高中数学必修三《线性回归》练习题

合集下载

人教A版高中数学必修三试卷1.6线性回归.doc

人教A版高中数学必修三试卷1.6线性回归.doc

1.6线性回归一、选择题1.下列说法中正确的是( )A .任何两个变量都具有相关关系B .人的知识与其年龄具有相关关系C .散点图中的各点是分散的没有规律D .根据散点图求得的回归直线方程都是有意义的2.变量y 与x 之间的回归方程( )A .表示y 与x 之间的函数关系B .表示y 和x 之间的不确定关系C .反映y 和x 之间真实关系的形式D .反映y 与x 之间的真实关系达到最大限度的吻合3.若用水量x 与某种产品的产量y 的回归直线方程是ˆy=2x +1250,若用水量为 50k g 时,预计的某种产品的产量是( )A .1350 k gB .大于 1350 k gC .小于1350k gD .以上都不对4.线性回归方程ˆy=bx +a 必过( ) A .(0,0)点 B .(x ,0)点 C .(0,y )点 D .(x ,y )点5.若变量y 与x 之间的相关系数r =-0.9362,查表得到相关系数临界值r 0.05=0.8013,则变量y 与x 之间( )A .不具有线性相关关系B .具有线性相关关系C .它们的线性关系还要进一步确定D .不确定6.“回归”一词是在研究子女的身高与父母的身高之间的遗传关系时,由高尔顿提出的,他的研究结果是子代的平均身高向中心回归,根据他的结论,在儿子的身高y 与父亲的身高x 的回归方程ˆy=a +bx 中,b 的取值( ) A .在(-1,0)内 B .等于0 C .在(0,1)内 D .在[1,+∞)内二、填空题7.有下列关系:① 人的年龄与他(她)拥有的财富之间的关系;② 曲线上的点与该点的坐标之间的关系;③ 苹果的产量与气候之间的关系;④ 森林中的同一种树木,其断面直径与高度之间的关系;⑤ 学生与他(她)的学号之间的关系.其中有相关关系的是 。

8.|r |>r 0.05的意义是 .9.散点图中n 个点的重心是 .10.有一组数据:(x 1, y 1),(x 2, y 2),……,(x n , y n ),记1n i i x x ==∑,1ni i y y ==∑,21()n xx i i l x x ==-∑, 1()()nxy i i i l x x y y ==--∑,则线性回归方程ˆy =a +bx 中的b = ,a = .11.由一组观测数据(x 1, y 1),(x 2, y 2),……,(x n , y n )得x =1.542,y =2.8475,2129.808n i i x==∑, 21n i i y =∑=99.208,154.243ni i i x y ==∑,则回归直线方程是 . 三、解答题x 2 4 5 6 8 10 12y0.5 1.2 2 1.8 2.2 3 3.513.有一台机床可以按各种不同的速度运转,其加工的零件有一些是二级品,每小时生产的二级品零件的数量随机床运转的速度而变化.下面是实验的步骤:(1)作出散点图;(2)求出机床运转的速度x与每小时生产二级品数量y的回归直线方程;(3)若实际生产中所允许的二级品不超过10个,那么机床的运转速度不得超过多少转/秒?14.为了研究三月下旬的平均气温(x)与四月二十号前棉花害虫化蛹高峰日(y)的关系,某地区观察了1996年至2001年的情况,得到下面的数据:(1)据气象预测,该地区在2002年三月下旬平均气温为27℃,试估计2002年四月化蛹高峰日为哪天;(2)对变量x,y进行相关性检验.。

(完整版)数学必修三回归分析经典题型(带答案)

(完整版)数学必修三回归分析经典题型(带答案)

数学必修三回归分析经典题型1.一位母亲记录了儿子3~9岁的身高,由此建立的身高与年龄的回归模型为93.7319.7ˆ+=x y用这个模型预测这个孩子10岁时的身高,则正确的叙述是( ) A.身高一定是145.83cm B.身高在145.83cm 以上 C.身高在145.83cm 以下 D.身高在145.83cm 左右 【答案】D【解析】解:把x=10代入可以得到预测值为145.83,由于回归模型是针对3-9岁的孩子的,因此这个仅仅是估计值,只能说左右,不能说在上或者下,没有标准。

选D2.对有线性相关关系的两个变量建立的线性回归方程$y =$a+b $x ,关于回归系数b $,下面叙述正确的是________.①可以小于0;②大于0;③能等于0;④只能小于0. 【答案】①【解析】由b$和r 的公式可知,当r =0时,这两变量不具有线性相关关系,但b 能大于0也能小于0.3.对具有线性相关关系的变量x 、y 有观测数据(x i ,y i )(i =1,2,…,10),它们之间的线性回归方程是$y =3x +20,若101i i x =∑=18,则101i i y =∑=________.【答案】254【解析】由101i i x =∑=18 1.8.因为点在直线$y =3x +2025.4. 所以101i i y =∑=25.4×10=254.4.下表是某厂1~4由散点图可知,用水量其线性回归直线方程是y =-0.7x +a ,则a 等于________. 【答案】5.252.53.5,∵回归直线方程过定点, ∴3.5=-0.7×2.5+a. ∴a =5.25.5.由一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )得到线性回归方程$y =b$x +$a ,那么下列说法正确的是________.①直线$y =b$x +$a 必经过点(x ,y ); ②直线$y =b$x +$a 至少经过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的一个点; ③直线$y =b$x +$a 的斜率为1221ni ii nii x ynx y xnx==--∑∑;④直线$y =b $x +$a 和各点(x 1,y 1),(x 2,y 2),…,(x n ,y n )的偏差$21()ni i i b a y x =⎡⎤⎣⎦∑$-+是该坐标平面上的直线与这些点的最小偏差.【答案】①③④【解析】回归直线的斜率为b ,故③正确,回归直线不一定经过样本点,但一定经过样本中心,故①正确,②不正确.6.某数学老师身高176 cm ,他爷爷、父亲和儿子的身高分别是173 cm 、170 cm 和182 cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为________cm. 【答案】185【解析】设父亲身高为173176,b$= $a=-b $ 176-1×173=3, ∴$y =x +3,当x =182时,$y =185.7.下表是关于宿州市服装机械厂某设备的使用年限(年)和所需要的维修费用y (万元)的几组统计数据:)请根据上表提供的数据,用最小二乘法求出y 关于的线性回归方程;(2)估计使用年限为10年时,维修费用为多少?【答案】解:(1)0.08 1.23yx =+线性回归方程为 (2)估计使用年限为10年时,维修费用为12.38万元. 【解析】(1)先求然后利用公可求出回归直线y ax b =+方程.(2)把x=10代入回归直线方程可得y 的值,就可得所求的值.解:(1906543222222512=++++=∑=i ixΘ又x y 23.108.0+=∴线性回归方程为 (2)把10=x 代入回归方程得到:38.121023.108.0=⨯+=y∴估计使用年限为10年时,维修费用为12.38万元.。

苏教版数学高一必修3试题 2.4线性回归方程 (2)

苏教版数学高一必修3试题 2.4线性回归方程 (2)

2.4 线性回归方程一、填空题1.下列两变量具有相关关系的是________. ①正方体的体积与棱长;②匀速行驶的车辆的行驶时间与行驶距离; ③人的身高与体重; ④人的身高与视力; ⑤角的大小与所对弧长; ⑥人的年龄与身高.【解析】 ①正方体的体积V 与棱长a 之间的关系是V =a 3; ②行驶距离s 与时间t 之间是s =vt ; ⑤角α与弧长l 之间是l =rα; ④人的身高与视力没有相关关系; ③⑥具有相关关系. 【答案】 ③⑥2.已知回归直线方程y ∧=0.5x -0.801,则当x =25时,y 的估计值为________.【解析】 将x =25代入y ∧=0.5×25-0.801=11.699. 【答案】 11.6993.有一个线性回归方程为y ∧=2-1.5x ,则变量x 增加一个单位时,y 平均________个单位.【解析】 ∵b =-1.5,∴x 每增加一个单位时y 减少1.5. 【答案】 减少1.54.某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程y =bx +a 中的b 为9.4,据此模型预报广告费用为6万元时销售额的估计值为________万元.【解析】 样本中心点是(3.5,42),则a =y -b x =42-9.4×3.5=9.1,所以回归方程是y ∧=9.4x +9.1,将x =6代入得y ∧=65.5. 故广告费用为6万元时销售额的估计值为65.5元. 【答案】 65.55.某学生四次模拟考试时,其英语作文的减分情况如下表:显然所减分数y ________.【解析】 x =14(1+2+3+4)=2.5,y =14(4.5+4+3+2.5)=3.5,∑4i =1x 2i =(12+22+32+42)=30,∑4i =1y 2i =(4.52+42+32+2.52)=51.5, ∑4i =1x i y i =(1×4.5+2×4+3×3+4×2.5)=31.5,b =31.5-4×2.5×3.530-4×2.52=-0.7,a =3.5-(-0.7)×2.5=5.25,∴方程为y ∧=-0.7x +5.25.【答案】 y ∧=-0.7x +5.256.某单位为了制定节能减排的目标,先调查了用电量y(单位:度)与气温x(单位:℃)之间的关系,随机抽取了4天的用量与当地气温,并制作了对照表:由表中数据,得回归方程y ∧=-2x +a ,当气温为-5 ℃时,预测用电量为________度.【解析】 由表中数据计算可得x =10,y =40,∵回归方程一定过样本点的中心,代入回归方程,得a =60,∴y ∧=-2x +60.当x =-5时,代入回归方程,得y =70.【答案】 707.下表提供了某厂节能降耗技术改造后生产A 产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据.根据下表提供的数据,求出y 关于x 的线性回归方程y ∧=0.7x +0.35,那么表中t 的值为________.【解析】 由表中数据求得x =4.5,又点(x ,y )在回归直线y ∧=0.7x +0.35上,代入解得y ∧=3.5,所以2.5+t +4+4.5=4×3.5, 解得t =3. 【答案】 38.为了了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x(单位:小时)与当天投篮命中率y 之间的关系:小李这56号打6小时篮球的投篮命中率为________.【解析】 平均命中率y =15(0.4+0.5+0.6+0.6+0.4)=0.5;而x =3,∑i =15x i y i =7.6,∑i =15x2i=55,由公式得b =0.01,a =y -b x =0.5-0.01×3=0.47,∴y ∧=0.01x +0.47,令x =6,得y ∧=0.53. 【答案】 0.5 0.53二、解答题9.下面是某班学生每周用于学习数学的时间x 与数学成绩y 的一组观测数据:(1)(2)你能从散点图中发现学习时间与数学成绩近似成什么关系吗?数学成绩会一直随学习时间的增加而增长吗?【解】 (1)散点图如图所示:(2)从图中可以发现学习时间与数学成绩具有相关关系,当学习时间由小到大变化时,数学成绩也由小到大,图中的数据点大致分布在一条直线的附近,因此学习时间和数学成绩近似成线性相关关系,但数学成绩只是在一定范围内随着学习时间的增加而增长.10.(2012·福建高考)某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x/元 8 8.2 8.4 8.6 8.8 9 销量y/件908483807568(1)求回归直线方程y =bx +a ,其中b =-20,a =y -b x ;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)【解】 (1)由于x =16×(8+8.2+8.4+8.6+8.8+9)=8.5,y =16×(90+84+83+80+75+68)=80,所以a =y -b x =80+20×8.5=250,从而回归直线方程为y ∧=-20x +250. (2)设工厂获得的利润为L 元, 依题意得L =x(-20x +250)-4(-20x +250)=-20x 2+330x -1 000=-20(x -8.25)2+361.25. 当且仅当x =8.25时,L 取得最大值.故当单价定为8.25元时,工厂可获得最大利润.11.在测量一根新弹簧的劲度系数时,测得了如下的结果:所挂重量x/N 1 2 3 5 7 9 弹簧长度y/cm111212131416(1)(2)弹簧长度与所挂重量之间的关系是否具有线性相关性,若具有请根据上表提供的数据,求出y 关于x 的回归方程y ∧=bx +a ;(3)根据回归方程,求挂重量为8 N 的物体时弹簧的长度,所求的长度是弹簧的实际长度吗?为什么?【解】 (1)散点图如下:(2)由散点图可知,弹簧长度与所挂重量之间的关系具有线性相关性.列表,计算:i 1 2 3 4 5 6 x i 1 2 3 5 7 9 y i 11 12 12 13 14 16 x i y i 11 24 36 65 98 144 x 2i149254981x =4.5,y =13,∑6i =1x i y i =378,∑6i =1x 2i =169 b =∑6i =1x i y i -6x y∑6i =1x 2i -6x2=378-6×4.5×13169-6×4.52≈0.6,a =y -b x =13-4.5×0.6=10.3,所以回归方程为:y ∧=0.6x +10.3.(3)当x =8时,y ∧=15.1,15.1 cm 不是弹簧的实际长度,只是估计值.。

