纳米TiO2光催化材料及其应用..
纳米TiO2材料的制备及其光催化性能研究
纳米TiO2材料的制备及其光催化性能研究随着经济的发展,人们生活水平的提高,人们逐渐意识到可持续发展的重要。
环境问题已严重影响现代文明的发展,有机污染物具有持久性的特点而长期威胁人类健康,开发和设计仅利用太阳能即可完成对有机污染物降解的新材料将会是解决环境问题的有效方法之一。
纳米TiO2作为一种光催化材料,具有优异的物理和化学性质,因而被广泛应用和重点研究。
本文就纳米TiO2材料的制备及其光催化性能展开探讨。
标签:纳米TiO2;光催化;制备方法;光催化效能引言半导体光催化技术是解决环境污染与能源短缺等问题的有效途径之一。
以二氧化钛为代表的光催化剂在染料敏化太阳能电池、锂离子电池、光伏器件以及光催化领域表现出明显的使用优势.但是TiO2本身的弱可见光吸收、低电导率、高载流子复合速率限制了其在工业生产中的进一步使用。
科技工作者一般通过掺杂、半导体复合、燃料敏化、表界面性质改性等方法提高TiO2的光电化学性能,使其能在生产实践中广泛应用。
1、TiO2材料简介TiO2在自然界中的主要存在形态为金红石、锐钛矿和板钛矿三种晶型,其中金红石是TiO2的高温相,锐钛矿和板钛矿两种形态是TiO2的低温相。
在三种晶型中光催化活性最好的为锐钛矿型TiO2。
锐钛矿型TiO2的禁带宽度为3.2eV 与之对应的激发波长为387nm。
所以,TiO2作为光催化剂在紫外光条件下具有催化活性,在可见光下一般没有活性。
只有对它的结构进行改性,使它的禁带宽度得以缩小,才可以实现材料在可见光条件下的催化降解反应。
改性的方式目前主要有以下几种方法:通过改变晶体内部结构来改变催化剂禁带宽度的离子掺杂方法,通过形成异质结改变能带结构的半导体复合法,提高催化剂对光的吸收能力的表面光敏化法,增大催化剂比表面积使晶粒细化的负载载体法等。
光催化材料中电子e一和空穴h十的浓度会影响有机物的降解速度。
粒径的减小能够使表面原子增加,使光催化剂吸收光的效率显著提高,使其表面e一和h十的浓度增大,从而提高光催化剂的催化活性。
纳米TiO2光催化降解水体中有机污染物
纳米TiO2光催化降解水体中有机污染物纳米TiO2光催化技术为一种有效的水体净化方法,可用于降解水体中的有机污染物。
本文将详细介绍纳米TiO2光催化降解有机污染物的原理、应用和未来发展趋势。
1. 简介水体污染是当前环境问题的重要方面之一,有机污染物的存在严重威胁水生态系统的健康和人类的生存。
因此,研究和开发高效的水体净化技术变得尤为重要。
纳米TiO2光催化技术凭借其高效、无毒、无副产物、易操作等优势,被广泛应用于水体净化领域。
2. 纳米TiO2光催化的原理纳米TiO2光催化技术是通过TiO2纳米颗粒的吸光吸收能量,形成带隙激发,产生电子和空穴对,进而参与化学反应。
在光照的作用下,纳米TiO2表面形成活性氧种,如羟基自由基和超氧阴离子自由基等,这些活性氧种具有较强的氧化能力,可将有机污染物分解为无害的物质。
3. 纳米TiO2光催化应用案例纳米TiO2光催化技术在水体净化领域有着广泛的应用。
以染料为例,纳米TiO2光催化技术可将有机染料降解为无色的无害物质。
此外,纳米TiO2光催化技术还可用于降解苯酚、有机酸类、农药等有机污染物。
这些应用案例充分展示了纳米TiO2光催化技术在水体净化中的潜力和优势。
4. 纳米TiO2光催化的改进方向虽然纳米TiO2光催化技术具有广泛的应用前景,但仍然存在一些问题需要解决。
首先,纳米TiO2材料的光催化效率仍有提升空间,需要进一步改进催化剂的结构和合成方法。
其次,纳米TiO2光催化技术受光照强度、温度等外部条件的影响较大,需要优化反应条件以提高降解效率。
此外,考虑到纳米TiO2颗粒对环境的潜在风险,还需要研究纳米TiO2的生物降解性以及对水生态系统的影响等问题。
5. 结论纳米TiO2光催化技术作为一种高效、环保的水体净化方法,具有重要的应用前景。
通过对纳米TiO2的研究和改进,可以进一步提高光催化降解有机污染物的效果,为水体净化事业做出更大的贡献。
未来,纳米TiO2光催化技术有望成为一种重要的工程应用,为改善水环境质量和保护生态环境做出积极的贡献。
TiO2光催化材料的自清洁特性及其应用
技术应用与研究2018·0499Chenmical Intermediate当代化工研究TiO 2光催化材料的自清洁特性及其应用*王凯1 刘巍英2(1.铜仁学院材料与化学工程学院 贵州 5543002.铜仁学院学生资助中心 贵州 554300)摘要:TiO 2光催化活性自上世纪70年代提出以来在能源和环境领域得到了广泛研究和应用,尤其在自清洁涂料领域。
利用TiO 2的光催化功能可以有效的降解涂层表面的各种有机物,而其光致超亲水性又可以清除表面的无机颗粒。
TiO 2制备的自清洁涂层具有自清洁能力强、透光性高,附着力强和耐用性好等优势,在光伏电站、汽车镀膜、幕墙等领域均有广泛的应用。
本文将对基于TiO 2自清洁涂料的性质、应用和存在的问题进行介绍。
关键词:纳米二氧化钛;光催化;自清洁;应用前景中图分类号:T 文献标识码:ASelf-cleaning Property and Application of TiO 2 Photocatalytic MaterialWang Kai 1, Liu Weiying 2(1.Materials and Chemical Engineering Institute of Tongren College, Guizhou, 5543002.Student Funding Center of Tongren College, Guizhou, 554300)Abstract :TiO 2 photocatalytic activity has been widely studied and applied in the field of energy and environment since it was proposed in1970s, especially in the field of self-cleaning