min后,印染和精炼废水的 CODcr去除率分别为75.3%和83.4%。
方佑龄等人用浸渍法制备了漂浮于水面上的TiO2光催化剂,研究
1.杀菌功能 在紫外线作用下,以0.1mg/cm3浓度的超细TiO2可 彻底地杀死恶性海拉细胞,而且随着超氧化物歧化酶 (SOD)添加量的增多,TiO2光催化杀死癌细胞的效率 也提高;用TiO2光催化氧化深度处理自来水,可大大减少 水中的细菌数,饮用后无致突变作用,达到安全饮用水的 标准。 在涂料中添加纳米TiO2可以制造出杀菌、防污、除臭、 自洁的抗菌防污涂料,可应用于医院病房、手术室及家庭 卫生间等细菌密集、易繁殖的场所,可有效杀死大肠杆菌、 黄色葡萄糖菌等有害细菌,防止感染。
生物医学中的应用
• 氧化锌纳米材料促进混合淋巴细胞培养中 淋巴细胞的增殖,增强了免疫应答的强度。
纳米材料在免疫调节中
二氧化钛纳米材料的应用
5二氧化钛纳米材料的应用格便宜。
由于其良好的光学和生物学性能,可应用于紫外线保护。
如果水表面接触角大于130。
或小于5 °可将表面分别定义为超疏水或超亲水表面。
各种玻璃制品具有防雾功能,如镜子,眼镜,具有超亲水或超疏水表面。
例如,冯等人发现可逆超亲水性和超疏水性,可来回切换二氧化钛纳米薄膜。
用紫外光照射二氧化钛纳米棒薄膜时,光生空穴和晶格氧产生反应,表面氧空缺。
动力学上,水分子与这些氧空缺相协调,球形水滴沿纳米棒填补了凹槽,并且在二氧化钛纳米棒薄膜上分散,接触角约为0° -这会导致超亲水二氧化钛薄膜。
羟基吸附后,表面转化成大力亚稳态。
如薄膜被放置在黑暗中,被吸附羟基逐渐取代了大气中的氧气,表面回到原始状态。
表面润湿度由超亲水转换成超疏水。
由于超亲水或超疏水表面,许多不同类型的表面具有防污、自洁性能。
电气或光学性质随吸附而产生变化,二氧化钛纳米材料也可用来作为各种气体和湿度传感器。
就未来的清洁能源应用而言,最重要的研究领域之一,是寻找高效电力和/或氢气材料。
如二氧化钛和有机染料或无机窄禁带半导体敏化,二氧化钛能吸收光,形成可见光区域,并将太阳能转换成电能,应用于太阳能电池。
Gratzel领导的小组,运用染料敏化太阳能技术,实现了将所有太阳能转换成电流,转换效率物10.6%电流。
人们广泛研究了二氧化钛纳米材料用于水分解和制氢,这是因为于水氧化还原时,其具有合适的电子能带结构。
二氧化钛纳米材料另外应用-二氧化钛纳米材料与染料或金属纳米粒子敏化时,形成光致变色。
当然,二氧化钛纳米材料的众多应用之一是光催化分解各种污染物。
5.1光催化应用二氧化钛被认为是最有效的、无害环境的光催化剂,广泛用于各种污染物的降解。
二氧化钛光催化剂还可以用来杀死细菌,可处理大肠杆菌悬液。
发亮的二氧化钛具有强氧化力,癌症治疗中,可用于杀死肿瘤细胞。
人们广泛研究了光催化反应机制。
半导体的光催化反应原理非常简单。
吸收的光子能量大于二氧化钛带隙,电子从价带激发到导带,形成电子空穴对。
纳米二氧化钛的制备与光催化性能研究毕业论文
毕业设计(论文)纳米二氧化钛的制备与光催化性能研究1 绪论二氧化钛,化学式为TiO2,俗称钛白粉,多用于光触媒、化妆品,能靠紫外线消毒及杀菌,现正广泛开发,将来有机会成为新工业。
二氧化钛可由金红石用酸分解提取,或由四氯化钛分解得到。
二氧化钛性质稳定,大量用作油漆中的白色颜料,它具有良好的遮盖能力,和铅白相似,但不像铅白会变黑[1];它又具有锌白一样的持久性。
二氧化钛还用作搪瓷的消光剂,可以产生一种很光亮的、硬而耐酸的搪瓷釉罩面。
在过去的研究中,用半导体粉末对水、油和空气中的有毒有机化合物进行光催化降解和完全矿化引起了人们的大量关注。
由于抗光腐蚀性,化学稳定性,成本低,无毒和强氧化性,二氧化钛被作为应用最广泛的光催化剂来光降解水和空气中的有毒化合物。
但是二氧化钛具有较大的带隙(锐钛矿相二氧化钛为3.20ev)因此,只有较小一段太阳光区域,大约为2%~3%紫外光区可被应用[2]。
人们尝试用各种制备方法,如贵金属掺杂、氧化物复合、表面修饰等等方法,防止和减少电子与空穴的复合,提高催化剂的光催化活性。
众所周知,吸附和催化的效率与固体的孔径及表面积有关,因此,对二氧化钛进行修饰、改性及增大比表面积是提高光量子效率和增大反应速率的一个有效的方法与途径。
1.1 TiO2的结构与基本性质1.1.1物理常数及结构特征表1 TiO的物理常数1.1.2 TiO2的结构特征在自然界中,TiO2存在三种晶型结构,即金红石、锐钛矿和板钛矿。
这些结构的区别取决于TiO68-八面体的连接方式,图1-1是TiO68-八面体的两种连接方式,锐钛矿结构是由TiO68-八面体共边组成,而金红石和板钛矿结构则是由TiO68-八面体共顶点且共边组成。
锐钛矿TiO2中的每个八面体与周围8个八面体相连,金红石TiO2中每个八面体与周围10个八面体相连。
事实上锐钛矿可以看做是一种四面体结构,而金红石和板钛矿则是晶格稍有畸变的八面体结构[3]。
简单地认为锐钛矿比金红石活性高是不严谨的,它们的活性受其晶化过程的一些因素影响。
二氧化钛的基本知识点总结
二氧化钛的基本知识点总结二氧化钛是一种常见的无机化合物,化学式为TiO2,具有广泛的应用领域。
在本文中,将总结二氧化钛的基本知识点,包括其结构、性质、制备方法以及应用等方面。