最新苏教版高中数学必修三《线性回归方程》课时同步练习及解析.docx

最新苏教版高中数学必修三《线性回归方程》课时同步练习及解析.docx

(新课标)2018-2019学年苏教版高中数学必修三2.4 线性回归方程课时目标 1.理解两个变量的相关关系的概念.2.会作散点图,并利用散点图判断两个变量之间是否具有相关关系.3.会求线性回归方程.1.与函数关系不同,相关关系是一种有关系,但不是确定性的关系.2.能用直线方程________近似表示的相关关系叫做线性相关关系,该方程叫______,给出一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),线性回归方程中的系数a ,b 满足⎩⎪⎨⎪⎧b = a =.上式还可以表示为⎩⎪⎨⎪⎧b = ,a = .一、填空题1.下列两个变量之间的关系,不是函数关系的为______.(填序号) ①匀速行驶车辆的行驶距离与时间; ②圆半径与圆的面积;③正n 边形的边数与内角度数之和; ④人的年龄与身高.2.下列有关线性回归的说法,不正确的是________.①变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系;②在平面直角坐标系中用描点的方法得到表示具有相关关系的两个变量的一组数据的图形叫做散点图;③线性回归方程最能代表观测值x 、y 之间的关系; ④任何一组观测值都能得到具有代表意义的线性回归方程.3.工人月工资(元)依劳动生产率(千元)变化的线性回归方程为 =60+90x ,下列判断正确的是________.①劳动生产率为1千元时,工资为50元; ②劳动生产率提高1千元时,工资提高150元;③劳动生产率提高1千元时,工资约提高90元;④劳动生产率为1千元时,工资90元.4.某商品销售量y(件)与销售价格x(元/件)在实际生活中的回归方程可能是________.①=-10x+200;②=10x+200;③=-10x-200;④=10x-200.5.给出两组数据x、y的对应值如下表,若已知x、y是线性相关的,且线性回归方程:y=a+bx,经计算知:b=-1.4,则a=________.x 45678y 121098 66.线性回归方程表示的直线=a+bx必经过点____________.7.若对某个地区人均工资x与该地区人均消费y进行调查统计得y与x具有相关关系,且线性回归方程=0.7x+2.1(单位:千元),若该地区人均消费水平为10.5,则估计该地区人均消费额占人均工资收入的百分比约为________.8.设有一个回归方程=3-2.5x,当变量x增加一个单位时,变量y________个单位.9.期中考试后,某校高三(9)班对全班65名学生的成绩进行分析,得到数学成绩y对总成绩x的线性回归方程为=6+0.4x.由此可以估计:若两个同学的总成绩相差50分,则他们的数学成绩大约相差______分.二、解答题10.下表是某旅游区游客数量与平均气温的对比表:平均气温(℃)-1410131826数量(百个)202434385064若已知游客数量与平均气温是线性相关的,求回归方程.11.5个学生的数学和物理成绩(单位:分)如下表:学生A B C D E学科数学8075706560物理7066686462画出散点图,判断它们是否具有相关关系,若相关,求出回归方程.能力提升12.在研究硝酸钠的可溶性程度时,观测它在不同温度的水中的溶解度,得观测结果如下:温度x(℃)010205070溶解度y 66.776.085.0112.3128.0则由此得到回归直线的斜率约为________.13.炼钢是一个氧化降碳的过程,钢水含碳量的多少直接影响冶炼时间的长短,必须掌握钢水含碳量和冶炼时间的关系.如果已测得炉料熔化完毕时,钢水的含碳量x与冶炼时间y(从炉料熔化完毕到出钢的时间)的一列数据,如下表所示:x(0.01% )104181917714713415191204121y(min)10202118515513517205235125若由数据知y对x呈线性相关关系.(1)求线性回归方程.(2)预测当钢水含碳量为160时,应冶炼多少分钟?1.线性回归方程=bx+a中的系数a,b的计算公式为:⎩⎪⎨⎪⎧b =∑ni =1(x i -x )(y i -y )∑n i =1 (x i -x )2=∑ni =1x i y i -n x y ∑ni =1x 2i -n x 2a =y -b x其中:b 是回归方程的斜率,a 是截距. 2.回归方程的求解过程 计算x ,y ,∑ni =1x 2i ,∑ni =1x i y i ⇓计算b =∑ni =1x i y i -n x y ∑n i =1x 2i -n x 2,a =y -b x⇓3.在回归方程 =bx +a 中,当回归系数b >0时,说明两个变量呈正相关关系,它的意义是:当x 每增加一个单位时y 就增加b 个单位;当b <0时,说明两个变量呈负相关关系,它的意义是:当x 每增加一个单位时,y 就减少b 个单位.2.4 线性回归方程知识梳理2. =bx +a 线性回归方程 n ∑ni =1x i y i -(∑ni =1x i )(∑ni =1y i )n ∑ni =1x 2i -(∑ni =1x i )2y -b x∑ni =1x i y i -n x y ∑ni =1x 2i -n x2=∑ni =1(x i -x )(y i -y )∑ni =1(x i -x )2y -b x作业设计 1.④解析 人的年龄与身高具有相关关系. 2.④解析 只有所有的数据点都分布在一条直线附近时,才能得到回归直线. 3.③解析 因工人月工资与劳动生产率变化的线性回归方程为 =60+90x ,当x 由a 提高到a +1时, 2- 1=60+90(a +1)-60-90a =90. 4.①解析 ∵在实际生活中,当销售价格提高时,商品销售量一般要降低,∴排除②、④,又∵③中x>0时 <0不合题意,∴③错. 5.17.4 解析x =15(4+5+6+7+8)=6,y =15(12+10+9+8+6)=9.a =y -b x =9+1.4×6=9+8.4=17.4. 6.(x ,y )解析 由a =y -b x 得y =b x +a , 即点(x ,y )适合方程 =a +bx. 7.87.5%解析 设该地区人均工资收入为y , 则y =0.7x +2.1,当y =10.5时,x =10.5-2.10.7=12.10.512×100%=87.5%. 8.减少2.5解析′=3-2.5(x+1)=3-2.5x-2.5=-2.5,因此,y的值平均减少2.5个单位.9.20解析令两人的总成绩分别为x1,x2.则对应的数学成绩估计为=6+0.4x1,2=6+0.4x2,所以| 1-2|=|0.4(x1-x2)|=0.4×50=20.10.解x=706=353,y=2306=1153,∑6i=1x2i=1+16+100+169+324+676=1 286,∑6i=1x i y i=-20+96+340+13×38+18×50+26×64=3 474.b=∑6i=1x i y i-6x y∑6 i=1x2i-6x2=3 474-6×353×11531 286-6×(353)2≈1.68,a=y-b x≈18.73,即所求的回归方程为=1.68x+18.73.11.解以x轴表示数学成绩,y轴表示物理成绩,可得到相应的散点图如图所示:由散点图可知,两者之间具有相关关系,且为线性相关.列表,计算i 1 2 3 4 5x i80 75 70 65 60y i70 66 68 64 62x i y i 56004950476041603720x2i 64005625490042253600x=70,y=66,∑5i=1x2i=24 750,∑5i=1x i y i=23 190设所求回归方程为=bx+a,则由上表可得b=∑5i=1x i y i-5x y∑5 i=1x2i-5x2=90250=0.36,a =y -b x =40.8.∴所求回归方程为 =0.36x +40.8. 12.0.880 9 解析x =30,y =93.6,∑5i =1x 2i =7 900,∑5i =1x i y i =17 035,所以回归直线的斜率b =∑5i =1x i y i -5x y ∑5i =1x 2i -5x 2=17 035-5×30×93.67 900-4 500≈0.880 9.13.解 (1)列出下表,并用科学计算器进行计算: i 1 2 3 4 5 6 7 8 9 10 x i 104 180 190 177 147 134 150 191 204 121 y i 100 200 210 185 155 135 170 205 235 125 x i y i10400360003990032745227851809025500391554794015 125x =159.8,y =172,∑10i =1x 2i =265 448,∑10i =1y 2i =312 350,∑10i =1x i y i =287 640 设所求线性回归方程为 =bx +a ,b =∑10i =1x i y i -10x y∑10i =1x 2i -10x2≈1.27,a =y -b x ≈-30.95.即所求的线性回归方程为 =1.27x -30.95.(2)当x =160时, =1.27×160-30.95≈172(min ),即大约冶炼172 min .。

苏教版数学高一必修三 作业 2.4线性回归方程

苏教版数学高一必修三 作业 2.4线性回归方程

一、填空题 1.有下列关系:①人的年龄与其拥有的财富之间的关系; ②曲线上点与该点的坐标之间的关系; ③苹果的产量与气候之间的关系;[]④森林中的同一树木,其横截面直径与高度之间的关系; ⑤学生与其学号之间的关系. 其中具有相关关系的是________. 解析:②⑤为确定关系不是相关关系. 答案:①③④2.已知x ,y 之间的一组数据为:x 0 1 2 3 y1357则回归直线y ^=bx +a 必过点________.解析:x =32,y =4,∴y ^=bx +a 必过点(32,4).答案:(32,4)3.已知某工厂在2011年每月产品的总成本y (万元)与月产量x (万件)之间有线性相关关系,回归方程为y ^=1.215x +0.974,若月产量增加4万件时,则估计成本增加________万元.解析:由y ^1=1.215x 1+0.974, y ^2=1.215(x 1+4)+0.974, 得y ^2-y ^1=1.215×4=4.86(万元). 答案:4.864.下表是广告费用与销售额之间的一组数据:广告费用(千元) 1 4 6 10 14 销售额(千元)1944405253销售额y (千元)与广告费用x (千元)之间有线性相关关系,回归方程为y ^=2.3x +a (a为常数),现要使销售额达到6万元,估计广告费用约为________千元. 解析:x =7,y =41.6,则a =y -2.3x =41.6-2.3×7=25.5. 当y =6万元=60千元时,60=2.3x +25.5,解得x =15(千元). 答案:155.(2011·广东汕头模拟)下表提供了某厂节能降耗技术改造后,在生产A 产品过程中记录的产量x (单位:吨)与相应的生产能耗y (单位:×103 kJ)几组对应的数据:x 3 4 5 6 y2.5t44.5y =0.7x +0.35,那么表中t 的值为________.解析:由y =0.7x +0.35,得2.5+t +4+4.54=0.7×3+4+5+64+0.35,故11+t 4=3.5,即t =3.答案:3 二、解答题6.下表是某地降雨量与年平均气温.判断两者是否具有相关关系,求线性回归方程是否有意义. 年平均气温(℃) 12.51 12.71 12.84 13.69 13.33 12.74 13.05 年降雨量(mm)748750507813574701432解:以x 表示年平均气温,y 表示年降雨量,可得如下图所示的散点图.因为上图中各点并不在一条直线的附近,所以两者不具有线性相关关系,没必要用回归直线进行拟合,所以即使用公式求得线性回归方程也是没有意义的. 7.某人今年1月份加盟了一个食品连锁店,下表为近5个月的营业额:月 份 2 3 45 6 营业额(万元)1012131416解:x =4,y =13,∑i =15x i y i =274,∑i =15x 2i =90.∴b =∑i =15x i y i -5 x y∑i =15x 2i -5 x 2=274-5×4×1390-5×42=75,∴a =y -b x =13-75×4=7.4,∴y ^=1.4x +7.4. 当x =7时,y ^=17.2.即今年7月份的营业额约17.2万元.8.一台机器由于使用时间较长,但还可以用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少随机器运转的速度而变化,下表为抽样试验结果.转速x /(rad/s)16 14 12 8 每小时生产有缺点的零件数y /件11985(1)画出散点图;(2)如果y 与x 有线性相关关系,求线性回归方程;(3)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么机器的运转速度应控制在什么范围内? 解:(1)画出散点图,如图.(2)x =12.5,y =8.25,∑i =14x i y i =438,∑i =14x 2i =660,所以b =∑i =14x i y i -4x y∑i =14x 2i -4x2=438-4×12.5×8.25660-4×12.52≈0.728 6,a =y -b x ≈8.25-0.728 6×12.5=-0.857 5. 所以线性回归方程为y ^=0.728 6x -0.857 5. (3)要使y ^≤10,则0.728 6x -0.857 5≤10, x ≤14.901 9.所以机器的转速应控制在15 rad/s 以下.。

《8.2 一元线性回归模型及其应用》(同步训练)高中数学选择性必修第三册_2024-2025学年

《8.2 一元线性回归模型及其应用》(同步训练)高中数学选择性必修第三册_2024-2025学年

《8.2 一元线性回归模型及其应用》同步训练(答案在后面)一、单选题(本大题有8小题,每小题5分,共40分)1、以下哪个不是一元线性回归模型中的参数?A、截距bB、斜率aC、相关系数rD、自变量x2、某学校对16名高三学生的每周学习时间(单位:小时)和数学成绩(单位:分)进行调查,得到的数据如下:学习时间(x)成绩(y)1012012130151401814520150221552516028165学习时间(x)成绩(y)3017032175351803818540190431954520048205根据以上数据,采用一元线性回归模型进行拟合,下列哪个选项最接近于求得的回归直线方程(y=a+bx)中的(b)值?A. 2.5B. 3C. 3.5D. 43、已知某城市居民的收入(x)与消费支出(y)之间的关系数据如下:收入(x)/万元消费支出(y)/万元4 2.85 3.26 3.67 4.08 4.4现用最小二乘法拟合一元线性回归模型,下列说法错误的是()A. 拟合的回归直线必然通过点(5,3.2)B. 拟合的回归直线必然通过点(6,3.6)C. 回归直线的斜率k表示自变量x每增加1个单位,因变量y平均增加k个单位D. 可以通过计算回归直线的方程来预测当收入为9万元时的消费支出4、已知一组数据((x1,y1),(x2,y2), …,(x n,y n)) 在进行一元线性回归分析后,得到的回归直线方程为(y=a+bx),若该直线通过点 (1, 3) 和 (3, 7),则下列哪项选项正确表达了(a)和(b)的值?A、(a=1,b=2)B、(a=2,b=1)C、(a=1,b=1)D、(a=2,b=2)5、某公司近5年的年营业额(单位:万元)如下表所示:年份 | 年营业额-|—— 2016 | 500 2017 | 520 2018 | 545 2019 | 580 2020 | 610若以年份为自变量x,年营业额为因变量y,则下列回归方程中,最能反映这组数据的趋势的是()A. y = 1.2x - 580B. y = 1.6x - 1000C. y = 1.8x - 700D. y = 2.0x - 6006、某研究小组为了解高中学生的体质指数(BMI)与每周运动时间的关系收集了30名学生的相关数据,并构建了一元线性回归模型。