coatings. The photocatalytic function of TiO 2 can effectively degrade various organic compounds on the surface of the coating, and its photoinduced super hydrophilicity can also remove the inorganic particles on the surface. The self-cleaning coating prepared by TiO 2 has the advantages of strong self-cleaning ability, high light transmittance, strong adhesion and good durability, and has been widely used in the fields of photovoltaic power station, automobile coating, curtain wall and so on. This article will introduce the properties, application and existing problems of TiO 2 based self-cleaning coatings.Key words :nanoscale titanium dioxide ;photocatalysis ;self-cleaning ;application prospect引言近年来,幕墙、光伏电站等污染问题得到了越来越多的关注,表面污染物的清洗在一定程度缓解了相关问题,但人工或机械清洗方式存在成本高和操作困难等问题。
纳米二氧化钛的应用
纳米二氧化钛的应用纳米二氧化钛作为一种高效、无毒的光催化剂,在环保领域的应用越来越受到人们的广泛关注和重视。
抗菌材料纳米TiO2以其优异的抗菌性能成为开发研究的热点之一,以期应用于水处理装置、医疗设备、食品包装、建材(如抗菌地砖、抗菌陶瓷卫生设施、抗菌砂浆、抗菌涂料等)、化妆品、纺织品、日用品以及家用电器等各个领域。
1、气体净化环境有害气体可分为室内有害气体和大气污染气体。
室内有害气体主要有装饰材料等放出的甲醛及生活环境中产生的甲硫醇、硫化氢及氨气等。
TiO2通过光催化作用可将吸附于其表面的这些物质分解氧化,从而使空气中这些物质的浓度降低,减轻或消除环境不适感。
大气污染气体,主要是由汽车尾气与工业废气等带来的氮氧化物和硫氧化合物。
利用纳米TiO2的催化作用将这些气体氧化成蒸汽压低的硫酸和硝酸,在降雨过程中除去,从而达到降低大气污染的目的。
在居室、办公室窗玻璃、陶瓷等建材表面涂敷TiO2光催化薄膜或在房间内安放TiO2光催化设备,均可有效地降解污染物,净化室内空气。
利用纳米TiO2开发出来的一种抗剥离光催化薄板,可利用太阳光有效去除空气中的NOx气体,而且薄板表面生成的HN03可由雨水冲洗掉,保证了催化剂活性的稳定。
2、抗菌除臭抗菌是指纳米TiO2在光照下对环境中微生物的抑制或杀灭作用。
TiO2光催化剂对绿脓杆菌、大肠杆菌、金黄色葡萄球菌等具有很强的杀能力。
当细菌吸附于由纳米二氧化钛涂敷的光催化陶瓷表面时,2被紫外光激发后产生的活性超氧离子自由基(·O2-)和羟基自由基(·OH)能穿透细菌的细胞壁,破坏细胞膜质,进入菌体,阻止成膜物质的传输,阻断其呼吸系统和电子传输系统,从而有效地杀灭细菌,并抑制细菌分解有机物产生臭味物质(如H2S、SO2、硫醇等)。
因此,纳米TiO2能净化空气,具有除臭功能。
3、处理有机污水工业污水和生活污水中含有大量的有机污染物,尤其是工业污水中含有大量的有毒、有害的有机物质,这些污染物用生物处理技术很难消除。
纳米二氧化钛光催化原理
纳米二氧化钛光催化原理
纳米二氧化钛光催化是一种通过利用纳米二氧化钛作为催化剂,利用光照下光生电荷的特性来促进光化学反应的过程。
纳米二氧化钛催化的原理主要涉及到两个关键步骤:光吸收和电子传输。
首先是光吸收过程。
纳米二氧化钛具有广阔的能带结构,光能可以在其表面被吸收。
当光能与纳米二氧化钛相互作用时,电子将被激发至较高的能级,并产生电荷分离。
其次是电子传输过程。
激发后的电荷(电子空穴对)会被分离并迁移到纳米二氧化钛的表面。
电子通常会迁移到导电带上,而空穴则会迁移到价带上。
这种电子与空穴分离产生的电荷极化会使纳米二氧化钛具有催化活性。
纳米二氧化钛表面的催化活性可用于促进光化学反应。
光照下,纳米二氧化钛表面的电荷分离状态会引发一系列反应,例如光解水、光催化氧化有机物等。
电子和空穴分别参与氧化还原反应,从而促进了催化反应的进行。
总的来说,纳米二氧化钛光催化利用了纳米二氧化钛催化剂的特殊性质,通过光生电荷的产生和传输,促进了光化学反应的发生。
这种技术在环境净化、能源转换和有机合成等领域有着广泛的应用前景。
二氧化钛纳米管在光催化的介绍和特点中的应用
二氧化钛纳米管在光催化的介绍和特点中的应用二氧化钛纳米管在光催化的应用,哎呀,这可真是一个有趣的主题!二氧化钛,咱们就叫它TiO2吧,大家都比较熟悉。
这东西在我们生活中其实很常见,比如说白色颜料、太阳能电池等。
而这些纳米管,可谓是小小的奇迹,表面上看起来不起眼,实际上却有着不一般的能力。
想象一下,微小的TiO2纳米管在阳光照射下,活像一位超级英雄,瞬间变得强大无比,开始处理那些污染物,真是让人感到惊叹。
光催化,听起来好像高大上,其实就是利用光的能量来推动化学反应。
TiO2在这个过程中可是个主力军,阳光一来,它就开始发挥自己的光辉作用。
这个过程就像是一场精彩的表演,TiO2把太阳光变成了能量,随后开始分解空气中的有害物质,嘿,真是环保小能手!想象一下,如果我们的城市都用上这种材料,空气质量可得多好多啊,简直就是让人忍不住想要为它打call!TiO2纳米管的特点也很吸引人,首先是它的表面积大,能和更多的污染物接触。
就像一个大网,能捕捉到那些小小的坏分子。
这玩意儿不仅稳定,耐高温,甚至可以在酸碱环境中保持自己的“酷”。