第一部分:结构和性质1. 结构:二氧化钛的晶体结构主要有两种形式:金红石型和锐钛型。
其中金红石型结构是最常见的,具有六方最密堆积结构;锐钛型结构则是指在高温下出现的三斜结构。
这两种结构对于二氧化钛的性质具有重要影响。
2. 物理性质:二氧化钛是一种无色的固体,具有较高的熔点(1830℃)和热稳定性。
它是一种半导体材料,具有较宽的能带隙,使其具备光催化、光电和光谱学性质。
3. 化学性质:二氧化钛的化学性质较为稳定,具有较强的抗氧化性和耐化学腐蚀性。
它可与酸、强碱和氧化剂反应,但对于大多数溶剂和常规的化学试剂是稳定的。
第二部分:制备方法1. 水热法:水热法是一种常用的制备二氧化钛的方法,即将钛酸盐与水在高温高压的条件下反应,形成二氧化钛颗粒。
这种方法可以控制颗粒的尺寸和形态,适用于大规模生产。
2. 气相法:气相法是一种将钛源先氧化成气态的钛酸酐,然后在高温条件下还原为固态二氧化钛的方法。
这种方法适用于纳米级二氧化钛的制备,并可通过调整条件来控制其性质。
3. 溶胶-凝胶法:溶胶-凝胶法是将含钛溶液通过水解和凝胶化反应得到二氧化钛凝胶,再经过干燥和烧结得到二氧化钛产品的方法。
这种方法简易易行,适用于制备陶瓷、薄膜和涂料等应用。
第三部分:应用领域1. 光催化应用:二氧化钛具有光催化降解有机物、抑止细菌生长和净化空气等性质,可应用于环境治理、自洁材料和光合水分解等领域。
2. 光电应用:由于二氧化钛的半导体性质,它可以作为太阳能电池、气敏元件和光电催化剂等的材料。
其中,锐钛型二氧化钛在光电领域的应用更为广泛。
3. 纳米材料应用:纳米级二氧化钛具有较大的比表面积和特殊的光学、电学性质,在催化、传感和药物等领域有广泛的应用前景。
例如,纳米二氧化钛可用作催化剂、防晒剂和抗菌剂等。
TiO2综述
TiO2综述纳⽶TiO2的性能、应⽤及其制备⽅法综述摘要:纳⽶TiO2具有独特的光催化性、优异的颜⾊效应以及紫外线屏蔽等功能, 在光催化剂、化妆品、抗紫外线吸收剂、功能陶瓷、⽓敏传感器件等⽅⾯具有⼴阔的应⽤前景。
国内外⽂献对纳⽶TiO2的性质、应⽤及其制备⽅法进⾏了⼤量的性能、应⽤及制备⽅法研究进⾏了综述。
的研究报道, 本⽂对有关纳⽶TiO2关键字:纳⽶TiO2、性能、应⽤、制备⼀、简介:纳⽶⼆氧化钛,亦称纳⽶钛⽩粉。
从尺⼨⼤⼩来说,通常产⽣物理化学性质显著变化的细⼩微粒的尺⼨在100纳⽶以下,其外观为⽩⾊疏松粉末。
具有抗紫外线、抗菌、⾃洁净、抗⽼化功效,可⽤于化妆品、功能纤维、塑料、油墨、涂料、油漆、精细陶瓷等领域。
⼆、分类:①、按照晶型可分为:⾦红⽯型纳⽶钛⽩粉和锐钛型纳⽶钛⽩粉。
②、按照其表⾯特性可分为:亲⽔性纳⽶钛⽩粉和亲油性纳⽶钛⽩粉。
③、按照外观来分:有粉体和液体之分,粉体⼀般都是⽩⾊,液体有⽩⾊和半透明状。
三、纳⽶TiO2的性能:纳⽶TiO2除了具有与普通纳⽶材料⼀样的表⾯效应、⼩尺⼨效应、量⼦尺⼨效应和宏观量⼦隧道效应等外, 还具有其特殊的性质, 尤其是催化性能。
3. 1 基本物化特性纳⽶TiO2有⾦红⽯、锐钛矿和板钛矿3种晶型。
⾦红⽯和锐钛矿属四⽅晶系, 板钛矿属正交晶系,⼀般情况下,板钛矿在650℃转变为锐钛矿,锐钛矿915℃转变为⾦红⽯。
结构转变温度与TiO2颗粒⼤⼩、含杂质及其制备⽅法有关,颗粒愈⼩,转变温度愈低,锐钛型纳⽶TiO2向⾦红⽯型转变的温度为600℃或低于此温度。
纳⽶TiO2化学性能稳定,常温下⼏乎不与其它化合物反应,不溶于⽔、稀酸,微溶于碱和热硝酸,不与空⽓中CO2、SO2、O2等反应,具有⽣物惰性和热稳定性,⽆毒性[1]。
3. 2光催化性3.2.1光催化原理纳⽶TiO2是⼀种n型半导体材料,禁带宽度较宽,其中锐钛型为3.2eV,⾦红⽯型为3.0eV,当它吸收了波长⼩于或等于387.5nm 的光⼦后,价带中的电⼦就会被激发到导带,形成带负电的⾼活性电⼦e-,同时在价带上产⽣带正电的空⽳h+,吸附在TiO2表⾯的氧俘获电⼦形成?O2-,⽽空⽳则将吸附在TiO2表⾯的OH-和H2O氧化成具有强氧化性的?OH,反应⽣成的原⼦氧、氢氧⾃由基都有很强的化学活性, 氧化降解⼤多数有机污染物,同时空⽳本⾝也可夺取吸附在半导体表⾯的有机物质中的电⼦,使原本不吸收光的物质被直接氧化分解,这两种氧化⽅式可能单独起作⽤也可能同时起作⽤,对于不同的物质两种氧化⽅式参与作⽤的程度有所不同[2]。
二氧化钛及其应用
二氧化钛及其应用一、二氧化钛的性质二氧化钛(化学式:TiO₂)是白色固体或粉末状的两性氧化物,分子量为79.83。
1、晶型的性质:TiO2存在金红石型、锐钛型、板钛型等三种主要晶型。
2、光学性质:由于TiO2纳米粒子既能散射又能吸收紫外线,故它具有很强的紫外线屏蔽性。
常作为防晒剂掺入纺织纤维中,超细的二氧化钛粉末也被加入进防晒霜膏中制成防晒化妆品。
3、物理性质:TiO2熔点很高,也被用来制造耐火玻璃,釉料,珐琅、陶土、耐高温的实验器皿等。
TiO2光泽度及硬度较高,具有最佳的不透明性、最佳白度和光亮度可以用作白色无机颜料、搪瓷的消光剂。
TiO2具有半导体的性能对电子工业非常重要,该工业领域利用上述特性,生产陶瓷电容器等电子元器件。