苏教版高中数学必修3-2.4备选习题:线性回归方程

苏教版高中数学必修3-2.4备选习题:线性回归方程

2.4 线性回归方程A组1.下列关系中为相关关系的有________.①学生的学习态度和学习成绩之间的关系;②教师的执教水平与学生的学习成绩之间的关系;③学生的身高与学生的学习成绩之间的关系;④家庭的经济条件与学生的学习成绩之间的关系.解析:据相关性的定义可知①②为相关关系,③④无相关关系.答案:①②2.有关线性回归的说法,不正确的是________.①相关关系的两个变量不是因果关系;②散点图能直接地反映数据的相关程度;③回归直线最能代表线性相关的两个变量之间的关系;④任意一组数据都有回归方程.解析:并不是每一组数据都有回归方程,例如当一组数据的线性相关系数很小时,这组数据就不会有回归方程.答案:④3.线性回归方程y^=bx+a必经过点________.解析:根据求系数公式a=y-b x可知:y=b x+a,即点(x,y)能使^=bx+a成立,所以线性回归方程y^=bx+a必经过点(x,y).线性回归方程y答案:(x,y)4.正常情况下,年龄在18岁到38岁的人,体重y(kg)对身高x(cm)的回归方程为y^=0.72x-58.2,张红同学(20岁)身高178 cm,她的体重应该在________kg 左右.解析:用回归方程对身高为178 cm的人的体重进行预测,当x=178时,y^=0.72×178-58. 2=69.96(kg).答案:69.96B组一、填空题1.(2011年盐城调研)有下列关系:①人的年龄与他(她)拥有的财富之间的关系;②曲线上的点与该点的坐标之间的关系;③日照时间与水稻的亩产量;④森林中同一种树木,其断面直径与高度之间的关系.其中,具有相关关系的是________.解析:相关关系是一种不确定性的关系,显然②具有确定性关系.答案:①③④2.下列说法:①线性回归方程适用于一切样本和总体;②线性回归方程一般都有局限性;③样本取值的范围会影响线性回归方程的适用范围;④线性回归方程得到的预测值是预测变量的精确值.正确的是________(将你认为正确的序号都填上).解析:样本或总体具有线性相关关系时,才可求线性回归方程,而且由线性回归方程得到的函数值是近似值,而非精确值,因此线性回归方程有一定的局限性.所以①④错.答案:②③3.下面四个散点图中点的分布状态,直观上判断两个变量之间具有线性相关关系的是________.解析:散点图①中的点无规律的分布,范围很广,表明两个变量之间的相关程度很小;②中所有的点都在同一条直线上,是函数关系;③中点的分布在一条带状区域上,即点分布在一条直线的附近,是线性相关关系;④中的点也分布在一条带状区域内,但不是线性的,而是一条曲线附近,所以不是线性相关关系,故填③.答案:③4.设有一个线性回归方程y^=4-3x,当变量x增加1个单位时,y平均。

数学必修3自主练习 :2.4线性回归方程 含解析 精品

数学必修3自主练习 :2.4线性回归方程 含解析 精品

自主广场我夯基 我达标1.相关关系与函数关系的区别是_________.思路解析:考查函数关系和相关关系的含义.答案:函数关系是两个变量之间有完全确定的关系,而相关关系是两个变量之间并没有严格的确定关系,当一个变量变化时,另一变量的取值有一定的随机性 2.线性回归方程y=bx+a 过定点__________.思路解析:考查线性回归方程的意义,及点与直线的位置关系的判断.由线性回归直线方程的推导过程不难发现直线恒过定点(x ,y ).答案:(x ,y )3.工人工资(元)依劳动生产率(千元)变化的回归方程为y ˆ=50+80x ,下列判断正确的是( ) A .劳动生产率为1 000元时,工资为130元B .劳动生产率提高1 000元时,工资大约提高80元C .劳动生产率提高1 000元时,工资提高大约130元D .当月工资250元时,劳动生产率为2 000元思路解析:考查了直线斜率的实际意义,即k=.x x y y xy1212∆∆==--横坐标的增量纵坐标的增量答案: B4.设有一个直线回归方程为yˆ=2-1.5x ,则变量x 增加一个单位( ) A .y 平均增加1.5个单位 B .y 平均增加2个单位C .y 平均减少1.5个单位D .y 平均减少2个单位思路解析:考查了直线斜率的实际意义,即k=.x x y y xy1212∆∆==--横坐标的增量纵坐标的增量答案: C5.下列两个变量之间的关系不是函数关系的是( )A .角度和它的余弦值B .正方形边长和面积C .正n 边形的边数和它的内角和D .人的年龄和身高思路解析:本题主要考查相关关系的概念.由函数的定义可知A 、B 、C 三项中的两个变量间的关系均为函数关系,故答案为D.答案: D 6.已知样本容量为11,计算得∑=111i ix=510,∑=111i iy=214,∑=1112i ix=36 750,∑=1112i iy=5422,∑=111i ii yx =13 910,则y 对x 的回归方程为__________.思路解析:考查线性回归方程的求法.在回归方程中b=. x b ,x x n y x y x n ni i n i i ni i n i i n i i i -=--∑∑∑∑∑=====y a )())((2112111答案:y=5.34+0.3x7.部分国家13岁学生数学测验平均分数见下表.试作出该数据的散点图,并由图判断是否存在回归直线.若有,试求出直线方程.思路解析:考查了用回归直线方程进行拟合的一般步骤.用回归直线方程进行拟合的一般步骤为:作出散点图;判断散点是不是在一条直线的附近;若散点在一条直线的附近,利用公式求出回归直线方程.答案:(图略)存在回归直线方程,回归直线方程是y=0.313 3x+0.900 1.我综合 我发展8.一个工厂在某年每月产品的总成本y(万元)与该月产量x(万件)之间的一组数据如下:试作出该数据的散点图,并求总成本y 与月产量x 之间的回归直线方程. 思路解析:考查了回归直线方程的求法. 答案:(图略)回归直线方程是y ˆ=1.215x +0.974.9.对于线性相关系数r ,叙述正确的是( )A .|r|∈(0,+∞),|r|越大,相关程度越大;反之,相关程度越小B .r ∈(-∞,+∞),r 越大,相关程度越大;反之,相关程度越小C .|r|≤1,且|r|越接近于1,相关程度越大,|r|越接近于0,相关程度越小D .以上说法都不对思路解析:考查了线性相关程度的判断方法.|r|≤1,且|r|越接近于1,相关程度越大,|r|越接近于0,相关程度越小.答案: C我创新 我超越10.改革开放以来,我国高等教育事业有了迅速发展.这里我们得到了某省从1990~2000年18~24岁的青年人每年考入大学的百分比,我们把农村、乡镇和城市分开统计.为了便于计算,把1990年编号为0,1991年编号为1,…,2000年编号为10.如果把每年考入大学的百分比作为因变量,把年份从0到10作为自变量进行回归分析,可得到下面三条回归直线:城市yˆ=9.50+2.84x,乡镇yˆ=6.76+2.32x,农村yˆ=1.80+0.42x.(1)在同一坐标系内作出三条回归直线.(2)对于农村青年来讲,系数等于0.42意味着什么?(3)在这一阶段,三个组哪一个的大学入学率年增长最快?(4)请查阅我国人口分布的有关资料,选择一个在高等教育发展上有代表性的省,以这个省的大学入学率作为样本,说明我国在1991~2000年10年间大学入学率的总体发展情况.思路解析:考查了直线方程的画法,直线斜率的实际意义及解决问题和分析问题的能力.答案:(1)图略.(2)对于农村青年来讲,系数等于0.42意味着考入大学的百分比增长较慢.(3)城市组.(4)略.。

苏教版高中数学必修三练习:2.4线性回归方程(二)含答案

苏教版高中数学必修三练习:2.4线性回归方程(二)含答案

2.4 线性回归方程(二)【新知导读】1.关于线性有关系数 r ,以下说法正确的选项是( )A.r(0, ) 时, r 越大,有关程度越高;反之有关程度越低B.r( ,) 时, r 越大,有关程度越高,反之有关程度越低C.r1时, r 越靠近于1,有关程度越高;r 越靠近于0,有关程度越低D.以上说法都不正确2.“回归”一词是在研究儿女的身高与父亲母亲的身高之间的遗传关系时,由高尔顿提出的.他的研究结果是子代的均匀身高向中心回归.依据他的结论,在儿子的身高y 与父亲的身高x 的回归直线方程y a bx 中,b( )A.在 (-1,0)内B.等于0C.在 (0,1) 内D.在[1,) 内3.由一组样本数据( x1 , y1 ) , (x2 , y2 ) ,..., ( x n , y n ) 获得的线性回归方程为y bx a ,那么下边说法不正确的选项是( )A.直线y bx a 经过点 ( x, y)B.直线y bx a 起码经过 (x1, y1 ) , (x2 , y2 ) ,..., (x n , y n ) 中的一个点nx i y i nx yC.直线y bxi1a 的斜率为n22x i nxi1na)] 2是该坐D.直线y bx a 和各点 (x1, y1 ) , (x2 , y2 ) ,..., ( x n , y n ) 的误差 [ y i (bx ii 1标平面上全部直线与这些点的误差中最小的【典范点睛】例 1 测得 10 对某国父子身高 ( 单位:英寸 ) 以下:父亲自高 ( x )60626465666768707274儿子身高 ( y ) 63.565.26665.566.967.167. 468.370.170(1)对变量 y 与x进行有关性查验;(2)假如 y 与x之间拥有线性有关关系,求回归直线方程;(3)假如父亲的身高为 73 英寸,估计儿子的身高.【课外链接】1.现有一个由身高展望体重的回归方程,体重展望值= 4( 磅 / 英寸 ) ×身高- 130 磅.此中体重和身高分别以磅和英寸为单位.假如将它们分别以 kg、cm为单位 (1 英寸≈ 2.5cm,1 磅≈ 0.45kg) .回归方程应当是 _ _________________________________ .【随堂操练】1.关于回归剖析,以下说法错误的选项是( )A.在回归剖析中,变量间的关系假如非确立性关系,那么因变量不可以由自变量独一确立B.线性有关系数能够是正的或负的C.在回归剖析中,假如r 2 1 ,说明x与 y 之间完整线性有关D.有关样本系数r(,)2.线性回归方程y bx a 必过()A. (0,0) 点 B .( x,0)点 C .(0,y )点D.( x , y )点3.为了观察两个变量x 和y之间的线性有关性,甲、乙两位同学各自独立做了100 次和 150 次试验,而且利用线性回归方法,求得回归直线分别为 l1和 l2.假定两个人在试验中发现对变量x 的察看数据的均匀值都是m ,对变量y察看的均匀值都是 t ,那么以下说法正确的选项是()A.l1和l2有交点 (m, t )B.l1和l2订交,但交点不必定是 ( m,t )C.l1和l2必然平行D.l1和 l2必然重合4.在研究硝酸钠的可溶性时,对不一样的温度察看它在水中的溶解度,得察看结果以下:温度 x010205070溶解度 y66.776.085.0112.3128.0由此获得回归直线的斜率是__________________( 保存 4 位有效数字 ) .5.下边数据是从年纪在 40 到 60岁的男子中随机抽取 6 个个体,分别测得的每个个体心脏功能水平 y (满分100分)以及相应的每日花在看电视上的时间x (小时).看电视平4.4 4.6 2.75.8 4. 6 4.6均时间 x心脏功能525369578965水平 y则 x 与y的有关系数为______________________.6.若施肥量x 与水稻产量y 的线性回归方程为y 5x 250 ,当施肥量为80kg 时,估计的水稻产量为 ______________kg.7.为了研究三月下旬的均匀气温( x ) 与四月十二号前棉花害虫化蛹顶峰日( y ) 的关系,某地域察看了 1996 年至 2001 年的状况,获得下边数据:年份199619971998199920002001x (o C )24.429.632.928.730.328.9y19611018(1) 据气象展望,该地域在 2002 年三月下旬均匀气温为27 o C ,试估计2002年四月化蛹顶峰日为哪天; (2)对变量 x 、y进行有关性查验.n n8.证明恒等式x i y i nx y( x i x)( y ii 1i 1n( x i x)( y i y)线的斜率还能够写成i1.nx)2(x ii 19.以下是一位销售经理采集来的销售员每年销售额销售1 n ny i,进而回归直y) ,此中 x x i, yn i 1i1y 和销售经验年数x 的关系:经验13446810101113 x (年)年销售额809792102103111119123117136 y (千元 )(1) 依照这些数据画出散点图并作直线y78 4.2 x ,计算( y i y i )2;(2)依照这些数据由最10.小二乘法估计线性回归方程,并据此计算( y i y i )2i 110.某工业部门进行一项研究,剖析该部门的产量与生产花费之间的关系,数据以下:产量(件)40424855657988100120140花费(元)150140160170150162185165190185(1)计算 x 与y的有关系数,并对x 与y进行有关性剖析;(2)假如 y 与x之间拥有线性有关关系,求线性回归方程.2.4 线性回归方程(二) 【新知导读 】1.C2.C3.B 【典范点睛 】x66.8 , y 67.0110210244941 ,x y4476.27例 1.(1),x i 44794,y i ,i 1i 1102210x i y i 10x yyri 1x4462.24 ,,x i y i44842.4 ,4490.34i 1102102(x iy i2 10x )(210 y )i 1i 144842.410 4476.2779.779.70.9801 .由于(4479444622.4)(44941.93 44903.4) 6611.74881.31r0.9801 靠近 1, 所以 y 与 x 拥有较强的有关关系, 也就是说 y 与 x 之间拥有线性有关关系. (2)10x i y i10x y44762.779.7设回归直线方程为y bx a ,由 bi 144842.410 210 x44794 44622.4 171.62i10.4645 , ay bx 67.01 0.4645 66.835.98,所以所求直线方程为y0.4645 x 39.98 .(3) 当 x 73 时, y0.4645 73 35.9869.9 ,所以当父亲自高为 73英寸时,估计儿子的身高为 69.9 英寸.【课外链接 】体重展望值= 0.72(kg/cm) ×身高- 58.5kg【随堂操练 】1. D2. D3. A4. 0.88095.- 0.90236. 6507. 解: (1) x16x i 29.13 , y16 y i626x i y i 1222.6 ,6 i 1 6 i 1 7.5 ,x i5130.92 ,i 1i 16x i y i6x ybi 1 2.2 , a ybx 7.5( 2.2) 29.1371.6 ,回归直线方程为622x i 6xi 1y 2.2x 71.6 .当 x 27 时, y 2.2 27 71.6 12.2 .据此,可估计该地域2002 年 46x i y i 6xy月 12 日或 13 日化蛹顶峰日. (2) ri 10.9342 ,Q r 的值靠近于6622( x i 2 y i 26 x )(6 y )i 1i 11, 所以变量 x , y 存在线性有关关系.8. 证明:nnnnn( x i x)( y i y)(x i y i xy i x i y x y)x i y i xy i yx i nx yi 1i 1i 1i 1i 1nnnx i y i nx yx i y i nx y nx ynx yx i y i nx y,回归直线的斜率为i 1ni 1i 12n( x) 2x ii 1n(x ix)( y iy)i 1.nx)2( x ii 19. 解: (1) 散点图与直线 y78 4.2x 的图形以下图,对 x1,3,...,13 , y82.2,90.6,94.8,94.8, 103.2,10)2111.6,120,120,124.2,132.6 ,i 1 ( y i y i178.48 .(2) x1 10 x i7 , l xx10 ( x i x)2 142 , y 108 , l xy10(x ix)( y iy)10 i1i 1i 1568 ,所以 blxy568 4 , a y bx108 47 80, y4x 80 .l xx14210y i ) 2y i84,92,96,96,104,112,120,120,124,132 ,( y i 170 .i1777165710210210.解:(1) 由题意可得 x77.7 ,y 165.7 , x i 70903 , y i 277119 ,10 10 i 1i 1 10132929 10 77.7 165.7x i y i132929 . r(70903 10 77.72 )(277119 10 165.72 )i 10.806 ,所以x与 y 之间拥有明显的有关性.(2)1329291077.7165.70.397,b1077.7270903a 165.7 0.397 77.7 134.8,所以线性回归方程为y 0.397 x134.8 .。