不管是雨打风吹,它都能安然无恙,继续工作,这点真是让人佩服得五体投地。
更有趣的是,TiO2的光催化过程是自发的,换句话说,太阳一照,它就自动工作,不需要我们再去添油加醋。
这种省心省力的特性,真是让人觉得,哎,这科技真是给力。
想想我们在家里用的那些清洁剂、消毒剂,很多时候都是化学反应的结果。
而TiO2的光催化,简直就像是给环境“洗澡”,不仅干净,还不怕伤害生态,真的是环保的小帮手。
TiO2纳米管的应用可不止于此。
在水处理方面,它也大显身手。
比如说,利用它来处理污水,污染物一碰到TiO2,咻的一声,就被分解得干干净净。
水清了,鱼也快乐了,整个生态系统都得到了保护。
想象一下,能喝到这么干净的水,生活的质量一下子就上去了,真是美滋滋。
说到这里,大家可能会问,TiO2有没有什么缺点呢?当然也有,毕竟没有完美的东西。
TiO2光催化反应及其在废水处理中的应用
TiO2光催化反应及其在废水处理中的应用随着人口的增加和工业化的快速发展,水资源的污染问题日益突出,给环境和人类健康带来了巨大威胁。
因此,寻找高效、低成本的废水处理技术变得尤为重要。
TiO2光催化反应由于其高效、环境友好的特点,在废水处理中得到了广泛应用。
TiO2是一种常见的金属氧化物,具有良好的稳定性、耐腐蚀性和光催化性能。
光催化反应是指在光照下,光催化剂吸收光能产生活性氧物种,通过氧化还原反应将有机污染物转化为无害的物质。
TiO2光催化反应的原理主要基于其能带结构和表面活性位点。
当光照入射到TiO2表面时,激活光子会激发电子从价带跃迁到导带,产生电子-空穴对。
电子和空穴在晶体内部进行迁移,发生氧化还原反应。
此外,TiO2表面的羟基(OH)和缺陷位点也可以吸附有机污染物,提高催化剂的活性。
尽管TiO2光催化反应具有良好的光催化性能,但纯TiO2的光响应范围较窄,主要在紫外线(UV)区域。
为了拓展其光响应范围,研究者们通过掺杂、复合和修饰等方法进行了改性。
掺杂将其他金属或非金属元素引入TiO2晶格中,改变了其能带结构和吸收光谱。
复合将TiO2与其他材料进行复合,形成新的光催化剂。
修饰利用纳米材料对TiO2进行修饰,增强了其光催化性能。
这些方法不仅提高了光催化剂的光响应范围,还改善了其光催化效率。
在废水处理中,TiO2光催化反应被广泛应用于去除有机物、重金属离子和细菌等污染物。
有机污染物是废水中主要的污染源之一,包括有机溶剂、农药、染料和药物等。
这些物质具有难降解性和毒性,传统的废水处理方法往往效果不佳。
而TiO2光催化反应能够将有机污染物降解为无害的物质,大大提高了废水处理的效果。
重金属离子是废水中另一个常见的污染物,具有持久性和生物蓄积性。
TiO2光催化反应能够将重金属离子还原为金属,或通过与金属形成络合物沉淀,有效去除废水中的重金属污染物。
此外,TiO2光催化剂还可以发生光生杀菌作用,通过破坏细菌细胞结构和代谢功能来净化废水。
催化剂纳米二氧化钛的作用
催化剂纳米二氧化钛(TiO2)具有多种作用,主要集中在以下几个方面:
1. 光催化作用:
纳米二氧化钛在紫外线照射下具有很强的光催化活性。
当其吸收紫外光后,能产生电子-空穴对,这些载流子参与氧化还原反应,能够分解空气中的有害气体如甲醛、苯、氨气以及某些有机污染物,将其转化为无害的二氧化碳和水。
因此,纳米二氧化钛被广泛应用于空气净化、水质净化等领域。
2. 抗菌性能:
光催化作用也能有效杀灭细菌和病毒,通过生成的羟基自由基等强氧化性物质破坏微生物细胞膜和DNA结构,从而实现高效抗菌和抗病毒功能。
这种特性使得纳米二氧化钛常用于制备具有自清洁、抗菌效果的涂层材料,比如应用于建材表面、医疗设备表面处理等。
3. 紫外线屏蔽:
由于二氧化钛对紫外线有较高的反射率和吸收率,所以它是一种高效的紫外线屏蔽剂,可以添加到化妆品、涂料、塑料等材料中,保护人体皮肤或产品免受紫外线伤害,延长产品的使用寿命和提高其耐候性。
4. 新能源应用:
在能源领域,纳米二氧化钛也被研究作为光电化学电池的光阳极材料,利用其光生电荷分离的能力来转化太阳能为电能。
5. 其他功能:
还可作为催化剂载体,支持负载其他活性成分进行催化反应;同时,在某些特定条件下,纳米二氧化钛还可以表现出优异的导电性和良好的化学稳定性,进一步拓宽了其在传感器制造、环保材料、药物传递系统等方面的应用潜力。
半导体光催化03 纳米TiO2光催化材料
4.电荷在表 面向底物转 移的能力
催化剂颗粒直径的影响
催化剂粒子的粒径越小,单位质量的粒子数越多,比表面积越 大,催化活性越高;但比表面积的增大,意味着复合中心的增多, 如果当复合反应起主导作用的时候,粒径的减小会导致活性的降低
当粒径在1~10nm级时会产生量子效应
半导体禁带明显变宽,电子—空穴对的氧 化能力增强 活性增大
anatase 3.84
Lattice constant
Lengths of Ti-O bond Eg/eV /nm 0.195 3.2
a c Tetragonal 5.27 9.37 system
Tetragonal 9.05 system Rhombic system 5.8
rutile
4.22
纳米TiO2光催化剂简介※
纳米TiO2光催化剂机理※
纳米TiO2光催化剂的应用
光催化技术的发展历史
1972年,Fujishima 在N-型半导体TiO2电极上发现 了水的光催化分解作用,从而开辟了半导体光催化这 一新的领域。 1977年,Yokota T等发现了光照条件下,TiO2对环 丙烯环氧化具有光催化活性,从而拓宽了光催化反应 的应用范围,为有机物的氧化反应提供了一条新思路。
近年来,光催化技术在环保、卫生保健、自洁净 等方面的应用研究发展迅速,半导体光催化成为国际 上最活跃的研究领域之一。
光催化的基本原理
1、光催化机理
• 半导体材料在紫外及可见光照射下,将污染物短时间内完全降解 或矿化成对环境无害的产物,或将光能转化为化学能,并促进有 机物的合成与分解,这一过程称为光催化。 • 半导体光催化氧化降解有机物的作用机理:
纳米TiO2光催化剂简介 什么是多相光催化剂?