4、化学性质:TiO2无毒、不溶于水或者稀硫酸,且因为化学性质稳定、不易起变化,被认为是目前世界上性能最好的一种白色颜料。
二、二氧化钛光催化原理在众多半导体光催化材料中,TiO2以其化学性质稳定、氧化-还原性强、抗腐蚀、无毒及成本低而成为目前最为广泛使用的半导体光催化剂。
TiO2的三种晶型中板钛矿的光催化性能和稳定性最差,基本没有相关的研究和应用。
金红石是常用的白色涂料和防紫外线材料,对紫外线有非常强的屏蔽作用,在工业涂料和化妆品方面有着广泛的应用。
锐钛型具有更高的光催化活性能够直接利用太阳光中的紫外光进行光催化降解,而且不会引起二次污染。
因此,锐钛矿是常用的处理环境污染方面问题的光催化材料。
锐钛矿受到波长小于或等于387.5nm的光(紫外光)照射时,价带的电子就会获得光子的能量而跃迁形成光生电子e-。
如果把分散在溶液中的每一颗TiO2粒子近似看成是小型短路的光电化学电池,则光电效应应产生的光生电子在电场的作用下分别迁移到TiO2表面不同的位置。
TiO2表面的光生电子e-易被水中溶解氧等氧化性物质所捕获,生成超氧自由基·O2-;而h+则可氧化吸附于TiO2表面的有机物或先把吸附在TiO2表面的OH-和H2O分子氧化成羟基自由基·OH;·OH和·O2-,其氧化能力极强几乎能够使各种有机物的化学键断裂,因而能氧化绝大部分的有机物及无机污染物,将其矿化为无机小分子、CO2和H2O等物质。
光触媒纳米二氧化钛
光触媒纳米二氧化钛光触媒纳米二氧化钛是一种具有广泛应用前景的新型材料。
它以其优异的光催化性能和环境友好性而备受关注。
本文将从纳米二氧化钛的特性、制备方法、应用领域等方面进行介绍,旨在帮助读者对光触媒纳米二氧化钛有更深入的了解。
我们来了解一下光触媒纳米二氧化钛的特性。
纳米二氧化钛是一种具有纳米级尺寸的二氧化钛颗粒,其特点是具有高度的比表面积和丰富的表面活性位点。
这使得纳米二氧化钛在光催化反应中具有优异的效果。
此外,纳米二氧化钛还具有稳定性高、耐腐蚀性好、生物相容性佳等特点,这使得它在环境净化、抗菌消毒、光催化水分解、有机废水处理等领域有着广泛的应用前景。
纳米二氧化钛的制备方法多种多样,其中最常用的方法是溶胶-凝胶法、水热法、气相沉积法等。
溶胶-凝胶法是通过控制溶胶的成分、浓度和pH值等参数来调节纳米二氧化钛的粒径和形貌。
水热法则是利用高温高压条件下的化学反应来合成纳米二氧化钛。
气相沉积法则是通过在气相中将气体或蒸汽转化为固体颗粒。
这些制备方法各有优劣,具体选择方法应根据实际需求来确定。
光触媒纳米二氧化钛在环境净化方面有着广泛的应用。
它可以通过光催化反应将有害气体分解为无害物质,达到净化空气的目的。
例如,将纳米二氧化钛涂覆在建筑物外墙上,可以通过阳光的照射将空气中的有害气体分解为无害物质,起到净化空气的作用。
此外,光触媒纳米二氧化钛还可以用于有机废水的处理,通过光催化反应将有机物降解为无害物质,实现废水的净化和循环利用。
光触媒纳米二氧化钛在抗菌消毒方面也有着广泛的应用。
由于其表面的光催化活性,纳米二氧化钛可以通过光催化反应将细菌的膜破坏,达到抑制和杀灭细菌的作用。
因此,将纳米二氧化钛应用于医疗器械、食品包装等领域可以起到抗菌消毒的效果,提高产品的安全性和卫生质量。
除此之外,光触媒纳米二氧化钛还可以应用于光催化水分解。
通过纳米二氧化钛的光催化作用,可以将水分解为氢气和氧气。
这种方法不仅可以制备清洁可再生的氢能源,还可以解决能源短缺和环境污染等问题,具有重要的应用前景。
纳米二氧化钛 简介
纳米二氧化钛纳米二氧化钛,粉体作为化妆品的物理防晒添加剂,具有化学性质稳定、无刺激性、无致敏性、全面防护紫外线等优点。
Titanium dioxide is a light-sensitive semiconductor, and absorbs electromagnetic radiation in the near UV region. The energy diff erence between the valence and the conductivity bands in the solid state is 3.05 eV for rutile and 3.29 eV for anatase, corresponding to an absorption band at < 415 nm for rutile and < 385 nm for anatase。
简介产品技术指标:TiO2%≥99.3% 粒径:15~50nm物性数据柔软,无嗅无味的白色粉末,遮盖力和着色力强,溶点1560~1580℃。
不溶于水、稀无机酸、有机溶剂、油,微溶于碱,溶于浓硫酸。
遇热变黄,冷却后又变白。
金红石型(R型)密度4.26g/cm3,折射率2.72。
R型钛白粉具有较好的耐气候性、耐水性和不易变黄的特点,但白度稍差。
锐钛型(A型)密度3.84g/cm3,折射率2.55。
A型钛白粉耐光性差,不耐风化,但白度较好。
近年来发现纳米级超微细二氧化钛(通常为10~50 nm)具有半导体性质,并且具有高稳定性、高透明性、高活性和高分散性,无毒性和颜色效应。
概述:纳米二氧化钛粉体作为化妆品的物理防晒添加剂,具有化学性质稳定、无刺激性、无致敏性、全面防护紫外线等优点。