高中数学选择性必修三 精讲精炼 8 一元线性回归模型及其应用(精练)(含答案)

高中数学选择性必修三 精讲精炼 8  一元线性回归模型及其应用(精练)(含答案)

8.2 一元线性回归模型及其应用(精练)【题组一 样本中心求参数】1.(2021·全国·高二单元测试)某公司生产某种婴幼儿纸尿裤的产量x 与相应的生产能耗y 有如下样本数据:已知这组样本数据具有线性相关关系,由表中数据,求得回归直线的斜率为0.72,则这组样本数据的回归直线方程是( )A .ˆ0.72 2.05yx =+ B .ˆ0.720.35yx =+ C .ˆ0.720.26yx =+ D .ˆ0.350.72yx =+ 【答案】C【解析】设回归直线方程为ˆˆ0.72yx a =+,由样本数据,可得 4.5x =, 3.5y =, 因为回归直线经过点(),x y ,所以ˆ3.50.72 4.5a=⨯+,解得ˆ0.26a =, 所以回归直线方程为ˆ0.720.26yx =+. 故选:C .2.(2021·江西·吉安一中高二开学考试 )已知x 与y 之间的一组数据:()()()()13253749,,,,,,,,则y 与x 的线性回归方程为y bx a =+必过( )A .()26,B .()38,C .()2.56,D .()3.58,【答案】C【解析】由题意可知:1234 2.54x +++==,357964y +++==, ∴y 与x 的线性回归方程必过点()2.5,6.故选:C.3(2021·河南·孟津县第一高级中学 )为了庆祝建党100周年,某网站从7月1日开始推出党史类书籍免费下载活动,已知活动推出时间x (单位:天)与累计下载量y (单位:万次)的统计数据如表所示:根据上表,利用最小二乘法得到回归直线方程 1.4ˆˆyx a =+,据此模型预测,活动推出11天的累计下载量约A .13.8万次B .14.6万次C .16万次D .18万次【答案】C【解析】由表格数据知4567868910126,955x y ++++++++====,由回归直线方程的性质,得ˆ1.469a⨯+=,所以ˆ0.6a =,故ˆ 1.40.6y x =+, 所以当11x =时, 1.4110.616y =⨯+=(万次), 故选:C.4.(2021·河北·藁城新冀明中学高二月考)(多选)随着养生观念的深入,国民对餐饮卫生条件和健康营养的要求逐渐提高.据了解,烧烤食品含有强致癌物,因此吃烧烤的人数日益减少,烧烤店也随之减少.某市对2014年至2018年这五年间全市烧烤店盈利店铺的个数进行了统计,具体统计数据如下表所示:根据所给数据,得出y 关于t 的回归直线方程为273y bt =+,则下列说法正确的是( ) A .该市2014年至2018年全市烧烤店盈利店铺个数的平均数219y = B .y 关于t 的回归直线方程为18273y t =-+ C .估计该市2020年烧烤店盈利店铺的个数为147D .预测从2025年起,该市烧烤店盈利店铺的个数将不超过100 【答案】ABC【解析】由已知数据得3t =,219y =,故A 正确;因为y 关于t 的回归直线过点()3,219,所以2193273b =+,所以18b =-, 所以y 关于t 的回归直线方程为18273y t =-+.故B 正确;2020年的年份代码为7,故2020年该市烧烤店盈利店铺的个数约为187273147y =-⨯+=.故C 正确; 令18273100t -+≤,由*t N ∈,得10t ≥,故从2023年起,该市烧烤店盈利店铺的个数将不超过100.故D 不正确,故选:ABC.5.(2021·广东惠州 )(多选)某种产品的价格x (单位:元/kg )与需求量y (单位:kg )之间的对应数据如根据表中的数据可得回归直线方程为14.4y bx =+,则以下结论正确的是( ) A .y 与x 正相关 B .y 与x 负相关C .样本中心为()20,8D .该产品价格为35元/kg 时,日需求量大约为3.4kg【答案】BC【解析】由表格数据,随着价格x 的增加,需求量y 随之减少,所以y 与x 负相关. 因为1015202530205x ++++==,111086585y ++++==,故样本中心为()20,8由回归直线14.4y bx =+必过样本点的中心()20,8, 所以有82014.4b =⨯+,解得0.32b =-,所以当35x =时,0.323514.4 3.2y =-⨯+=,日需求量不为最大 故选:BC6.(2021·重庆市秀山高级中学校 )(多选)已知变量x ,y 之间的线性回归方程为0.710.3y x =-+,且变量x ,y 之间的一组相关数据如表所示,则下列说法正确的是( )A .变量x ,y 之间呈负相关关系B .可以预测,当20x 时, 3.7y =-C .4m =D .该回归直线必过点()9,4 【答案】ABD【解析】对于A :由线性回归方程为0.710.3y x =-+可知:0.70-<,所以变量x ,y 之间呈负相关关系,故对于B :当20x 时,0.72010.3 3.7y =-⨯+=-,故选项B 正确;对于C :68101294x +++==,6321144m m y ++++==,因为回归直线过样本中心点,所以110.7910.34m+=-⨯+,解得:5m =,故选项C 不正确; 对于D :由C 可知5m =,所以11544y +==,所以该回归直线必过样本中心点()9,4,故选项D 正确; 故选:ABD.7.(2021·贵州·贵阳一中 )某产品的广告费用x 与销售额y 的统计数据如下表:根据上表已得回归方程为8.6.8ˆ5yx =-,表中一数据模糊不清,请推算该数据的值为___________. 【答案】12【解析】由题中数据可得3,8.63 5.820x y ==⨯-=,故空白数据为12. 故答案为:128.(2021·全国·高二课时练习)已知x ,y 的取值如下表所示,由散点图分析可知y 与x 线性相关,且回归直线方程为ˆ0.95 2.6yx =+,那么表格中的数据m 的值为______.【答案】6.7 【解析】013424x +++==, 2.2 4.3 4.811.344m m y ++++==, 把(),x y 的坐标代入回归直线方程得11.30.952 2.64m+=⨯+, 解得 6.7m =. 故答案为:6.79.(2021·全国·高二课时练习)蟋蟀鸣叫的频率P (每分钟鸣叫的次数)与气温T (单位:℃)有着很大的关系.某观测人员根据下表中的观测数据计算出P 关于T 的线性回归方程ˆ 5.2168PT =-,则下表中k 的值为______.【答案】51【解析】计算()138414239404T =⨯+++=,()110929443644k P k +=⨯+++=, 将点10940,4k +⎛⎫ ⎪⎝⎭的坐标代入P 与T 的线性回归方程ˆ 5.2168P T =-中,得109 5.2401684k +=⨯-, 解得51k =. 故答案为:51.10.(2021·福建宁德·高三期中)某电子产品的成本价格由两部分组成,一是固定成本,二是可变成本,为确定该产品的成本,进行5次试验,收集到的数据如表:由最小二乘法得到回归方程ˆ0.6754.9yx =+,则a =___________. 【答案】75 【解析】1020304050305x ++++==,62688189600.25a y a ++++==+,因为线性回归方程过样本中心点,所以600.20.673054.975a a +=⨯+⇒=,故答案为:75 【题组二 线性回归方程】1.(2021·河北·藁城新冀明中学高二月考)假定产品产量x (千件)与单位成本y (元/件)之间存在相关关系.数据如下:(1)以x 为解释变量,y 为预报变量,作出散点图;(2)求y 与x 之间的回归直线方程,对于单位成本70元/件时,预报产量为多少; (3)计算各组残差,并计算残差平方和;【答案】(1)散点图见解析;(2)ˆ 1.8277.37yx =-+,4.050千件;(3)各组残差见解析,残差平方和为3.8182. 【解析】(1)解:散点图如下:(2)解:因为2343453.56x +++++==,737271736968716y +++++==,61279ii x==∑,611481i ii x y==∑,所以6162221614816 3.571ˆ 1.82796 3.56i i i i ix yx ybx x==-⋅-⨯⨯==≈--⨯-∑∑,ˆˆ71 1.82 3.577.37ay bx =-=+⨯=, 所以回归直线方程为ˆ 1.8277.37yx =-+,令70y =,则70 1.8277.37x =-+,解得 4.050x ≈, 所以单位成本70元/件时,预报产量约为4.050千件. (3)解:各组残差分别为:()11173 1.822ˆ77.370.73ˆey y =--⨯+=-=-, ()22272 1.82377.370.0ˆˆ9ey y =--⨯+==-, ()33371 1.82477.370.9ˆˆ1ey y =--⨯+==-, ()44473 1.82377.37 1.0ˆˆ9ey y =--⨯+==-, ()55569 1.824ˆ77.37 1.09ˆey y =--⨯+=-=-, ()66668 1.825ˆ77.370.27ˆey y =--⨯+=-=-, 残差的平方和为()()()2222621220.730.090.91 1.09 1.090.27 3.2ˆ818i i i y y=--+++--==++∑. 2.(2021·甘肃张掖)某家庭2015~2019年的年收入和年支出情况统计如表:(1)已知y 与x 具有线性相关关系,求y 关于x 的线性回归方程(系数精确到0.01);(2)假设受新冠肺炎疫情影响,该家庭2021年的年收入为9.5万元,请根据(1)中的线性回归方程预测该家庭2021年的年支出金额.附:回归方程ˆˆˆybx a =+中的斜率的最小二乘估计公式为()()()1122211ˆnni iiii i nniii i x ynx y xxy y b xnxxx====---==--∑∑∑∑.【答案】(1)ˆ0.780.24yx =+;(2)7.65万元. 【解析】(1)依题意,1(99.61010.411)105x =++++=,1(7.37.588.58.7)85y =++++=,则()5212.32i i x x=-=∑,()()511.8i ii x xy y =--=∑,则有()()()125151.8ˆ0.782.32iii ii x x y y bx x ==--==≈-∑∑,则ˆˆ0.24a y bx =-≈, 所以y 关于x 的线性回归方程为ˆ0.780.24yx =+; (2)当2021年的年收入为9.5万元时,即9.5x =,ˆ0.789.50.247.65y=⨯+=, 所以预测该家庭2021年的年支出金额为7.65万元.3.(2021·云南师大附中)大气污染物PM 2.5的浓度超过一定的限度会影响人的健康.为了研究PM 2.5的浓度是否受到汽车流量的影响,研究人员选择了24个社会经济发展水平相近的城市,在每个城市选择一个交通点统计24小时内过往的汽车流量x (单位:千辆),同时在低空相同的高度测定该时间段空气中的PM 2.5的平均浓度y(单位:μg/m 3),制作了如图所示的散点图:(1)由散点图看出,可用线性回归模型拟合y 与x 的关系,请用相关系数加以说明(精确到0.01); (2)建立y 关于x 的回归方程;(3)我国规定空气中的PM 2.5浓度的安全标准为24小时平均依度75μg/m 3,某城市为使24小时的PM 2.5浓度的平均值在60~130μg/m 3,根据上述回归方程预测汽车的24小时流量应该控制在什么范围内?附:参考数据: 1.4x =,95y =,2421() 2.1i i x x =-=∑,2421()60343i i y y =-=∑,241()()294i i i x x y y =--=∑,357.参考公式:相关系数()()nii xx y y r --∑,回归方程ˆˆˆya bx =+中斜率和截距的最小二乘估计公式分别为:121()()ˆ()niii nii x x yy b x x ==--=-∑∑,ˆˆay bx =-. 【答案】(1)答案见解析;(2)140101y x =-;(3)24小时的车流量应该控制在1150~1650辆. 【解析】1)由题得2940.82357r =≈, 因为y 与x 的相关系数近似为0.82,说明y 与x 具有很强的相关性, 从而可以用线性回归模型拟合y 与x 的关系.(2)由95y =得2412421()()ˆ()iii ii x x y y bx x ==--=-∑∑2941402.1==,95140 1.4101a y bx =-=-⨯=-, 所以y 关于x 的回归方程为140101y x =-. (3)当60y =时,由14010160x -=得 1.15x =; 当130y =时,由140101130x -=得 1.65x =. 所以24小时的车流量应该控制在1150~1650辆.4.(2021·全国·高三专题练习)实施新规后,某商场2020年1月份至10月份的收入情况如表.并计算得101890i i i x y ==∑,1021385i i x ==∑,101150i i y ==∑75.99.(1)是否可用线性回归模型拟合y 与x 的关系?请用相关系数r 加以说明;(当0.751r ≤≤时,那么变量x ,y 有较强的线性相关关系)(2)建立y 关于x 的回归方程ˆˆˆybx a =+(结果保留1位小数),并预测该商场12月份的收入情况.(结果保留整数)附:()()()1122211ˆn niii ii i nniii i x x y y x y nx ybx x xnx====---==--∑∑∑∑,ˆˆay bx =-. 【答案】(1)y 与x 有较强的线性相关关系,可用线性回归模型拟合,说明答案见解析;(2)ˆ0.810.7yx =+,预测该商场12月份的收入为20万元.【解析】(1)由题中数据得1011155 5.51010i i x x ===⨯=∑,10111150151010i i y y ===⨯=∑,1010 5.515825x y =⨯⨯=,于是得1010111()()1089082565i i i i i x x y y x y y x ==--=-=-=∑∑,75.99,从而10()()650.8675.99iix x y y r --==≈∑,0.75||1r ≤≤, 所以y 与x 有较强的线性相关关系,可用线性回归模型拟合;(2)由(1)知1011065i i i x y x y =-=∑,而1021385i i x ==∑,221010 5.5302.5x =⨯=,从而得10122110106565ˆ0.8385302.582.510i ii i i x y ybx xx ==-===≈--∑∑,65ˆˆ15 5.510.782.5ay bx =-=-⨯=, 所以y 关于x 的线性回归方程为ˆ0.810.7yx =+,当12x =时,ˆ0.81210.720y =⨯+≈, 从而预测该商场12月份的收入为20万元.5(2021·河南许昌 )某新型外贸出口公司对2021年过去9个月的出口销售数据进行整理,得到了今年第x 个月份与截止该月底的销售额y (单位:万元)之间的关系,如下表:(1)若y 与x 满足线性关系,求出y 关于x 的回归方程;(ˆa,ˆb 精确到整数位) (2)预测该公司10月份的销售额附:参考数据:913087i i y ==∑;9117524i i i x y ==∑;921285i i x ==∑;参考公式:()()()1122211n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.【答案】(1)ˆ35169yx =+;(2)答案见解析. 【解析】(1)5x =,343y =,919175249534317524154352089i i i x y xy =∴-=-⨯⨯=-=∑92221952859560ii x=-⨯=-⨯=∑,2089ˆ3560b ∴=≈, 2089ˆ343516960a=-⨯≈, ˆ35169yx ∴=+ (2)当10x =时,ˆ3510169519y=⨯+=, 所以预测该公司10月份销售额为519万元.6.(2021·福建·莆田第二十五中学高三月考)2021年东京奥运会,中国举重选手8人参赛,7金1银,在全世界面前展现了真正的中国力量;举重比赛根据体重进行分级,某次举重比赛中,男子举重按运动员体重分为下列十级:每个级别的比赛分为抓举与挺举两个部分,最后综合两部分的成绩得出总成绩,所举重量最大者获胜,在该次举重比赛中,获得金牌的运动员的体重以及举重成绩如下表 (1)根据表中的数据,求出运动员举重成绩y 与运动员的体重x 的回归直线方程(保留1位小数); (2)某金牌运动员抓举成绩为170公斤,挺举成绩为204公斤,则该运动员最有可能是参加的哪个级别的举重?参考数据:()()()992112620,7076i i i i i x x x x y y ==-=--=∑∑;参考公式:()()()121ˆˆˆ,niii nii x x yy bay bx xx ==--==--∑∑. 【答案】(1) 2.7155.4y x =+;(2)83公斤级举重. 【解析】(1)依题意,5459647076839199106789x ++++++++==,2913043373533633894064214303669y ++++++++==,()()()1217076ˆ 2.702620nii i nii xx y y bxx ==--===-∑∑, 则366 2.778155.4a y bx =-=-⨯=, 故回归方程为: 2.7155.4y x =+.(2)该运动员的抓举和挺举的总成绩为374公斤,根据回归方程可知:374 2.7155.4x =+, 解得81x ≈,即该运动员的体重应该在81公斤左右,即参加的应该是83公斤级举重.7.(2021·西藏·拉萨中学高二月考)珠海国际赛车场(简称ZIC)位于珠海经济特区金鼎镇.创建于1996年,是中国国内第一座符合国际汽车联盟一级方程式标准的国际级赛车场.目前该赛事已打造成集赛车竞技运动、汽车文化极致体验、主题休闲度假为一体的超级汽车文化赛事娱乐综合体.为了减少对环境的污染,某环保部门租用了特制环保车清洁现场垃圾.通过查阅近5年参会人数(万人)与所需环保车辆数量(辆),得到如下统计表:(1)根据统计表所给5组数据,求出关于,x y 的线性回归方程ˆˆy bxa =+. (2)已知租用的环保车平均每辆的使用成本费用C (元)与数量(辆)的关系为3000200035,N 2900t t 35,N t t t C t +<<∈⎧=⎨≥∈⎩,主办方根据实际参会人数投入所需环保车,租车每辆支付费用6000元,超出实际需要的车辆,主办方不支付任何费用.预计本次赛车会大约有14万人参加,根据(1)中求出的线性回归方程,预测环保部门在确保清洁任务完成的前提下,应租用多少辆环保车?获得的利润是多少? (注:利润L =主办方支付费用-使用成本费用C ).参考公式:()()()1122211ˆ,ˆˆn niii ii i nniii i x x y y x y nxybay bx x x xnx ====---===---∑∑∑∑ 【答案】(1) 2.32y x =+;(2)为确保完成任务,需要租用35辆环保车,获得的利润108500元. 【解析】(1)11981012105x ++++==2823202529255y ++++== ()()()()()()()()()22222131******** 2.310111091081010101210ˆb ⨯+-⨯-+-⨯-++⨯===-+-+-+-+- ˆˆ2ay bx =-= 关于,x y 的线性回归方程 2.32y x =+ (2)将14x =代入 2.32y x =+得34.2y =为确保完成任务,需要租用35辆环保车, 所以290035101500C =⨯=获得的利润600035101500108500L =⨯-=元8.