纳米TiO2的制备与应用
1.1纳米材料概述纳米材料是指其结构单元的尺寸介于1纳米~100纳米范围之间的材料。
由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。
并且,其尺度已接近光的波长,因此其所表现的特性如具有量子尺寸效应、表面效应和宏观量子隧道效应等。
从而使得熔点、磁性、光学、导热、导电特性等等往往不同于该物质在整体状态时所表现的性质。
纳米材料是20世纪80年代中期研制成功的,后来相继问世的有纳米半导体薄膜、纳米陶瓷、纳米瓷性材料和纳米生物医学材料等。
而现在,纳米材料已经渗透入医药化工、电子计算机和电子工业、环境保护、纺织工业、机械工业等多个领域,展现了其非凡的特性和广阔的发展的前景[1-13]。
1.2纳米TiO2 概述二氧化钛(TiO2),俗称钛白粉,是仅次于合成氨和磷酸的世界无机化工产品中销售量第三的产品。
在化工生产领域占据着极其重要的地位。
纳米级二氧化钛的粒径在1~100nm之间,比表面积远大于普通二氧化钛,因此具有很大的表面活性,并以其颗粒尺寸的优势而具有许多超过普通钛白粉的优点,光催化降解有机物活性和气敏湿敏性也显著增强。
纳米二氧化钛对可见光和波长在200-400nm间的紫外光是透明的,可用作透明效应颜料和紫外光吸收剂,对紫外光有着很好的屏蔽能力,可用于制造化妆品和包装材料,制作多种消毒、作为新防臭和水果保鲜用品,又因其分散性好不沉降可用于高档油墨。
纳米TiO2型涂料和光催化剂等大量应用于精细化工中,还可以被用作电子陶瓷元件、光介子、氧化物半导体材料广泛用于消除放射性废物和环境污染物质,以及回收贵金属等。
日本还将二氧化钛的光催化功能应用在净化垃圾处理、高速公路两边的隔音墙、厨房和浴池用瓷砖等,日本东陶公司的科学家渡部俊也在1995年发现了纳米二氧化钛的超亲水性,并已经利用这种特性生产出了不用擦拭的汽车后视镜、防水气和防污的玻璃和陶瓷等。
纳米二氧化钛是光催化材料研究的热点也是研究的最多的半导体光催化材料。
环境材料纳米TiO2的光催化研究及应用
1 3 影 响光 催化 活性 的物 理 因素。 .
13 1 晶型 的影 响 ..
¥l dr a ao 等人 在研究 金 红 石 型 TO v i 单 晶上 水
的光解 过程 时发 现氧 空位形 成 的缺 陷是反 应 中将 H 0氧 化 为 H 的 活 性 中心 , 因 是 T 一T 2 22 0 原 i ¨ i ’ ( .5 '小 得 多 , 而使 吸 附 的 活性 羟 基 的反 0 4 9I 1 m) 因
维普资讯
第3 6卷 第 1期 20 0 7年 2月
当
代
化
工
Co tmp rr e c lId sr ne o ay Ch mia n u ty
V0 . 136. No. 1 F bu r 2 0 e r ay, 0 7
环 境材 料 纳米 TO i2的光催 化 研 究 及 应 用
王 俊 尉 ,谷 晋川 , 杨 萍 ,南艳 丽 ,黄 健 盛
( 华 大 学 能源 与环 境 学 院 ,四川 成 都 60 3) 西 109
摘
要 : 环 境 材 料 纳 米 ’( n) 2已成 为 环 保 领 域 和 纳 米 新 材 料 领 域 共 同 关 注 的 焦 点 , 电 子 转 从
子还 有复合 的可能 , 其机理 如下 n : 】
由于 纳米 TO i:的粒径 非 常小 , 以极 大 缩短 所 了h 和 e 从 晶体 内部 迁移 导 表 面 的时 间 , 而 一 从
等 , 些优 点使 纳米 TO 光催 化材 料 拥 有广 阔的 这 i: 应 用领 域 和发 展 前 景 , 已经成 为 纳 米 技术 在 环 其
就是 说 只要 半导 体 吸收 的光能 ( v不 小 于其 禁 带 h) 宽 度 , 带 上 的 电子 ( 一 就 可 以被 激 发 跃迁 到 导 价 e) 带 , 价带 上产 生相应 的空穴 ( ) 随后 h 在 h , 和 e 一
纳米TiO2光催化材料(讲)详解
0.199 3
板钛矿 4.13 斜方晶系
➢锐钛矿相和金红石相TiO2的能带结构
CB/e3.2eV
两者的价带位置相同,光生空
0.2eV CB/e-
穴具用相同的氧化能力;但锐钛矿 相导带的电位更负,光生电子还
原能力更强
3.0eV
VB/h+
VB/h+
混晶效应:锐钛矿相与金红石 相混晶氧化钛中,锐钛矿表面形 成金红石薄层,这种包覆型复合 结构能有效地提高电子-空穴的分 离效率
近年来,光催化技术在环保、卫生保健、自洁净 等方面的应用研究发展迅速,半导体光催化成为国际 上最活跃的研究领域之一。
纳米TiO2光催化剂简介
纳米TiO2是一种新型的无机金属氧化物材料, 它是一种N型半导体材料,由于具有较大的比表面积 和合适的禁带宽度,因此具有光催化降解一些化合 物的能力。
纳米TiO2以其优异的光催化活性、价格低廉、 无毒无害等优点得到了广泛的应用。
2.当氧的分压较低(如PO2 ≤5066.25Pa),底物S的浓度较高 (大于10-3mol/dm-3)时。温度效应取决于温度对有机底物和氧 吸附性能的影响。
其他影响因素 除了前面提过的影响因素外,外加氧化剂、光源、
光强、反应液中的盐等外界条件都可以对TiO2的光 催化活性产生一定的影响。
➢ TiO2光催化材料的特性