纳米二氧化钛粒经约10-50nm,具有十分宝贵的光学性质。
由于它的透明性和防紫外线能力高度统一,在防晒护肤、轿车面漆、高档涂料、油墨、塑料、精细陶瓷等方面获得了广泛的应用。
二氧化钛
白色粉末
白色粉末
晶型
金红石含量% 粒径(nm) 干燥减量% 灼烧减量% 表面特性 PH 比表面积(m2/g) 重金属(以Pb计)%
金红石型
99 20-50 1 ####### 亲水性或亲油性 6.5-8.5 80-200 0.0015
锐钛型
-15-50 1 10 亲水性或亲油性 6.5-8.5 80-200 0.0015
1.1.等离子体法 等离子体法是通过激活载气携带的原料形成等离子体,再加 热反应生成超微粒子的方法。以TiCl4为原料,氢气为载气,氧 气为反应气体,应用频率为2450MHz的微波诱导可合成有机膜 包裹的TiO2[4]。1992年,日本东北大学采用等离子体(ICP)喷 雾热解法以Ti的氯化物为原料制得了Ti的氧化物的超微粉。等离 子体喷雾法是利用等离子体喷枪能产生50000K高温的特点,将 这种喷枪的喷出物急骤冷却而生成纳米级的超微粒子 1.2.水解法 水解法主要是利用金属盐在酸性溶液中强迫水解产生均匀分 散的纳米粒子。已有报道,在硫酸根离子和磷酸根离子存在条件 下,用20min到两周左右缓慢地加水分解氯化钛溶液时可得到金红 石型纳米TiO2[5]。水解法又可以分为很多种,以下是几种常见的 水解法: 1.2.1.TiCl4氢氧火焰水解法 该法是将TiCl4气体导入氢氧火焰中(700~1000℃)进行水 解,其化学反应式为: TiCl4(g)+2H2(g)+O2(g)→TiO2(s)+4HCl(g) 这种工艺制备的粉体一般是锐钛型和金红石型的混合型产品,纯 度高、粒径小、表面积大、分散性好、团聚程度较小,但成本较 高[4]。
砷(As) W% 铅(Pb) W% 汞(Hg) W%
0.0008 0.0005 0.0001
纳米二氧化钛的性质及应用进展
纳米二氧化钛的性质及应用进展牙膏工业2006年第3期纳米二氧化钛的性质及应用进展李志军王红英(深圳职业技术学院工业中心518055)摘要:纳米二氧化钛微粒具有大的比表面积,其表面原子数,表面能和表面张力随粒径的下降急剧增加,由于其尺寸的细微化,表现出独特的物理和化学特性,导致纳米二氧化钛微粒的热,光,敏感特性和表面稳定性等方面不同于常规粒子,这就使其在环境,信息,材料,能源,医疗与卫生等领域有着广阔的应用前景.综述了纳米二氧化钛的性质,并介绍了近年来纳米二氧化钛的应用研究发展动态.关键词:纳米粉体二氧化钛性质应用纳米微粒是指颗粒尺寸在I—lOOnm的超细微粒.由于纳米微粒具有了量子尺寸效应,小尺寸效应,表面效应和量子隧道效应,因而展现出许多特有的性质,在催化,滤光,光吸收,医药,磁介质及新材料等方面具有广阔的应用前景.纳米二氧化钛因其具有粒径小,比表面积大,磁性强,光催化,吸收性能好,吸收紫外线能力强,表面活性大,热导性好,分散性好,所制悬浮液稳定等优点,因此倍受关注,制备和开发纳米二氧化钛成为国内外科技界研究的热点….本文将介绍纳米二氧化钛的一些基本性质及其主要的应用研究进展.1纳米TiO的基本结构二氧化钛是金属钛的一种氧化物,其分子式是TiO.根据其晶型,可分为板钛矿型,锐钛矿型和金红石型三种.其中锐钛矿型TiO属于四方晶系,其晶格参数仅0=37.85nm,C0=95.14nm.图1为两种晶型单元结构图.锐钛矿型TiO的单元结构中钛原子处于钛氧八面体的中心,其周围的6个氧原子都位于八面体的棱角处,有4个共棱边,也就是说,锐钛矿型的单一晶格有4个TiO分子.锐钛型TiO的八面体呈明显的斜方晶型畸变,Ti—O 键距离均很小且不等长,分别为I.937×10.m和1.964×10.11'1,这种不平衡使TiO分子极性很强, 强极性使TiO表面易吸附水分子,使水分子极化而形成表面羟基.这种表面羟基的特殊结合使其表面改性成为可●TioO金红石型(a)(b)图1TiO2的两种晶型单元结构图[.】能,它可作为广义碱与改性剂结合,从而完成对TiO2的表面改性.2纳米TiO的表面性质2.1表面超亲水性目前的研究认为,在光照条件下,TiO表面的超亲水性起因于其表面结构的变化.在紫外光照射下,TiO价带电子被激发到导带,电子和空穴向TiO表面迁移,在表面生成电子空穴对,电子与Ti反应,空穴则与表面桥氧离子反应,分别形成正三价的钛离子和氧空位.此时,空气中的水解离吸附在氧空位中,成为化学吸附水(表面羟基),化学吸附水可进一步吸附空气中的水分,形成物理吸附层.2.2表面羟基相对于其它颜料的金属氧化物,TiO中Ti—O健的极性较大,表面吸附的水因极化发生解离,容易形成羟基.这种表面羟基可提高TiO作为吸附剂及各种载体的性能,为表面改性提供方便.-2006年第3期牙膏工业49及各种载体的性能,为表面改性提供方便.2.3表面酸碱性二氧化钛(俗称钛白)用于涂料时,其表面酸碱性与涂料介质密切相关.在改性时常加入AJ,Si,zn 等氧化物,Al或Si的氧化物单独存在时无明显的酸碱性,但与TiO:复合,则呈现强酸性,可以制备固体超酸.因此,加入其它金属氧化物改性时,可以形成新的酸碱点.MoO.