(2021·江西·新余市第一中学高二月考)某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料:(1)从3月1日至3月5日中任选2天,记发芽的种子数分别为m ,n ,求事件“m ,n 中至少有一个数小于25”的概率;(2)请根据3月2日至3月4日的数据,求出y 关于x 的线性回归方程y bx a =+.(参考公式:回归直线方程为y bx a =+,其中()1221ni ii nii x y nxyb xn x==-=-∑∑,a y bx =-)【答案】(1)710(2)532y x =-【解析】(1)从3月1日至3月5日中任选2天,m ,n 构成的基本事件(m ,n )有:(23,25),(23,30),(23,26),(23,16),(25,30),(25,26),(25,16),(30,26),(30,16),(26,16),共有10个.记“m ,n 至少有一个数小于25”为事件A ,包括:(23,25),(23,30),(23,26),(23,16),(25,16),30,16),(26,16),共有7个基本事件 由古典概型概率公式:7()10P A = (2)11131225302612,27,33x y ++++==== 22221125133012263122751113123122b ⨯+⨯+⨯-⨯⨯==++-⨯. 于是,5271232a =-⨯=-故所求线性回归方程为532y x =- 9.(2021·全国·高二单元测试)某地区2013年至2019年居民纯收入y (单位:千元)的部分数据如表所示:2018和2019年的居民纯收入y (单位:千元)数据采用随机抽样的方式获得,用样本的均值来代替当年的居民人均纯收入,其数据如下:2018年抽取的居民纯收入(单位:千元)数据:5.2 4.8 6.5 5.6 6.0 7.1 6.1 7.3 5.9 7.5 2019年抽取的居民纯收入(单位:千元)数据:6.2 7.8 6.6 5.8 7.1 6.8 7.2 7.9 5.9 7.7 (1)求y 关于t 的线性回归方程;(2)当地政府为了提高居民收入水平,现从2018和2019年居民纯收入(单位:千元)高于7.0千元的样本中随机选择3人进行座谈,了解其工作行业及主要收入来源.设X 为选出的3人中2018年纯收入高于7.0千元的人数,求随机变量X 的分布列和数学期望.附:回归直线的斜率和截距的最小二乘法估计公式分别为:121()()()niii nii t t y y b tt ==--=-∑∑,a y bt =-.【答案】(1)ˆ0.5 3.3yt =+;(2)分布列见解析;期望为98. 【解析】(1)根据2018年的抽样数据可得2018年的人均纯收入为1(5.2 4.8 6.5 5.6 6.07.1 6.17.3 5.97.5) 6.210+++++++++= 千元,根据2019年的抽样数据可得2019年的人均纯收入为1(6.27.8 6.6 5.87.1 6.87.27.9 5.97.75) 6.910+++++++++=千元,由所给的数据得1(1234567)47t =++++++=,1(3.9 4.3 4.6 5.4 5.8 6.2 6.9) 5.37y =++++++=, ∴721()941014928i i t t =-=++++++=∑,71()()(3)( 1.4)(2)(1)(1)(0.7)00.110.520.93 1.614ii i tt y y =--=-⨯-+-⨯-+-⨯-+⨯+⨯+⨯+⨯=∑,∴71721()()14ˆ0.528()ii i ii tt y y btt ==--===-∑∑, 则ˆˆ 5.30.54 3.3ay bt =-=-⨯=, 则所求y 关于t 的线性回归方程为ˆ0.5 3.3yt =+; (2)由2018年和2019年的抽样数据可知,2018年居民纯收入高于7.0千元的有3人,2019年居民纯收入高于7.0千元的有5人,由题意可得,随机变量X 的可能取值为0,1,2,3,则35385(0)28C P X C ===,12353815(1)28C C P X C ===,21353815(2)56C C P X C ===,33381(1)56C P X C ===,∴随机变量X 的分布列为则X 的分布列为:则5151519()0123282856568E X =⨯+⨯+⨯+⨯= 【题组三 非线性回归方程】1.(2021·福建·泉州科技中学 )数独是源自18世纪瑞士的一种数学游戏,玩家需要根据99⨯盘面上的已知数字,推理出所有剩余空格的数字,并满足每一行、每一列、每一个粗线宫(33⨯)内的数字均含1﹣9,不重复.数独爱好者小明打算报名参加“丝路杯”全国数独大赛初级组的比赛.(1)赛前小明在某数独APP 上进行一段时间的训练,每天的解题平均速度y (秒)与训练天数x (天)有关,经统计得到如表的数据:现用by a x=+作为回归方程模型,请利用表中数据,求出该回归方程,并预测小明经过100天训练后,每天解题的平均速度y约为多少秒?(2)小明和小红在数独APP 上玩“对战赛”,每局两人同时开始解一道数独题,先解出题的人获胜,两人约定先胜4局者赢得比赛.若小明每局获胜的概率为34,已知在前3局中小明胜2局,小红胜1局.若不存在平局,请你估计小明最终赢得比赛的概率.参考数据(其中1i t x =)参考公式:对于一组数据()11,u v ,()22,u v ,…,(),n n u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计公式分别为:1221ni i i nii u v nu vunuβ==-⋅=-∑∑,v u αβ=-⋅.【答案】(1)1000130y x=+,经过100天训练后,每天解题的平均速度y 约为140秒;(2)243256.【解析】(1)由题意,1(990990450320300240210)5007y =++++++=,令1t x=,设y 关于t 的线性回归方程为y bt a =+,则 717221184570.3750010000.5577i ii i i t y t yb t t==-⨯-⨯-===⋅∑∑,则50010000.37130a =-⨯=. ∴1000130y t =+,又1t x=,∴y 关于x 的回归方程为1000130y x=+, 故100x =时,140y =.∴经过100天训练后,每天解题的平均速度y 约为140秒.(2)设比赛再继续进行X 局小明最终赢得比赛,则最后一局一定是小明获胜, 由题意知,最多再进行4局就有胜负.当2X =时,小明4:1胜,∴339(2)4416P X ==⨯=;当3X =时,小明4:2胜,∴123339(3)144432P X C ⎛⎫==⨯⨯-⨯= ⎪⎝⎭;当4X =时,小明4:3胜,∴21333327(4)1444256P X C ⎛⎫==⨯⨯-⨯= ⎪⎝⎭.∴小明最终赢得比赛的概率为99272431632256256++=. 2.(2021·云南大理 )2021年6月17日9时22分,我国酒泉卫星发射中心用长征2F 遥十二运载火箭,成功将神舟十二号载人飞船送入预定轨道,顺利将聂海胜、刘伯明、汤洪波3名航天员送入太空,发射取得圆满成功,这标志着中国人首次进入自己的空间站.某公司负责生产的A 型材料是神舟十二号的重要零件,该材料应用前景十分广泛.该公司为了将A 型材料更好地投入商用,拟对A 型材料进行应用改造、根据市场调研与模拟,得到应用改造投入x (亿元)与产品的直接收益y (亿元)的数据统计如下:当017x <≤时,建立了y 与x 的两个回归模型:模型①: 4.1109ˆ.y x =+,模型②:ˆ14.4y =;当17x >时,确定y 与x 满足的线性回归方程为ˆˆ0.7yx a =-+. (1)根据下列表格中的数据,比较当017x <≤时模型①,②的相关指数2R 的大小,并选择拟合精度更高、更可靠的模型,预测对A 型材料进行应用改造的投入为17亿元时的直接收益;(2)为鼓励科技创新,当应用改造的投入不少于20亿元时,国家给予公司补贴5亿元,以回归方程为预测依据,根据(1)中选择的拟合精度更高更可靠的模型,比较投入17亿元与20亿元时公司收益(直接收益+国家补贴)的大小.附:刻画回归效果的相关指数()()22121ˆ1ni i i nii y yR y y ==-=--∑∑,且当2R 越大时,4.1≈.用最小二乘法求线性回归方程ˆˆˆybx a =+的截距:ˆˆa y bx =-. 【答案】(1)模型②拟合精度更高、更可靠,72.93亿;(2)投入17亿元比投入20亿元时收益小. 【解析】(1)对于模型①, 对应的15222740485460=387y ++++++=,故对应的()12222111271750i i i i y y y y ==-=-=∑∑,故对应的相关指数2179.1310.9551750R =-≈, 对于模型②,同理对应的相关指数2220.210.9881750R =-≈, 故模型②拟合精度更高、更可靠.故对A 型材料进行应用改造的投入为17亿元时的直接收益为ˆ14.472.93=≈y. (2)当17x >时, 后五组的2122232425235x ++++==,68.56867.5+66+65675y ++==,由最小二乘法可得()ˆ670.72383.1a=--⨯=, 故当投入20亿元时公司收益(直接收益+国家补贴)的大小为:0.72083.1+574.172.93-⨯+=>,故投入17亿元比投入20亿元时收益小.3.(2021·全国·高二单元测试)某企业新研发了一种产品,产品的成本由原料成本及非原料成本组成,每件产品的非原料成本y (元)与生产的产品数量x (千件)有关,经统计得到如下数据:根据以上数据,绘制了如下散点图.参考数据:(其中1iu x =) (1)观察散点图判断,by a x=+与y c dx =+哪一个适宜作为非原料成本y 与生产的产品数量x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程; (3)试预测生产该产品10千件时,每件产品的非原料成本为多少元? 【答案】(1)b y a x =+;(2)100ˆ11y x=+;(3)21元.【解析】(1)由题意,根据题设中的散点图,可得这些点分布在b y a x =+的两侧,所以选择函数by a x=+作为非原料成本y 与生产的产品数量x 的回归方程类型. (2)令1u x =,则by a x=+可转化为y a bu =+,则y 与u 的关系可看成线性相关关系. 因为360458y ==,所以8182218183.480.344561ˆ1001.5380.1150.618i ii ii u yu y b uu==-⋅-⨯⨯====-⨯-∑∑,则ˆˆ451000.3411a y bu =-=-⨯=,所以ˆ11100y u =+,代入1u x =,得100ˆ11y x=+.(3)当10x =时,100ˆ112110y=+=,所以预测生产该产品10千件时,每件产品的非原料成本为21元. 4.(2021·全国·高三课时练习)某芯片公司为制订下一年的研发投入计划,需了解年研发资金投入量x (单位:亿元)对年销售额y (单位:亿元)的影响,该公司对历史数据进行对比分析,建立了两个函数模型:①2y x αβ=+,②e x t y λ+=,其中α,β,λ,t 均为常数,e 为自然对数的底数.现该公司对收集的近12年的年研发资金投入量i x 和年销售额i y (1,2,,12i =⋅⋅⋅)的数据作了初步处理,令2u x =,ln v y =,经计算得到如下数据:(1)设u 和y 的样本相关系数为1r ,x 和v 的样本相关系数为2r ,请从样本相关系数(精确到0.01)的角度判断,哪个模型拟合效果更好;(2)(i)根据(1)的选择及表中数据,建立y 关于x 的非线性经验回归方程;(ii)若下一年销售额y 需达到90亿元,预测下一年的研发资金投入量x 约为多少亿元? 参考数据为308477=⨯9.4868, 4.4998e 90≈.【答案】(1)模型e x t y λ+=的拟合效果更好;(2)(i)0.018 3.84ˆe x y+=;(ii)36.66亿元. 【解析】(1)()()121215000.8625000iiu u y y r --====∑,()()12214100.91770.211iix x v v r --====≈⨯∑,因为12r r <,所以从样本相关系数的角度判断,模型e x t y λ+=的拟合效果更好. (2)(i)先建立v 关于x 的经验回归方程. 由e x t y λ+=,得ln y x t λ=+,即v λx t =+.()()()121122114ˆ0.018770iii ii x x v v x x λ==--==≈-∑∑, ˆˆ 4.20.01820 3.84tv x λ=-=-⨯=, 所以v 关于x 的经验回归方程为0.01838ˆ.4vx +=, 所以0.0134ˆln 8.8x y=+,即0.018 3.84ˆe x y +=.(ii)若下一年销售额y 需达到90亿元,则由0.018 3.84ˆe x y+=,得0.018 3.8490e x +=, 又 4.4998e 90≈,所以4.49980.018 3.84x ≈+, 所以 4.4998 3.8436.660.018x -≈≈,所以预测下一年的研发资金投入量约为36.66亿元.5.(2021·全国·高二课时练习)噪声污染已经成为影响人们身体健康和生活质量的严重问题,为了解声音强度D (单位:dB )与声音能量I (单位:2W cm -⋅)之间的关系,将测量得到的声音强度D 和声音能量I 的数据作了初步处理,得到如图所示的散点图:参考数据:111.0410I -⨯=,45.7D =,11.5W =-,()1022111.5610i i I I-=-=⨯∑,()10210.51i i W W=-=∑,()()101116.8810iii IID D -=--=⨯∑,()()1015.1i i i W W D D =-⋅-=∑,其中lg i i W I =,101110i i W W ==∑.(1)根据散点图判断,11D a b I =+与22lg D a b I =+哪一个适宜作为声音强度D 关于声音能量I 的回归模型?(给出判断即可,不必说明理由)(2)求声音强度D 关于声音能量I 的非线性经验回归方程.(3)假定当声音强度大于60dB 时,会产生噪声污染.城市中某点P 处共受到两个声源的影响,这两个声源的声音能量分别是a I 和b I ,且101410a bI I +=.已知点P 处的声音能量等于a I 与b I 之和.请根据(2)中的非线性经验回归方程,判断点P 处是否受到噪声污染,并说明理由.【答案】(1)22lg D a b I =+更适合;(2)ˆ10lg 160.7DI =+;(3)P 会受到噪声污染,理由见解析. 【解析】(1)22lg D a b I =+更适合. (2)设ˆˆD bW a =+,则 ∵()()()10110215.1ˆ100.51iii i i W W D D bW W==--===-∑∑, ∴ˆˆ160.7a D bW=-=, ∴D 关于W 的经验回归方程是ˆ10160.7DW =+,则D 关于I 的非线性经验回归方程是ˆ10lg 160.7DI =+. (3)设点P 处的声音能量为1I ,则1a b I I I =+. ∵101410a bI I +=, ∴()101010141410105910b a a b a b a b a b I I I I I I I I I I I ---=+=++=++≥⎛⎫⎛⎫ ⎪⎝⨯ ⎪⎝⎭⎭(当且仅当10310a I =,93510bI =⨯时等号成立) 根据(2)中非线性经验回归方程,知点P 处的声音强度D 的预报值的最小值,()10min 10lg 910160.710lg960.760D -=⨯+=+>,∴点P 会受到噪声污染.6.(2021·福建·福州三中高二期中)某地从2月20日开始的连续7天的某传染病累计确诊人数如下表:由上述表格得到如下散点图.(1)根据散点图判断lg =+y a b x 与x y c d =⋅(,c d 均为大于0的常数)哪一个更适合作为累计确诊人数y 与天数x 的回归方程类型(给出判断即可,不必说明理由),并求出y 关于x 的回归方程;(2)3月20日,该地的疾控中心接受了1000份血液样本,假设每份样本的检验结果是阳性还是阴性是相互独立的,且每份样本是阳性的概率是0.6,试剂把阳性样本检测出阳性结果的概率是0.99(试剂存在阳性样本检测不出来的情况,但不会把阴性样本检测呈阳性样本),求这1000份样本中检测出呈阳性的份数的期望.参考数据:其中11lg ,7i i i i v y v v ===∑参考公式:对于一组数据()()()1122,,,,,,n n u v u v u v ⋯,其回归直线ˆvu αβ=+的斜率和截距的最小二乘估计公式分别为1221,ni i i ni i u v nuvv u unuβαβ==-==--∑∑,v u αβ=-.【答案】(1)0.253.4710x x y c d y =⋅=⨯; (2)594【解析】(1)由散点图可知,x y c d =⋅更适合作为累计确诊人数y 与天数x 的回归方程类型. 把x y c d =⋅两边取对数,得lg lg lg y c x d =+, 令lg v y =,则lg lg v c x d =+,1(1234567)47x =++++++=,7211.54140i i v x ===∑,, 7172221750.1274 1.54lg 0.25140747i i i i i x v xvd x x==--⨯⨯===-⨯-∑∑,所以lg 1.540.2540.54c =-⨯=,则0.540.25v x =+, 所以y 关于x 的回归方程为0.253.4710x y =⨯; (2)设这1000份样本中检测出呈阳性的份数为X , 每份样本检测出阳性的概率为0.60.990.594P =⨯=, 由题意可知,(10000.594)XB ,,所以()10000.594594E X =⨯=份.故这1000份样本中检测出呈阳性的份数的期望为594.7.(2021·山西太原·高二期中(文))为了更好的指导青少年健康饮食,某机构调查了本地区不同身高的未成年男性,得到他们的体重的平均值,并对数据作了初步处理,得到下面的散点图及一些统计量的值.表中ln i i w y =(1)根据散点图判断,可采用x y a b =⋅作为这个地区未成年男性体重y 千克与身高x 厘米的回归方程.利用表中数据建立y 关于x 的回归方程;(2)若体重超过相同身高男性体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么该地区一名身高为175厘米,体重为78千克的在校男生的体重是否正常? 参考数据:0.020.71751.02,2,1.0231.99e e ===. 参考公式:对于一组数据()()()1122,,,,,,n n u v u v u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为()()()121ˆˆˆ,nii i nii uu v v v u uu βαβ==--==--∑∑.【答案】(1)2 1.02x y =⨯;(2)体重偏胖. 【解析】(1)由x y a b =⋅,得ln ln ln y a x b =+⋅, 设ˆˆˆw cx d=+,由表格中数据,得801ˆ0.02400050c ===, ˆ 3.40.021350.7d=-⨯=, 则0.70.02ln 0.7,ln 0.02,2, 1.02a b a e b e ======, 则y 关于x 的回归方程为2 1.02x y =⨯.(2)当175x =时,1752 1.02231.9963.98y =⨯=⨯=,因为63.98 1.276.77678⨯=<,所以该名在校男生的体重偏胖.。