➢ TiO2光催化活性的光催化的影响因素
TiO2晶体结构的影响
在 TiO2的三种晶型锐钛矿、金红石和板钛矿中,锐钛矿表 现出较高的活性,原因如下:
1.锐钛矿较高的禁带宽度使其电子空穴对具有更正或更负 的电位,因而具有较高的氧化能力
2.锐钛矿表面ห้องสมุดไป่ตู้附H2O,O2及OH-的能力较强,导致光催 化活性较高
纳米TiO2光催化材料的合成及应用研究进展
剂中的电子或 T i O : 纳米粒子表面吸附物质 , 使原本
不吸光物质被氧化活化 , 电子受体通过接受表面的 电子而被还原。该过程如下式和图 1 所表示。
T i O 2+ H 2 O _ + e 一+h h +O H一 HO ・ h + H2 O H O ・+H
e 一+O - - + 0 2 -・ O +H _ ÷ H0 2・ 2 HO 2・ O 2 + H2 0 2
p op r o s e d i n he t p a p e r.
Ke y wo r d s : n a n o—T i O2 ; p h o t o c a t a l y t i c; me c h a n i s m; w a s t e wa t e r t r e a t me n t ;a p p l i c a t i o n
Th e p r o g r e s s o f S y n t h e s i s a n d Ap p l i c a t i o n f o r T i O2 P h o t o c a t a l y s i s Ma t e r i a l
Y A NG Y a o—b i n, CU I Y u e , Z H A NG F e n g—M e i
表 了T i O : 光电极和铂 电极 组成 的光 电化学体 系在 紫外光 的照射下分解水成氢和氧的论文和 1 9 7 6年
tio2光催化原理
tio2光催化原理TiO2光催化原理。
光催化技术是一种环境友好的处理污染物的方法,其原理是利用半导体材料在光照条件下产生电子和空穴对,并通过这些电子和空穴对来进行化学反应,从而降解有害物质。
其中,二氧化钛(TiO2)作为一种重要的半导体材料,在光催化领域得到了广泛的应用。
首先,TiO2的光催化原理是基于光生电荷对的产生和利用。
当TiO2暴露在光照条件下时,其价带内的电子会被光激发到导带内,形成电子-空穴对。
这些电子和空穴对具有较高的还原和氧化能力,可以参与光催化反应。
在光照条件下,TiO2表面会吸附有机废水中的有机物质,然后通过光生电子和空穴对的作用,将有机物质分解为水和二氧化碳等无害物质。
其次,TiO2的光催化原理还涉及到光生电荷对的分离和传输过程。
在光照条件下,TiO2表面吸附的有机物质会促使光生电子和空穴对的产生,并在TiO2表面发生分离。
这些电子和空穴对会沿着TiO2的晶格结构传输,最终参与光催化反应。
通过这一过程,TiO2能够有效利用光能,并提高光催化反应的效率。
另外,TiO2的光催化原理还涉及到表面活性位点的形成和作用。
TiO2的表面具有丰富的活性位点,这些位点能够吸附有机废水中的有机物质,并提供反应的场所。
在光照条件下,这些活性位点能够有效地催化有机物质的分解反应,从而加速光催化反应的进行。
总的来说,TiO2的光催化原理是基于光生电荷对的产生和利用,涉及到光生电荷对的分离和传输过程,以及表面活性位点的形成和作用。
通过这些原理,TiO2能够有效地催化有机废水中有机物质的分解,实现环境友好的污染物处理。
在实际应用中,TiO2光催化技术已经被广泛应用于废水处理、空气净化等领域,具有重要的应用前景和社会意义。
纳米二氧化钛光催化材料
1.1
ZnO
3.2
TiO2(Rutile)
3.0
TiO2(Anatase)
3.2
WO3
2.7
CdS
2.4
ZnS
3.7
SnO2
3.8
SiC
3.0
半导体价带的光激发
空气和溶液中通常是氧
固体中的光激发和脱激过程
光生电子—空穴对的氧化还原机理
TiO2光催化主要反应步骤
01
04
02
05
07
08
添加标题
hv
添加标题
复合
添加标题
H+VB
添加标题
价带空穴诱发氧化反应
添加标题
导带电子诱发还原反应
添加标题
捕获导带电子生成Ti3+
03
06
09
添加标题
CB
敏化剂激发后电子转移
电子转移给受体
催化剂再生
表面还原处理
对于TiO2光催化反应,电子向分子氧的转移是光催化氧化反应的速度限制步骤,故表面Ti3+数量越多,越有利于电子向分子氧的转移。
另一方面,在TiO2表面,Ti3+通过吸附分子氧,也形成了捕获光生电子的部位
一方面,随着TiO2表面Ti3+位的增多,TiO2的费米能级升高,界面势垒增大,减少了电子在表面的积累及与空穴的进一步复合
半导体禁带明显变宽,电子—空穴对的氧化能力增强 半导体电荷迁移速率增加,电子与空穴的复合几率降低 活性增大
催化剂颗粒直径的影响
当粒径在1~10nm级时会产生量子效应
添加标题
添加标题
添加标题
添加标题
温度的影响
C:\Documents and Settings\Administrator\桌面\03_02_08_1.Mpeg.swf桌面\03_02_08_1.Mpeg.swf
二氧化钛纳米材料