一TiO:表面有较强的酸性,而ZnO:一TiO:表现出明显的碱性.2.4表面电性钛白在干粉状态通常带有静电荷,钛白颗粒在液态(尤其是极性的)介质中因表面带有电荷就会吸附相反的电荷而形成扩散双电层,使颗粒有效直径增加.当颗粒彼此接近时,因异性电荷而相斥,有利于分散体系的稳定.经A1:0.包膜的钛白表面具有正电荷,而用SiO:处理的钛白带负电荷.经硅铝复合包膜的钛白,当重量比AJ:0./SiO:>1时,带正电荷,当重量比A1:0./SiO:<1时,带负电荷.调整Al:0./SiO:的重量比比例,可改变钛白在不同介质中的分散性.3纳米TiO2的应用纳米二氧化钛是一种重要的无机材料,被广泛应用于涂料,化汝品,抗菌剂,污水处理等方面.下面介绍纳米二氧化钛的几种主要用途.3.1光化学作用当二氧化钛受到彼长小于387.5nm的紫外光的照射时,价带上的电子跃迁到导带,激发电离出电子的同时产生正电性的空穴,形成电子一空穴对,与吸附溶解在其表面的氧气和水反应.分布在表面的空穴将OH一和H:0氧化成HO自由基.HO自由基的氧化能力是在水体中存住的氧化剂中最强的,能氧化大部分的有机污染物和无机污染物,而且对反应物几乎无选择性,在光催化氧化中起着决定性的作用.二氧化钛表面电子具有高的还原性,可以去除水体中的金属离子.生成的原子氧和氢氧自由基使有机物被氧化,分解,最终分解为CO:,H:0和无机物.其反应过程如下(其中,h代表正电性的空穴,e一为光激发电子,?OH是氢氧根自由基,OH一为氢氧根离子,?O是带负电的氧原子自由基, HO:?是反应中间体):TiO2三h++e-(1)h+H20?OH+H(2)h+OH一?OH(3)e-+0:一.o三Ho:.(4)2HO2?H202+02(5)H202+.O?OH+OH一+02(6)Organ(有机物)+?OH+02CO2+H20+其他产物(7)M"(金属离子)+ne一一M.(金属离子)(8)图2是纳米二氧化钛光催化机理示意图.导带Ee『嗡图2纳米二氧化钛光催化机理示意图【3.2污水处理利用纳米TiO:的光催化性质来处理废水和改善环境是一种行之有效的方法.Matthews等人曾对水中34种有机污染物光催化分解进行了系统的研究, 结果表明光催化氧化法可将水中的烃类,卤代物,羧酸,表面活性剂,染料,含氮有机物,有机磷杀虫剂等较快地完全氧化为CO:和H:0等无害物质.光催化降解技术具有常温常压下就可进行,能彻底破坏有机物,没有二次污染且费用不太高等优点.3.3气体净化随着工业的发展和人民生活水平的不断提高,环境污染问题已日趋严重,有害气体净化同样受到人们的重视.近年来逐渐发展起来的纳米TiO:光催化降解技术为这一问题的解决提供了良好的途径.环境有害气体可分为两个方面:室内有害气体和大气污染气体.室内有害气体主要有装饰材料等放出的甲醛及生活环境中产生的甲硫酵气,硫化氢, 氨气等,这些气体在百万分之几时就能使人产生不适感.TiO:通过光催化作用可将吸附于其表面的这些物质分解氧化,从而使空气中这些物质的浓度50牙膏工业2006年第3期降低,减轻或消除环境不适感.大气污染气体主要指由汽车尾气与工业废气等带来的氮氧化物和硫氧化物,利用纳米TiO:的光催化作用可将这些气体氧化,形成蒸气压低的硝酸或硫酸.这些硝酸或硫酸可在降雨过程中除去,从而达到降低大气污染的目的.3.4抗茵除臭抗菌是指TiO:在光照下对环境中微生物的抑制或杀灭作用.在人们的居住环境中存在着各种有害微生物,对人类生活产生不良影响.家居环境中的一些潮湿的场合如厨房,卫生间等,微生物容易繁殖,导致空气菌浓和物品表面菌浓增大,对人的健康产生威胁.利用纳米TiO的光催化性可充分抑制或杀灭环境中的有害微生物,使环境微生物对人的危害降低….空气中的恶臭气体主要有含硫化物(如Hs,sO,硫醇,硫醚等),含氮化合物(如胺类,酰胺等),卤素及衍生物(如cl,卤代烃等).近年来采用二氧化钛光催化剂和其他吸附剂组成的混合物除臭已得到实际应用.气体吸附剂吸附的这些臭气经扩散与二氧化钛接触,二氧化钛将气体氧化分解后既不降低吸附剂的吸附活性,又解决二氧化钛对臭气吸附性较差的缺点,大大提高了臭气的光降解效率. 3.5在涂料行业的应用将纳米TiO与闪光铝粉或云母钦珠光颜料拼配使用制成的涂料具有随角异色效应,作为金属闪光面漆涂装在小汽车上,将产生富丽雅致的效果.这是纳米TiO最重要,最有前途的应用领域之一. 美,日等国的福特,克劳斯勒,丰田,马自达等汽车公司上世纪80年代开始应用于轿车工业,到上世纪90年代,世界上已有l1种含纳米TiO的金属闪光面漆被用于轿车工业,今后还会有更大的发展u引. 经研究发现¨,金红石型纳米二氧化钛用于金属闪光面漆时,既能产生随角异色效应,也能提高漆膜的柔韧性和附着力等力学性能;金红石型纳米二氧化钛用于含环氧基丙烯酸型粉末涂料,具有增强,增韧效果,使漆膜光泽的力学性能提高很多,达到汽车涂料国际要求,获得应用普通钛白所得不到的性能;锐钛型纳米二氧化钛用于丙烯酸型抗菌内墙涂料,具有很强的杀菌效果,而且力学性能优异,具有广阔的发展前景.3.6在化妆品方面的应用纳米TiO:具有很强的散射和吸收紫外线的能力.尤其是对人体有害的中长波紫外线UV A,UVB (320—400nm,290—320nm)的吸收能力很强,效果比有机紫外吸收剂强得多,并且可透过可见光,无毒无味,无刺激性,广泛用于化妆品.