高中数学线性回归方程检测试题(附答案)

高中数学线性回归方程检测试题(附答案)

高中数学线性回归方程检测试题(附答案)高中苏教数学③2. 4线性回归方程测试题一、选择题1.下列关系属于线性负相关的是()A.父母的身高与子女身高的关系B.身高与手长C.吸烟与健康的关系D.数学成绩与物理成绩的关系答案:C2.由一组数据得到的回归直线方程,那么下面说法不正确的是()A.直线必经过点B.直线至少经过点中的一个点C.直线 a的斜率为D.直线和各点的总离差平方和是该坐标平面上所有直线与这些点的离差平方和中最小的直线答案:B3.实验测得四组的值为,则y与x之间的回归直线方程为()A.B.C.D.答案:A4.为了考查两个变量x和y之间的线性关系,甲、乙两位同学各自独立作了10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1,l2,已知两人所得的试验数据中,变量x和y的数据的平均值都相等,且分别是,那么下列说法正确的是()A.直线和一定有公共点B.直线和相交,但交点不一定是C.必有直线D.和必定重合答案:A二、填空题5.有下列关系:(1)人的年龄与他(她)拥有的财富之间的关系(2)曲线上的点与该点的坐标之间的关系(3)苹果的产量与气候之间的关系(4)森林中的同一种树木,其断面直径与高度之间的关系(5)学生与他(她)的学号之间的关系其中,具有相关关系的是.答案:(1)(3)(4)6.对具有相关关系的两个变量进行的方法叫做回归分析.用直角坐标系中的坐标分别表示具有的两个变量,将数据表中的各对数据在直角坐标系中描点得到的表示具有相关关系的两个变量的一组数据的图形,叫做.答案:统计分析;相关关系;散点图7.将一组数据同时减去3.1,得到一组新数据,若原数据的平均数、方差分别为,则新数据的平均数是,方差是,标准差是.答案:;;8.已知回归直线方程为,则可估计x与y增长速度之比约为.答案:三、解答题9.某商店统计了近6个月某商品的进价x与售价y(单位:元)的对应数据如下:3 5 2 8 9 124 6 3 9 12 14求y对x的回归直线方程.解:,,回归直线方程为.10.已知10只狗的血球体积及红血球的测量值如下:45 42 46 48 426.53 6.30 9.257.580 6.9935 58 40 39 505.90 9.496.20 6.557.72x(血球体积,ml),y(红血球数,百万)(1)画出上表的散点图;(2)求出y对x的回归直线方程并且画出图形.解:(1)见下图(2),设回归直线方程为,则,.图形如下:11.某医院用光电比色计检验尿汞时,得尿汞含量(毫克/升)与消光系数如下表:尿汞含量:2 4 6 8 10消光系数 64 134 205 285 360(1)画出散点图;(2)如果y与x之间具有线性相关关系,求回归直线方程;(3)估计尿汞含量为9毫克/升时的消光系数.解:(1)(2)由散点图可知与线性相关,设回归直线方程为.列表:1 2 3 4 52 4 6 8 1064 134 205 285 360128 536 1230 2280 3600 回归直线方程为.(3)当时,.。