二氧化钛纳米材料二氧化钛(TiO2)是一种重要的半导体材料,具有广泛的应用前景,尤其是在纳米材料领域。
纳米材料是指至少在一维上尺寸小于100纳米的材料,具有特殊的物理、化学和生物学性质。
二氧化钛纳米材料因其独特的光电性能和化学稳定性,被广泛应用于光催化、光电器件、传感器、抗菌材料等领域。
首先,二氧化钛纳米材料在光催化领域具有重要应用。
由于其较大的比表面积和优异的光催化性能,二氧化钛纳米材料被广泛应用于水分解、有机废水处理、空气净化等领域。
通过光催化作用,二氧化钛纳米材料可以有效分解有害物质,实现环境净化和资源利用,具有重要的环保和能源应用价值。
其次,二氧化钛纳米材料在光电器件方面也有重要应用。
由于其优异的光电性能和稳定性,二氧化钛纳米材料被广泛应用于太阳能电池、光电探测器、光致发光器件等领域。
通过合理设计和制备二氧化钛纳米材料,可以实现光电器件的高效能转换和稳定性,推动光电器件领域的发展和应用。
此外,二氧化钛纳米材料在传感器领域也具有重要应用。
由于其高灵敏度和快速响应特性,二氧化钛纳米材料被广泛应用于气体传感、生物传感、化学传感等领域。
通过构建二氧化钛纳米材料基底的传感器,可以实现对环境中有害气体、生物分子、化学物质等的高灵敏检测和快速响应,具有重要的应用前景和社会价值。
最后,二氧化钛纳米材料在抗菌材料方面也有重要应用。
由于其优异的抗菌性能和生物相容性,二氧化钛纳米材料被广泛应用于医疗器械、食品包装、环境卫生等领域。
通过将二氧化钛纳米材料引入抗菌材料中,可以实现对细菌、病毒等微生物的高效杀灭和抑制,具有重要的医疗卫生和食品安全应用价值。
总之,二氧化钛纳米材料具有广泛的应用前景,在光催化、光电器件、传感器、抗菌材料等领域都有重要的应用价值。
随着纳米材料研究的不断深入和发展,相信二氧化钛纳米材料将在更多领域展现出其独特的优势和应用价值。
纳米TiO2光催化材料简介及光催化机理毕业设计
纳米TiO2光催化材料简介及光催化机理毕业设计目录摘要 ................................................... 错误!未定义书签。
Abstract ............................................... 错误!未定义书签。
1.文献综述 (1)1.1 纳米TiO光催化材料简介及光催化机理 (1)2光催化材料简介 (1)1.1.1 纳米TiO21.1.2 TiO光催化的基本原理 (1)21.2 提高光催化性能的改性方法及原理 (3)1.2.1 过渡金属元素掺杂 (3)1.2.2 稀土元素掺杂 (4)1.2.3 非金属元素掺杂 (4)制备方法 (5)1.3 掺杂TiO21.3.1 共沉淀法 (5)1.3.2 浸渍法 (6)1.3.3 W/O型微乳液法 (6)1.3.4 固相反应法 (6)1.3.5 溶胶凝胶法溶胶一凝胶法 (7)1.4 金属离子掺杂改性TiO的原理及影响因素 (7)2的光催化机理 (8)1.4.1 金属离子掺杂 TiO21.4.2 金属离子掺杂改性TiO光催化性能的影响因素 (9)21.5 TiO2光催化技术在环境净化方面的应用 (11)1.5.1 水环境有机污染物的去除 (11)1.5.2 空气净化 (12)1.5.3 高效杀菌 (12)1.6 本课题研究的意义及内容 (12)1.6.1本课题研究的意义 (12)1.6.2本课题研究的内容 (13)2 实验方法 (15)2.1 设计及实验流程图 (15)2.2 仪器与试剂 (16)2.2.1 实验仪器 (16)2.2.2 分析测量仪器 (16)2.2.3 化学试剂和原材料 (16)2.2.4 初始化学试剂的配制 (17)2.3 凝胶的制备及条件的选择 (18)2.3.1 TiO凝胶的制备 (18)2凝胶的制备 (19)2.3.2 M/TiO22.4 粉末的制备 (19)2.5 粉末的光催化降解实验方法 (19)2.6 粉末的表征 (20)3.实验结果及讨论 (21)3.1 焙烧温度的影响及优选 (21)3.2 不同金属掺杂的影响及优选 (21)3.3 掺杂量的影响及优选 (22)3.4 不同反应pH的影响及优选 (23)3.5 表征数据的处理及分析 (23)3.5.1 (23)3.5.2 (23)3.5.3 (23)4 结论 (24)5 谢辞 (27)6 参考文献 (26)7.附录 (28)1.文献综述1.1 纳米TiO2光催化材料简介及光催化机理1.1.1 纳米TiO2光催化材料简介自从1972年日本Fujisima和Honda报道了TiO2电极上电解水现象后,半导体光催化引起了国际化学、物理学和材料学等领域科学家的广泛关注。
纳米结构金属氧化物光催化剂研究与应用
纳米结构金属氧化物光催化剂研究与应用一、引言纳米技术的发展不断推动着材料科学领域的革命,其中纳米结构金属氧化物光催化剂在环境治理和新能源开发等方面具有巨大的潜力。
本文将从纳米结构金属氧化物光催化剂的研究现状、机理、性能、制备方法等方面进行综述,并探讨其在环境、能源等领域的应用前景。
二、研究现状自1972年Fujishima和Honda发现TiO2的光催化性质以来,光催化剂的研究与应用引起了广泛关注。
TiO2是应用最广泛的金属氧化物光催化剂,但由于其带隙宽度较大,只能吸收对紫外光,限制了其在可见光区域的应用。