纳米TiO紫外屏蔽能力与粒径大小有关,粒径越小,紫外线透过率越小,抗紫外能力越强.对于化妆品的TiO含量而言,粒径越小,可见光透过率越大,可使皮肤白度显得自然.平均粒径为10nm的TiO:分散在水中,几乎是无色透明的.但添加的颗粒粒径不是越小越好,否则汗汁会将毛孔堵死,不利于身体健康.而粒径太大,紫外吸收又会偏离这一波段.因此最好在纳米TiO颗粒表面包覆一层对人体无害的高聚物. 粒子浓度对光散射有较大的影响,伴随粒子浓度增大,粒子的光散射效率下降,适当提高TiO的用量, 可使化妆品的防晒系数增大,最理想的用量为5% 20%.除以上应用之外,纳米二氧化钛还可被应用在光学增益体系中,制成一种具有极高发光纯度等奇特光学现象被称为"激光涂料"的新型发光材料¨;纳米二氧化钛还具有湿敏,气敏功能,如它对一氧化碳,氢气极为敏感,可用于传感器的制造¨.最新的研究表明,用钠离子掺杂的纳米二氧化钛分别对双马来酰亚胺,马来酰亚胺的液相聚合反应具有明显的催化作用,而且反应后剩余在聚合物中的纳米二氧化钛对聚合产物多项力学性能的改善还可起到较为理想的促进作用Ⅲ.参考文献l张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,20012uylShi,ChunzhongLi,AipingChen.et"a1.Morphologicalstrue? tureofnanometerTiO2一Al203compositepowderssynthesizedinhightemperatm-egasmediumsreactor.ChemicalEngineering.1ouna1.2001,(84):405~4113范崇政,肖建平,丁建伟.纳米Tio2的制备与光催化反应研究进展.科学通报,2001,46(4):256~2734黄华林.锑自在钛白生产中应用探讨.无机盐工业,1997,3:31~332006年第3期牙夤=【.业生物基表面活性剂的应用王杰聂荣春徐初阳(安徽理工大学材料系安徽淮南232001)摘要:简要概述生物基表面活性剂烷基糖苷的物理性能和溶解性,表面活性,安全性和生物降解等性能,重点介绍其作为表面活性剂在衣用洗涤剂,餐具洗涤剂,化妆品,食品工业,生物化工和农药增效剂等方面的应用,同时指出烷基糖苷可进一步衍生化,从而拓宽其应用领域.关键词:生物基表面活性剂;烷基糖苷L化剂;聚氨酯烷基糖苷(APG)是近几年迅速发展起来的新一代绿色表面活性剂,兼有普通非离子和阴离子表面活性剂的优点,高表面活性,非常优良的生态学和毒理学性质以及出众的物理化学性质和配伍性能,尤其是它的毒性,与皮肤的相容性及其生物降解性都给许多化学品的配制带来了新概念….因此,特别适用于与人体皮肤接触的洗涤用品和个人护理用品.此外,在食品工业,生物化工和农用化学品等方面可作功能性助剂.1烷基糖苷的特性1.1物理性能和溶解性纯烷基糖苷为白色粉末,实际产品为奶油色或淡黄色.极易吸水,在水中有一定的溶解度,故市场上的商品一般配成50%的水溶液.烷基糖苷也较易溶于常用有机溶剂,在酸碱性溶液中呈现出优良的相容性,稳定性和表面活性,尤其在无机成分较高的活性溶剂中J.烷基糖苷的物理性质与脂肪醇的碳链长度,碳链的正构或异构,糖的种类以及聚合度密切相关,其熔点随产品分子中碳链的增长而升高,甚至有的高烷基糖苷还没融化时就开始分解了,说明烷基糖苷受热易分解和变色.1.2表面活性5蒋子铎,刘安华.高级氧化过程的研究与进展,现代化工,1991,5(5):14—186张淑霞,李建保,张波,TiO2颗粒表面无机包覆的研究进展.化学通报,2001,(2):71-747常红,王京刚,纳米二氧化钛在环保领域中的应用.矿冶,2002,I1(4):73—748Haradakenji,HisanagaTeruaki,eta1.Photoeatalyticactivityof nanometerTiO2thinfilmsprev,~lbythesol—gelmetho1.Wa—terRes. 1990.24(I1):1415—14178Hlt..y~aKenji,HisanagaTeruaki,eta1.Photocatalytlcactivityof nanometerTiO2thinfilmspreparedbythesol—gelmethod.Wa—terRes. 1990.24(I1):1415—14179姚建年,陈萍,藤岛昭.电解沉积成膜法制备氧化钼变色薄膜的研究.感光科学与光化学,1996,(3):224-22510JiaguoYu,XiujianZhao.Effectofsubstratesonthephoto—c.atu—lytlcaclivityofnsIiometerTIO2thinfilmsMaterialsResearchBulletin. 2000,(35):1293—1301IIWenyuYe,TiefengCheng,QingYe,etalh叩aHmand仃ib0l0gi—ealprope—iesoftetrafluo~caeidmodifiedTi02nanopartidesaslubri? canadditives,MaterialsScienceandE一neering.20(B,(359):82—85 12杨宗志,国外超细透明二氧化钛的生产,钒钛,1994(4):45—5213李大成,周大利,等.