苏教版高中数学必修三:2.4《线性回归方程》测试.docx

苏教版高中数学必修三:2.4《线性回归方程》测试.docx

高中苏教数学③2.4线性回归方程测试题一、选择题1.下列关系属于线性负相关的是( ) A.父母的身高与子女身高的关系 B.身高与手长C.吸烟与健康的关系D.数学成绩与物理成绩的关系答案:C2.由一组数据1122()()()n n x y x y x y L ,,,,,,得到的回归直线方程$y bx a =+,那么下面说法不正确的是( )A.直线$y bx a =+必经过点()x y , B.直线$y bx a =+至少经过点1122()()()n n x y x y x y L ,,,,,,中的一个点C.直线$y bx a =+a 的斜率为1221ni ii nii x ynx yxnx==--∑∑ D.直线$y bx a =+和各点1122()()()n n x y x y x y L ,,,,,,的总离差平方和21[()]ni i i y bx a =-+∑是该坐标平面上所有直线与这些点的离差平方和中最小的直线答案:B3.实验测得四组()x y ,的值为(12)(23)(34)(45),,,,,,,,则y 与x 之间的回归直线方程为( ) A.$1y x =+ B.$2y x =+ C.$21y x =+D.$1y x =-答案:A4.为了考查两个变量x 和y 之间的线性关系,甲、乙两位同学各自独立作了10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1,l2,已知两人所得的试验数据中,变量x 和y 的数据的平均值都相等,且分别是s t ,,那么下列说法正确的是( ) A.直线1l 和2l 一定有公共点()s t ,B.直线1l 和2l 相交,但交点不一定是()s t , C.必有直线12l l ∥ D.1l 和2l 必定重合答案:A二、填空题5.有下列关系:(1)人的年龄与他(她)拥有的财富之间的关系 (2)曲线上的点与该点的坐标之间的关系 (3)苹果的产量与气候之间的关系(4)森林中的同一种树木,其断面直径与高度之间的关系 (5)学生与他(她)的学号之间的关系 其中,具有相关关系的是 .答案:(1)(3)(4)6.对具有相关关系的两个变量进行的方法叫做回归分析.用直角坐标系中的坐标分别表示具有 的两个变量,将数据表中的各对数据在直角坐标系中描点得到的表示具有相关关系的两个变量的一组数据的图形,叫做 .答案:统计分析;相关关系;散点图7.将一组数据同时减去3.1,得到一组新数据,若原数据的平均数、方差分别为2x s ,,则新数据的平均数是 ,方差是 ,标准差是 .答案: 3.1x -;2s ;s8.已知回归直线方程为$4.4838.19y x =+,则可估计x 与y 增长速度之比约为 .答案:522三、解答题9.某商店统计了近6个月某商品的进价x 与售价y (单位:元)的对应数据如下:x 3 5 2 8 9 12y4 6 3 9 12 14求y 对x 的回归直线方程. 解:3528912 6.56x +++++==∵,4639121486y +++++==,621327ii x==∑,61396i i i x y ==∑,6162216 1.1436i ii ii x yxy b xx==-=≈-∑∑∴,0.571a y bx =-=,∴回归直线方程为$1.1430.571y x =+.10.已知10只狗的血球体积及红血球的测量值如下:x 45 42 4648 42 y6.53 6.30 9.257.580 6.99 x35 58 40 39 50 y5.909.496.206.557.72x (血球体积,ml ),y (红血球数,百万)(1)画出上表的散点图;(2)求出y 对x 的回归直线方程并且画出图形 . 解:(1)见下图(2)1(45424648423558403950)44.510x =+++++++++=, 1(6.53 6.309.257.50 6.99 5.909.49 6.20 6.557.72)7.24310y =+++++++++= 102120183ii x==∑,1013283.9i i i x y ==∑,设回归直线方程为$y bx a =+, 则12210.1597ni ii nii x ynx y b xnx==-=≈-∑∑,0.1364a y bx =-=.图形如下:11.某医院用光电比色计检验尿汞时,得尿汞含量(毫克/升)与消光系数如下表: 尿汞含量x :2 4 6 8 10 消光系数:y 64 134 205 285 360(1)画出散点图;(2)如果y 与x 之间具有线性相关关系,求回归直线方程; (3)估计尿汞含量为9毫克/升时的消光系数. 解: (1)(2)由散点图可知y 与x 线性相关,设回归直线方程为$y bx a =+.列表: i1 2 3 4 5 i x 2 4 6 8 10 i y 64 134 205 285 360 i i x y1285361230228036006x = 209.6y =521220ii x==∑ 517774i i i x y ==∑2777456209.637.1522056b -⨯⨯==-⨯∴,209.637.15613.3a =-⨯=-∴.∴回归直线方程为$37.1513.3y x =-. (3)当9x =时,$37.15913.3321.05y =⨯-=.。

苏教版高中数学必修三练习:2.4线性回归方程(一)含答案

苏教版高中数学必修三练习:2.4线性回归方程(一)含答案

2.4 线性回归方程(一)【新知导读】1. 以下两个变量之间的关系中,哪个不是函数关系()A.角度和它的余弦值B.正方形边长和面积C.正n边形的边数和其内角和 D .人的年纪和身高2.回归直线方程y bx a 中的 y 是展望值,与实质中的y 关系为()A.y y 越小,说明回归偏差越小B.y y 越大,说明回归偏差越小C.y y 越小,说明回归偏差越小D.y y 越小,说明回归偏差越小3.回归直线方程的系数a,b的最小二乘法预计中,使函数Q (a, b) 最小, Q 函数指()n nA.( y i a bx i ) 2B.y i a bx ii1i 1C.( y i a bx i )2D. y i a bx i【典范点睛】例 1.以下是采集到的新房子销售价钱y 与房子的大小x 的数据:房子大小 x(m2 )80105110115135销售价钱 y (万元)18.42221.624.829.2(1) 画出数据的散点图;(2) 用最小二乘法预计求线性回归方程,并在散点图中加上回归直线;(3)计算此时 Q (a,b) 和 Q(2,0.2)的值,并作比较.【课外链接】1.假定学生在初一和初二数学成绩是线性有关的.若10 个学生初一(x)和初二( y)数学分数如下:x74717268767367706574y76757170767965776272试求初一和初二数学分数间的线性回归方程.【随堂操练】1.以下说法错误的选项是()A.假如变量和之间存在线性有关关系,那么依据它们的一组数据获得一列点(x i , y i ) ( i1,2,3,..., n )将漫步在某向来线的邻近B.假如变量和之间不存在线性有关关系,那么依据它们的一组数据(x i , y i ) ( i1,2,3,..., n )不可以写出一个线性方程C.设x,y是拥有线性有关关系的两个变量,且x对于y的线性回归方程为y bx a ,此中 a, b 叫做回归系数D.在回归剖析中,变量间的关系假如非确立性的关系,则因变量不可以由自变量独一确立2.三点 (3,10),(7,20),(11,24)的线性回归方程是( )A.y 5.75 1.75x B. y 1.75 5.75xC.y 1.75 5.75x D. y 5.75 1.75x3.已知x,y之间的一组数据:x0123y1357则 y 与x的线性回归方程y bx a 必过( )A. (2,2) 点 B .(1.5,0)点 C . (1,2)点 D . (1.5,4)点4.设有一个回归方程为y 3x 2,变量 x 增添一个单位时,则y 均匀增添______个单位.5.已知线性回归方程为y 0.50 x 0.81 ,则x25 时, y 的预计值为_____________.6.某地域某种病的发病人数奉上涨趋向,统计近四年这类病的新发病人数的线性回归剖析以下表表示:年份 ( x )该年新发病人数 ( y)x2003.5 ,y2540.25i i200224004444x i y i[x i ][y i ]20032491b i 1i 1i194.7444x i2[x i ] 2 20042586i 1i 120052684a y bx186623如不加控制,仍按这个趋向发展下去,请展望从2006 年初到 2009 年末的四年时间里,该地域这种病的新发病总人数为 _______________ .7x 与y之间的关系的模型,为偏差项,模型以下:.我们考虑两个表示变量模型 1:y6 4 x ;模型2: y 6 4x.(1) 假如x 3 , 1 ,分别求两个模型中的y 值;(2)分别说明以上两个模型是确立性模型仍是随机性模型.8.在 10 年时期,某城市居民的年收入与某种商品的销售额之间的关系以下表所示:第几年城市居民收入x (亿元)某商品销售额y (万元) 132.225.0231.130.0332.934.0435.837.0537.139.0638.041.0739.042.0843.044.0944.648.01046.051.0(1) 画出散点图; (2)假如散点图中的各点大概散布在一条直线邻近,求 y 与x间的线性回归方程.9.已知对于某设施的使用年限x 与所支出的维修花费y (万元),有以下统计资料:使用年限 x23456维修花费 y 2.2 3.8 5.5 6.57.0设 y 对x呈线性有关关系.试求: (1) 线性回归方程y bx a 的回归系数 a ,b;(2)预计使用年限为 10 年,维修花费是多少?10.在钢线含量对于电阻的效应的研究中,获得以下的数据:碳含量 x(%)0.100.300.400.550.700.800.96电阻 y (200C时,微欧)1518192122.623.826(1)画出散点图 (2) 求线性回归方程.2.4 线性回归方程(一)【新知导读】1.D 2.C3.A【典范点睛】例 1. (1)5555(2)n5,x i545 , x109 ,y i116 , y 23.2 ,x i60952 ,i 1i1i 155129525451160.1962 ,a23.20.1962 109 1.8166x i y i12592 , b,i 15 60952 5452线性回归方程为y0.1962 x 1.8166 ;(3)Q (1.8166,0.1962) 5.1771 , Q(2,0.2)7.0 ,由此可知,求得的a 1.8166, b0.1962是使函数Q (a,b)取最小值的a, b 值.【课外链接】Q x7152y 72.310解:,x i50520,,x i y i51467,所以i 1i1b 10514677107231.2182,a72.3 1.2182 7114.912,因此回归直线方程为10505207102y 1.2182 x14.192.【随堂操练】1.B 2 .D 3. B 4.3 5 .11.69 6. 139497. 解: (1)模型 1:y64x64318 ;模型2: y6 4 x 6 4 3119 .(2) 模型 1中同样的 x 值必定获得同样的y 值,因此是确立性模型;模型2中同样的 x 值,因的不一样,所得 y 值不必定同样,且为偏差项是随机的,因此模型 2 是随机性模型.8.解: (1)102(2)由题意: x 37.97,y39.1 ;x i14633.67 ,i 110i 1x i y i15202.9 ,于是10i x i y i10 x y15202.91037.9739.1b1 1.447 , a y bx 39.1 1.447 10210 x14663.6710 37.9722i 137.97 15.843.因此所求线性回归方程为y bx a 1.447 x 15.843.525112.354 59.解: (1) x 4 , y 5 ,x i90 ,x i y i112.3 ,于是回归系数 bi 1i 190542,a y bx 5 1.23 4 0.08 ;(2)线性回归方程是y 1.23x 0.08,当x 10年时,1.23y 1.23 10 0.08 12.38 (万),即预计使用10年时,维修花费是12.38万元.10.解: (1)(2) 可求得y13.958412.5503 x。