与之相比,纳米结构金属氧化物光催化剂由于其较小的晶格尺寸、较大的比表面积和丰富的电子缺陷,能够有效利用可见光,具有更优越的催化性能。
研究表明,纳米结构金属氧化物光催化剂的催化性能与其晶体结构、晶面定向、形状和表面性质等密切相关。
三、机理光催化反应机理是从吸收光子能量在光催化剂表面形成一个带有高激发能的电子,这种电子进行氧化还原反应,将吸附在催化剂表面上的有机物或无机物转化为CO2 和H2O等无害物质。
纳米结构金属氧化物光催化剂在可见光区域产生的电子空穴对,具有更强的还原能力和氧化能力,使得纳米结构金属氧化物催化剂在有机物和无机物的分解方面有着更高的催化效率。
四、性能纳米结构金属氧化物的晶格缺陷和表面少量的活性位点,能够为光激发产生的电子空穴对提供理想的还原和氧化催化活性中心。
这使得纳米结构金属氧化物光催化剂在分解废水中含有的有毒有害物质、重金属离子等方面有着更高的分解效率,表现出更优秀的催化性能。
另外,对于有机化合物的分解所产生的CO2和水等有害物质,纳米结构金属氧化物光催化剂在还原氧化转化过程中也能得到有效的处理。
五、制备方法对于纳米结构金属氧化物光催化剂的制备方法,由于其制备条件非常苛刻和复杂,通常采用溶胶–-凝胶、气相沉积、水热、绿色化学和微乳液等方法进行。
其中水热法成本较低、对环境不污染等优点导致其成为一种主要的制备方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参考文献
(8) Anpo M, Aikawa N, Kodama S, et al. J. Phys. Chem. 1984, 88:2569 ~2572
(9) Hoffman M R , Martin S T , Choi Wet al . Chem. Rev. , 1995 , 95 :69 - 96
有机污染物的处理 无机污染物的处理
1. 光催化能够解决Cr6+、Hg2+、Pb2+等重金属子的污染问题 2. 光催化还可分解转化其它无机污染物,如CN-、NO2-、H2S、 SO2, NOx等
室内环境净化
主要有机物光催化降解反应[14]
有机物 烃 卤代烃 羧酸 表面活性剂 染料 含氮有机物 有机磷杀虫剂 催化剂 TiO2 TiO2 TiO2 TiO2 TiO2 TiO2 TiO2 光源 紫外 紫外 紫外,氙灯 日光灯 紫外 紫外 紫外,太阳光 光解产物 CO2 ,H2O HCl,CO2,H2O CO,H2,烷烃,醇,酮,酸 CO2,SO32CO2,H2O,无机离子,中间物 CO32-,NO32-,NH4+,PO43-,F- 等 Cl-,PO43-,CO2
91 92 94
卫生保健方面的应用[14,16]
灭杀细菌和病毒
可以用于生活用水的的杀菌消毒;负载TiO2 光催化剂的玻璃、 陶瓷等是医院、宾馆、家庭等各种卫生设施抗菌除臭的理想材料
使某些致癌细胞失活
防结雾和自清洁涂层方面的应用[18~19]
在紫外光照射下,水在氧化钛薄膜上完全浸润。因此,在浴室 镜面、汽车玻璃及后视镜等表面涂覆一层氧化钛可以起到防结雾 的作用
离子掺杂的TiO2光催化性能[7,21]
2001年Asahi等日本学者报道了 氮掺杂的TiO2 ,引起人们对阴离 子掺杂光催化剂及其可见光响应 性能的广泛兴趣。
过渡金属离子的掺杂会在半导体晶格中引入能捕获光致 电子和空穴的缺陷;或改变结晶度,使激发光的波长红移
光敏化原理示意图[22]
CB
S1
Seminar Ⅱ
纳米 TiO2光催化材料及其应用
报告人: 江大好 导 师: 丁云杰 研究员
光催化技术的发展概况[1~3]
A.1972年Fujishima和Honda在n-型半导体TiO2电极上发现了水 的光催化分解作用,揭开了光催化技术研究的序幕。 B.1976年Garey用TiO2光催化剂脱除了多氯联苯中的氯,1977年 Frank光催化氧化CN-为OCN-,光催化技术在环保方面的应用 研究开始启动。 C.近十几年来,半导体光催化技术在环保、卫生保健等方面的 应用研究发展迅速,纳米光催化成为国际上最活跃的研究领 域之一。
在窗玻璃、建筑物的外墙砖、高速公路的护栏、路灯等表面涂 覆一层氧化钛薄膜,利用氧化钛在太阳光照射下产生的强氧化能 力和超亲水性,可以实现表面自清洁
有机污垢
无机污垢
CO2 H2O
TiO2薄膜
光催化化学合成[14]
有机合成
光催化不仅可分解破坏有机物,在适当条件下还能用 来合成一些有机物。如在非水溶剂中,苯乙烯光催化聚合 生成聚苯乙烯
表面积效应
随着粒子尺寸减小到纳米级,光催化剂的比表面积大大增加,对底 物的吸附能力增强
载流子扩散效应
粒径越小,光生电子从晶体内扩散到表面的时间越短,电子和空穴 的复合几率减小,光催化效率提高
TiO2光催化材料的特性
[9]
光催化活性高(吸收紫外光性能强;禁带和导带
之间的能隙大,光生电子和空穴的还原性和氧化 性强)
贵金属沉积
离子掺杂
添加适当的有机染料敏化剂 采用复合半导体
载Pt后的TiO2光催化性能[20]
h ≥ E g A D h+ eTiO2 Doxidized
Pt
Areduced
光生电子在Pt岛上富集,光生空 穴向TiO2晶粒表面迁移,这样形 成的微电池促进了光生电子和空 穴的分离,提高了光催化效率