纳米TiO2的应用.四川有色金属.2002.4:14—1614许秀艳,付国柱,等.纳米TiO2在涂料中的应用.全面腐蚀控制.2002,15(2):815LawandyNM,BalachandranRM,ComesASL,sers*c—tioninstronglyscatteringmedia.Nature.1994(368):43616包定华,顾蒙爽,邝安祥,等.S0l—gel法合成TiO2纳米粉球和薄膜.无机材料,1996,I1(3):45317WangX,ChenD,blaW,eta1.polymerizationofbismaleimide andmaleimidecatalyzedbynanoerystaUinetitania.JApp]PolymSei. 1999.71:665(收稿日期:2oo6年8月8日)。
二氧化钛纳米材料的制备、改性及光催化性能研究
摘要二氧化钛纳米材料的制备、改性及光催化性能研究摘要随着人们生活水平的不断提高,越来越多的产品来自于石油、煤炭和天然气等不可再生的自然资源。
同时,产品在原材料的提取、运输和转化过程中都有可能给环境带来负面效应。
因此,环境污染和能源短缺现象成为人类目前应对的世界性难题。
半导体光催化技术在环境修复领域的作为不容忽视,已被证明是降解水体和大气环境中有害污染物的有效途径。
在解决能源危机方面,通过光分解水制氢、太阳能电池等方式实现了可再生能源的高效利用。
二氧化钛因其高稳定性,无毒性且低成本被认为是非常理想的光催化半导体材料。
光催化剂的表面积是决定污染物吸附量的重要因素,直接影响其光催化活性的强弱。
由于二氧化钛纳米材料的高表面能使得纳米粒子间倾向于聚集以达到体系的平衡状态,导致纳米粉体的团聚现象严重,无法获得较大的活性表面积。
因此,本文采用表面活性剂作为分散剂,并优化制备工艺进行改性,以获得均一分散的二氧化钛纳米体系是十分必要的。
主要研究内容如下:(1)综合溶胶-凝胶法和溶剂热法的制备优势,本论文采用溶胶-溶剂热改进工艺进行实验分析。
以钛酸丁酯为钛源,无水乙醇为溶剂,浓硝酸为抑制剂,按照n(Ti(OR)4):n(C2H5OH):n(H+):n(H2O)=1:15:0.35:4的反应物配比,制备纳米级二氧化钛材料。
(2)通过单因素实验与正交实验相结合的方式,以样品对甲基橙的光催化降解率为分析依据,探究溶剂热温度、溶剂热时间、煅烧温度和煅烧时间对于二氧化钛光催化活性的影响。
正交实验的结果表明,最佳工艺参数是:当溶剂热温度为150℃,溶剂热时间为24h,煅烧温度为450℃,煅烧时间为4h时,样品的光催化降解率最高,为82.88%。
同时XRD、SEM、TEM和EDS的图像表明,样品为结晶度良好的单一锐钛矿相,无任何杂质,但分散性一般。
(3)在最佳工艺参数的基础上,通过控制表面活性剂的种类和含量的不同,探究不同类型表面活性剂的最佳投料比,从而确定用于二氧化钛纳米粉体改性的最佳分散剂,并通过XRD、SEM、TEM和EDS等技术对样品进行表征。
二氧化钛纳米材料
二氧化钛纳米材料二氧化钛(TiO2)是一种重要的半导体材料,具有广泛的应用前景,尤其是在纳米材料领域。
纳米材料是指至少在一维上尺寸小于100纳米的材料,具有特殊的物理、化学和生物学性质。
二氧化钛纳米材料因其独特的光电性能和化学稳定性,被广泛应用于光催化、光电器件、传感器、抗菌材料等领域。
首先,二氧化钛纳米材料在光催化领域具有重要应用。
由于其较大的比表面积和优异的光催化性能,二氧化钛纳米材料被广泛应用于水分解、有机废水处理、空气净化等领域。
通过光催化作用,二氧化钛纳米材料可以有效分解有害物质,实现环境净化和资源利用,具有重要的环保和能源应用价值。
其次,二氧化钛纳米材料在光电器件方面也有重要应用。
由于其优异的光电性能和稳定性,二氧化钛纳米材料被广泛应用于太阳能电池、光电探测器、光致发光器件等领域。
通过合理设计和制备二氧化钛纳米材料,可以实现光电器件的高效能转换和稳定性,推动光电器件领域的发展和应用。
此外,二氧化钛纳米材料在传感器领域也具有重要应用。
由于其高灵敏度和快速响应特性,二氧化钛纳米材料被广泛应用于气体传感、生物传感、化学传感等领域。
通过构建二氧化钛纳米材料基底的传感器,可以实现对环境中有害气体、生物分子、化学物质等的高灵敏检测和快速响应,具有重要的应用前景和社会价值。
最后,二氧化钛纳米材料在抗菌材料方面也有重要应用。
由于其优异的抗菌性能和生物相容性,二氧化钛纳米材料被广泛应用于医疗器械、食品包装、环境卫生等领域。
通过将二氧化钛纳米材料引入抗菌材料中,可以实现对细菌、病毒等微生物的高效杀灭和抑制,具有重要的医疗卫生和食品安全应用价值。
总之,二氧化钛纳米材料具有广泛的应用前景,在光催化、光电器件、传感器、抗菌材料等领域都有重要的应用价值。
随着纳米材料研究的不断深入和发展,相信二氧化钛纳米材料将在更多领域展现出其独特的优势和应用价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米二氧化钛材料的物理特性