化学性质稳定(耐酸碱和光化学腐蚀),对生物无
毒 在可见光区无吸收,可制成白色块料或透明薄膜 原料来源丰富
纳米TiO2是当前最有应用潜力的光催化剂
二氧化钛晶体的基本物性
形态 锐钛矿 金红石 板钛矿 相对密度 晶格类型 3.84 4.22 4.13
[10 ~11]
晶格常数
a c 9.37 5.8
(18)Wang R , Hashimato K, Fujishima A , et al. Nature ,1997 ,388 (6640) : 431 ~432
(19) Wang R , Hashimato K, Fujishima A , et al. Adv. Mater.,1998,10(2):135 ~ 138
(2) Carey J H , Lawrence J , Tosine H M. Bull. Environ. Contam. Toxical , 1976 , 16 (6) :697 ~ 701 (3) Frank S N, Bard A J. J. Phys. Chem. 1977, 81:1484~ 1486 (4) 李晓平,徐宝琨,刘国范等. 功能材料. 1999,30(3):242 ~ 248- (5) Hagfeldt A, Grä tzel M. Chem.Rev. ,1995 ,95 :49 ~68 (6) Walden M, Lai X, Goodman D W. Science 1998, 281:1647 ~ 1650 (7) Trudeau M L and Ying J Y. Nanostructured Mater. 1996, 7:245 ~ 258
参考文献
(20)H. Sakai R. Baba K, Hashimoto ,et al. Chem Lett ,1995. 24 (2) :185 ~ 186
(21)Asahi R, Morikawa T, Ohwaki T, et al. Science. 2001,293:269 ~ 271
— —
CB
CB
h A +
SnO2 h
+ VB VB
A+
光催化剂固定化的技术优势
将光催化剂制成薄膜或以微粒形式负载于基质上: 有效解决了悬浮相光催化剂分离回收难的问题
可以克服悬浮相催化剂稳定性差、容易中毒等缺点
应用活性组分和载体的功能组合来设计新型光催化反应器
但是也存在光催化剂分散度降低,与反应物接触面积减小,
有代表性的光催化半导体材料及其能带[5]
(NHE)
-1.5 -1.0 -0.5 0 +0.5 +1.0 +1.5 △E=1.4eV GaAs (n,p) CdS (n) ZnO (n) WO3 (n) TiO2 -1.0
SnO2
(n)
(n) 0 +1.0
--
2.5eV 3.2eV 3.2eV 3.8eV
参考文献
(14)韩兆慧,赵化侨. 化学进展,11(1):1 ~ 10
(15) Sixto Malato *, Juli an Blanco, Alfonso Vidal,et al. Solar Energy. 75(2003)329~ 336 (16)建设科技,2002,(8):12 ~ 14 (17) Akira Fujishima, Tata N. Rao, Donald A. Tryk. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 1 (2000) 1–21
h
CB
S1
h
S0 色素或染料
VB TiO2 VB TiO2
S0 色素或染料
ES1 ﹥ ECB 有光生电流产生
ES1 ﹥ ECB 无光生电流产生
偶合型复合半导体电荷分离示意图[23]
CB — h
B
— CB Bh
CdS
TiO2
A
VB + A+
+
VB
包覆型复合半导体电荷分离示意图[24]
TiO2
VB/h+
锐钛矿相
VB/h+
金红石相
粉体纳米TiO2光催化剂的制备[11]
制备方法 溶胶-凝胶法 (sol-gel) 水热合成法 优点 不足
粒径小,分布窄,晶型为锐钛矿 前驱体为钛醇盐,成 型,纯度高,热稳定性好 本高 晶粒完整,粒径小,分布均匀, 反应条件为高温、高 压,材质要求高 原料要求不高,成本相对较低
光吸收效果变差等缺点
负载型TiO2光催化剂制备方法[11]
化学气相沉积法
溶胶凝胶法工艺简单,条件温和,制得的 催化剂光催化活性高,是实验室最常用的方 法。但存在着在干燥过程中薄膜易发生龟 裂,薄膜厚度受到限制的缺点
溶胶-凝胶法
偶联法 离子交换法 液相沉积法
其他如粉体烧结法、掺杂法、溅射法等
ห้องสมุดไป่ตู้
纳米TiO2光催化前景展望
化学气相沉积法 粒径小,分散性好,分布窄,化 技术和材质要求高, (CVD) 学活性高,可连续生产 工艺复杂,投资大 微乳液法 可有效控制TiO2纳米粉末的尺寸 易团聚
纳米TiO2光催化剂的应用
环保方面的应用
卫生保健方面的应用 防结雾和自清洁涂层
光催化化学合成
环保方面的应用[13~15]
Ti-O距离 /nm
0.195 0.199
禁带宽度 /eV
3.2 3
正方晶系 5.27 正方晶系 9.05 斜方晶系
TiO6
Ti
O
锐钛矿相和金红石相二氧化钛的能带结构 [12]
CB/e0.2eV
3.2eV
CB/e-
3.0eV