摘要:本文主要介绍了纳米二氧化钛材料的物理特性,如纳米二氧化钛材料的光催化特性、光电转换特性、超亲水性及锂离子储存特性在环境保护及储存能源等各个领域所显现出来的巨大应用。
由于现在的环境污染问题日益严峻及人们对能源短缺问题越来越多的重视,纳米二氧化钛材料的应用在节能环保和储能方面所占的优势也越来越明显。
所以发挥纳米二氧化钛的长处让其更好地服务于更多的领域,是我们目前需要努力和研究的方向。
关键词:纳米二氧化钛材料光催化特性光电转换特性超亲水性
一、纳米二氧化钛的光催化特性
纳米二氧化钛的光催化特性可在未来给我们带来巨大的使用前景,其广阔的运用潜质被很多科学家所青睐。
研究表明其光催化特性和其独特的结构有关,尤其与其晶度、晶相、分散性和粒径等密切相关。
尤其是纳米二氧化钛粒子个体的缩小,可以导致晶体的光吸收边蓝移,也可使离子的比表面积增大,这些都有利于光催化反应效率和速率的提高。
在纳米二氧化钛三中矿型结构中,锐钛矿的稳定性是最低的,但是它的光催化活性却是最高的,反而金红石的构造要比锐钛矿坚固得多,但是它的光催化性能就显得较弱。
有研究表明,如果将两种矿型的晶体即金红矿和锐钛矿的晶体均匀的掺杂在一起,其光催化活性相较于两种中任一种活性都强。
这是因为在两种不同晶体构造的组合下,锐钛矿中电子和空穴的电荷分离被促进,流动的电子和空穴增多,所以光催化特性得到显著增强。
纳米二氧化钛具有光催化特性主要是由于当用波长在387.5纳米以下的不可见光作用在它上面时产生了能量,促使价带上的电子发生跃迁,在导带上激发电离出电子,留下了带正电的空穴,这两种电性的粒子形成了正负粒子对儿,在二氧化钛表面与氧气和水产生反应。
排列在二氧化钛表面的空穴将OH-与水一起反应生成HO自由基,而在最能夺取电子并且据为己有的就是HO自由基,且他那个表格一大半的污染物发生反应,争夺电子对将其还原,溶解在外表的氧气分子与电子反应形成O2-。
外表存在的电子拥有很强的还原能力,能够还原溶液里的金属离子,氧化形成的原子氧和氢氧自由基还可氧化消除含碳化合物生成二氧化碳,水和无机物。
现如今,为了使TiO2在更多的领域应用,技术人员在二氧化钛中掺杂Fe、Mo、Re、Pt、Ag、Cu和Rh等金属离子。
增强其光催化特性,使其在室内光线下也可以进行反应。
二、纳米二氧化钛的电荷传输特性
现如今,半导体纳米粒子的光物理和光化学性能是科学研究领域最受欢迎最有价值的功能,纳米二氧化钛有着十分明显的量子尺寸效应,多孔大比面积光化学电池就是纳米半导体构成的具有光电转换方面具有优异转换性能的电池,应用前景十分广阔。
纳米二氧化钛的构造特殊,若将其应用在电池的两级,会形成一种特殊的多孔电极结构,而这种电极因其结构特别,其电荷的流通方法也与众不同。
传统的电荷流动是在空间层下按一定方向流通的,但是二氧化钛多孔膜电极由于里面的杂质少所以电子和空穴碰在一起的概率小,电子流动速度小于固体材料。
研究显示,二氧化钛多孔膜电荷定向运动过程中,电子在膜里能够往左右不同的朝向流动,所以能够被电解液中的受主中和,但被中和后会使电子的总数减少,所以要添入一定量的物质用来增加光能向电能的转化。
另外,纳米TiO2较大的禁带宽度和耐光腐蚀性也有利于其作为太阳能电池光
电极材料,实验表明,掺杂了某些杂质的纳米二氧化钛除了光催化特性之外其光
电转化效率也会有所改变。
向纳米二氧化钛中加入适量的金属离子、半导体、导
电高聚物、贵金属以及非金属离子,可以显著增强二氧化钛的光电转换效率,从
而扩充它对可见光的吸收领域,提高太阳能电池的效率。
三、纳米二氧化钛的超亲水性
纳米二氧化钛对水有很强的“亲和力”,而这种“亲和力”可以帮助瓷砖卫生洁具、玻璃等与污染物进行隔离,在它们的表面形成一种隔离层而使他们能有易清洁、自清洁等特点。
汽车后视镜就是一个很好的例子,如果后视镜表面存在纳米二氧化钛薄膜,
那么当温度变化而使气体液化时,后视镜表面将不会形成水滴影响视线,而是均
匀的一层水薄膜附在上面。
如果行驶时赶在了雨天,那么由二氧化钛薄膜的存在
也会使落在后视镜上的水迅速化开,铺在镜面,不会对光进行散射,也不会影响
司机的视线,这样可以确保行驶安全。
实验证实,水和纳米二氧化钛外表接触的角度不大于70度时可以阻止霉菌的生成,接触的角度不大于100度时可以使纳米二氧化钛执行自清洁的功能,小于150度时有高水流动性。
外光照射下,水在二氧化钛薄膜表面的润湿角为0度时,这种现象被称为二氧化钛薄膜超亲水性。
纳米二氧化钛是在纳米技术下赋予了二氧化钛更多的物理化学性质形成的产物,因此纳米二氧化钛具有很多纳米级的特性,而这些性质让纳米二氧化钛具有
很多生产生活方面的应用。
现如今,纳米二氧化钛应用的领域多数集中在环境保
护和能源方面,但也有很多在化学化工和生物医学方面起着最重要作用,如化妆
品行业、医院、食品包装应用等等。
早在很多年前,科学家就预料到纳米二氧化钛的产生会给社会带来巨大的经
济效益和社会效益,但是迄今为止纳米的发展仍处于摸索上升阶段,纳米二氧化
钛的应用领域十分局限。
纳米二氧化钛可发挥作用的领域宽广,对待纳米二氧化钛,我们仍需不断地探索实验,让其在更多领域绽放光芒。