人教A版高中数学选择性必修第三册课后习题 第8章成对数据的统计分析 8.2 一元线性回归模型及其应用

人教A版高中数学选择性必修第三册课后习题 第8章成对数据的统计分析 8.2 一元线性回归模型及其应用

8.2 一元线性回归模型及其应用课后训练巩固提升1.对于经验回归方程y ^=b ^x+a ^(b ^>0),下列说法错误的是 ( )A.当x 增加一个单位时,y ^的值平均增加b ^个单位 B.点(x,y )一定在y ^=b ^x+a ^所表示的直线上 C.当x=t 时,一定有y=b ^t+a ^D.当x=t 时,y 的值近似为b ^t+a ^解析:经验回归方程是一个模拟函数,它表示的是一系列离散的点大致所在直线的位置及其大致变化规律,故有些散点不一定在经验回归直线上. 答案:C2.有一名同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计得到了一个热饮销售杯数与当天气温之间的线性关系,其经验回归方程为y ^=-2.35x+155.47.如果某天气温为4 ℃,那么该小卖部大约能卖出热饮的杯数是( )A.140B.146C.151D.164答案:B3.设两个变量x 和y 之间具有线性相关关系,它们的样本相关系数是r,y 关于x 的经验回归直线的斜率是b ^,纵轴上的截距是a ^,那么必有( ) A.b ^与r 的符号相同B.a ^与r 的符号相同C.b ^与r 的符号相反D.a ^与r 的符号相反解析:因为b ^>0时,两变量正相关,此时r>0; b ^<0时,两变量负相关,此时r<0, 所以b ^与r 的符号相同. 答案:A4.有一散点图如图所示,在5个点中去掉D(3,10)后,下列说法正确的是( )A.残差平方和变小B.相关系数r 变小C.决定系数R2变小D.解释变量x与响应变量y的线性相关程度变弱解析:由题中散点图可知,只有D点偏离经验回归直线,去掉D点后,解释变量x与响应变量y的线性相关程度变强,相关系数r变大,决定系数R2变大,残差平方和变小,故选A.答案:A5.(多选题)3月15日,某市物价部门对5家商场的某商品一天的销售量及其价格进行调查,5家商场的售价x(单位:元)和销售量y(单位:件)之间的一组数据如表所示:根据表中数据得到y关于x的回归直线方程是y^=-3.2x+a^,则下列说法正确的有( )A.a^=40B.回归直线过点(10,8)C.当x=8.5时,y的估计值为12.8D.点(10.5,6)处的随机误差为0.4解析:由题意可知x =15×(9+9.5+10+10.5+11)=10,y =15×(11+10+8+6+5)=8,故回归直线过点(10,8),且8=-3.2×10+a ^⇒a ^=40,故A,B 正确.当x=8.5时,y ^=-3.2×8.5+40=12.8,故C 正确.点(10.5,6)处的随机误差为6-(-3.2×10.5+40)=-0.4,故D 不正确,故选ABC. 答案:ABC6.某品牌服装专卖店为了解保暖衬衣的销售量y(单位:件)与平均气温x(单位:℃)之间的关系,随机统计了连续四旬的销售量与当旬平均气温,其数据如表:由表中数据算出线性回归方程y ^=b ^x+a ^中的b ^=-2,样本中心点为(10,38). (1)表中数据m= ;(2)气象部门预测三月中旬的平均气温约为22 ℃,据此估计,该品牌的保暖衬衣在三月中旬的销售量为 .解析:(1)由y =38,得m=40.(2)由a ^=y −b ^x ,得a ^=58,则y ^=-2x+58, 当x=22时,y ^=14,故估计三月中旬的销售量为14件. 答案:(1)40 (2)14件7.某工厂1~8月份某种产品的产量x(单位:t)与成本y(单位:万元)的统计数据如下表.(1)画出散点图;(2)判断y 与x 是否具有线性相关关系,若有,求出其经验回归方程. 解:(1)散点图如图.(2)由图可看出,这些点基本分布在一条直线附近,可以认为x 和y 线性相关.∵x =6.85,y =157.25,∑i=18x i y i =8764.5,∑i=18x i 2=382.02,∴b ^=∑i=18x i y i -8xy∑i=18x i 2-8x 2=8764.5-8×6.85×157.25382.02-8×6.852≈22.169,a ^=y −b ^x ≈157.25-22.169×6.85≈5.392. ∴经验回归方程为y ^=22.169x+5.392.1.由变量x 与y 相对应的一组数据(1,y 1),(5,y 2),(7,y 3),(13,y 4),(19,y 5)得到的经验回归方程为y ^=2x+45,则y =( ) A.135 B.90 C.67D.63解析:因为x =15×(1+5+7+13+19)=9,y =2x +45,所以y =2×9+45=63. 答案:D2.某鞋厂为了研究初二学生的脚长)的关系,从初二某班随机抽取10名学生,根据测量数据的散点图(图略)可以看出y 与x 之间有线性相关关系,设其经验回归方程为y ^=b ^x+a ^.已知∑i=110x i =225,∑i=110y i =1 600,b ^=4.该班某学生的脚长为24 cm,据此估计其身高为( ) A.160 cm B.163 cm C.166 cmD.170 cm解析:x =22.5,y =160,a ^=160-4×22.5=70,则经验回归方程为y ^=4). 答案:C3.(多选题)四名同学根据各自的样本数据研究变量x,y 之间的相关关系,并求得经验回归方程,分别得到以下四个结论,其中一定不正确的结论是( )A.y 与x 负相关,且y ^=2.347x-6.423 B.y 与x 负相关,且y ^=-3.476x+5.648 C.y 与x 正相关,且y ^=5.437x+8.493 D.y 与x 正相关,且y ^=-4.326x-4.578解析:A 结论错误,由经验回归方程知,此两变量的关系是正相关; B 结论正确,经验回归方程符合负相关的特征; C 结论正确,经验回归方程符合正相关的特征; D 结论不正确,经验回归方程符合负相关的特征. 故选AD.答案:AD4.对具有线性相关关系的变量x,y,测得一组数据如表:根据上表,利用最小二乘法得它们的经验回归方程为y^=10.5x+a^,据此模型预测,当x=10时,y^= .×(2+4+5+6+8)=5,解析:根据表中数据,计算x=15y=1×(20+40+60+70+80)=54,5代入经验回归方程y^=10.5x+a^中,求得a^=54-10.5×5=1.5,故经验回归方程为y^=10.5x+1.5,据此模型预测,当x=10时,y^=10.5×10+1.5=106.5.答案:106.55.某市春节期间7家超市的广告费支出x i(单位:万元)和销售额y i(单位:万元)的数据如下:销售额y i 19 32 40 44 52 53 54(1)若用线性回归模型拟合y 与x 的关系,求y 关于x 的经验回归方程. (2)若用对数回归模型拟合y 与x 的关系,可得经验回归方程y ^=12ln x+22,经计算得出线性回归模型和对数回归模型的决定系数R 2分别约为0.75和0.97,请用决定系数R 2说明选择哪个回归模型更合适,并用此模型预测A 超市广告费支出为8万元时的销售额.参考数据及公式:x =8,y =42,∑i=17x i y i =2 794,∑i=17x i 2=708,b^=∑i=1nx i y i -nxy ∑i=1nx i 2-nx 2,a ^=y −b ^x ,ln 2≈0.7. 解:(1)b ^=∑i=17x i y i -7xy∑i=17x i 2-7x 2=2794-7×8×42708-7×82=1.7,a ^=y −b ^x =28.4,故y 关于x 的经验回归方程是y ^=1.7x+28.4. (2)因为0.75<0.97, 所以对数回归模型更合适.把x=8代入回归方程y ^=12ln x+22,得y ^=12×ln 8+22=36ln 2+22≈47.2,所以当x=8万元时,预测A 超市销售额为47.2万元.6.假设关于某设备的使用年限x(单位:年)和支出的维修费用y(单位:万元),有如下表的统计资料:若由资料知y 对x 呈线性相关关系,试求: (1)经验回归方程y ^=b ^x+a ^.(2)估计使用年限为10年时,维修费用是多少? (3)计算残差平方和.(4)求决定系数R 2并说明模型的拟合效果. 解:(1)将已知条件制成下表.设经验回归方程为y ^=b ^x+a ^, 于是有b ^=∑i=15x i y i -5xy∑i=15x i 2-5x 2=112.3-5×4×590-5×42=1.23,a ^=y −b ^x =5-1.23×4=0.08,第11页 共11页 故经验回归方程为y ^=1.23x+0.08.(2)当x=10时,y ^=1.23×10+0.08=12.38,即估计使用10年时维修费用是12.38万元.(3)因为y ^1=2.54,y ^2=3.77,y ^3=5,y ^4=6.23,y ^5=7.46,所以残差平方和∑i=15(y i -y ^i )2=0.651. (4)决定系数R 2=1-∑i=15(y i -y ^i )2∑i=15(y i -y )2=1-0.65115.78≈0.958 7,模型的拟合效果较好,使用年限解释了95.87%的维修费用支出.。

高中数学3.3线性回归分析专项测试同步训练

高中数学3.3线性回归分析专项测试同步训练

高中数学3.3线性回归分析专项测试同步训练2020.031,在回归分析中,代表了数据点和它在回归直线上相应位置的差异的是( )A.总偏差平方和 B.残差平方和C.回归平方和 D.相关指数R22,工人月工资(元)依劳动生产率(千元)变化的回归直线方程为ˆ6090=+,下列判断正确的是()y xA.劳动生产率为1000元时,工资为50元B.劳动生产率提高1000元时,工资提高150元C.劳动生产率提高1000元时,工资提高90元D.劳动生产率为1000元时,工资为90元3,一位母亲记录了儿子3~9岁的身高,由此建立的身高与年龄的回归模型为y=7.19x+73.93用这个模型预测这个孩子10岁时的身高,则正确的叙述是()A.身高一定是145.83cm; B.身高在145.83cm以上;C.身高在145.83cm以下; D.身高在145.83cm左右.4,在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:人体的脂肪含量百分比和年龄通过计算得到回归方程为0.5770.448y x =-,利用这个方程,我们得到年龄37岁时体内脂肪含量为20.90%,那么数据20.90%的意义是: ( )A .某人年龄37岁,他体内脂肪含量为20.90%;B .某人年龄37岁,他体内脂肪含量为20.90%的概率最大;C .某人年龄37岁,他体内脂肪含量的期望值为20.90%;D .20.90%是对年龄为37岁的人群中的大部分人的体内脂肪含量所作出的估计;5,两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们的相关指数2R 如下 ,其中拟合效果最好的模型是( ) A .模型1的相关指数2R 为0.98 B .模型2的相关指数2R 为0.80 C .模型3的相关指数2R 为0.50 D .模型4的相关指数2R 为0.256,规定A m x=x(x-1)…(x-m+1),其中x ∈R ,m 为正整数,且A 0x=1,这是排列数A m n(n ,m 是正整数,且m ≤n)的一种推广. (1)求A 315-的值;(2)排列数的两个性质:①A m n=nA11--m n ,②A m n +mA1-m n=Am n 1+(其中m ,n 是正整数).是否都能推广到A m x(x ∈R ,m 是正整数)的情形?若能推广,写出推广的形式并给予证明;若不能,则说明理由;(3)确定函数A3x的单调区间.7,平面上有两个质点A(0,0), B(2,2),在某一时刻开始每隔1秒向上下左右任一方向移动一个单位。

苏教版高中数学必修三练习:2.4线性回归方程(一)含答案

苏教版高中数学必修三练习:2.4线性回归方程(一)含答案

2.4线性回归方程(一)【新知导读】1.下列两个变量之间的关系中,哪个不是函数关系 ( ) A .角度和它的余弦值 B .正方形边长和面积 C .正n 边形的边数和其内角和 D .人的年龄和身高2.回归直线方程y bx a ∧=+中的y ∧是预测值,与实际中的y 关系为 ( ) A .y y ∧-越小,说明回归偏差越小 B .y y ∧-越大,说明回归偏差越小 C .y y ∧-越小,说明回归偏差越小D .y y ∧-越小,说明回归偏差越小3.回归直线方程的系数a ,b 的最小二乘法估计中,使函数(,)Q a b 最小,Q 函数指( )A .21()niii y a bx =--∑ B .1niii y a bx=--∑C .2()i i y a bx -- D .i i y a bx --【范例点睛】例1.以下是收集到的新房屋销售价格y 与房屋的大小x 的数据:(3)计算此时(,)Q a b 和(2,0.2)Q 的值,并作比较. 【课外链接】1.假设学生在初一和初二数学成绩是线性相关的.若10个学生初一()x 和初二()y 数学分数如下:【随堂演练】1.下列说法错误的是( )A .如果变量η和ξ之间存在线性相关关系,那么根据它们的一组数据得到一列点(,)i i x y (1,2,3,...,i n =)将散步在某一直线的附近B .如果变量η和ξ之间不存在线性相关关系,那么根据它们的一组数据(,)i i x y (1,2,3,...,i n =)不能写出一个线性方程C .设x ,y 是具有线性相关关系的两个变量,且x 关于y 的线性回归方程为y bx a ∧=+,其中,a b 叫做回归系数D .在回归分析中,变量间的关系若是非确定性的关系,则因变量不能由自变量唯一确定 2.三点(3,10),(7,20),(11,24)的线性回归方程是 ( ) A . 5.75 1.75y x ∧=- B . 1.75 5.75y x ∧=+ C . 1.75 5.75y x ∧=- D . 5.75 1.75y x ∧=+ 3.已知x ,y 之间的一组数据:则y 与x 的线性回归方程y bx a =+必过 ( )A .(2,2)点B .(1.5,0)点C .(1,2)点D .(1.5,4)点4.设有一个回归方程为32y x ∧=+,变量x 增加一个单位时,则y 平均增加______个单位.5.已知线性回归方程为0.500.81y x ∧=-,则25x =时,y 的估计值为_____________. 6.某地区某种病的发病人数呈上升趋势,统计近四年这种病的新发病人数的线性回归分析如下表表示:如不加控制,仍按这个趋势发展下去,请预测从2006年初到2009年底的四年时间里,该地区这种病的新发病总人数为_______________.7.我们考虑两个表示变量x 与y 之间的关系的模型,δ为误差项,模型如下: 模型1:64y x =+;模型2:64y x δ=++. (1) 如果3x =,1δ=,分别求两个模型中的y 值; (2) 分别说明以上两个模型是确定性模型还是随机性模型.8.在10年期间,某城市居民的年收入与某种商品的销售额之间的关系如下表所示:(1)画出散点图;(2)如果散点图中的各点大致分布在一条直线附近,求y与x间的线性回归方程.9.已知关于某设备的使用年限x 与所支出的维修费用y (万元),有如下统计资料:设y 对x 呈线性相关关系.试求:(1)线性回归方程y bx a ∧=+的回归系数a ,b ; (2)估计使用年限为10年,维修费用是多少?10.在钢线含量对于电阻的效应的研究中,得到以下的数据:(1)画出散点图(2)求线性回归方程.2.4线性回归方程(一) 【新知导读】 1.D 2.C 3.A 【范例点睛】 例1.(1)(2)5n =,51545ii x==∑,109x =,51116i i y ==∑,23.2y =,55160952i i x ==∑,5112592i i i x y ==∑,25129525451160.1962560952545b ⨯-⨯=≈⨯-,23.20.1962109 1.8166a =-⨯≈, ∴线性回归方程为0.1962 1.8166y x =+;(3)(1.8166,0.1962) 5.1771Q ≈,(2,0.2)7.0Q ≈,由此可知,求得的 1.8166a =,0.1962b =是使函数(,)Q a b 取最小值的a ,b 值. 【课外链接】 解:71x =Q ,52150520ii x==∑,72.3y =,10151467i ii x y==∑,所以210514677107231.21821050520710b ⨯-⨯=≈⨯-,72.3 1.21827114.912a =-⨯=-,所以回归直线方程为1.218214.192y x ∧=-.【随堂演练】1. B2. D3.B4. 35. 11.696.139497.解:(1)模型1:6464318y x =+=+⨯=;模型2:64643119y x δ=++=+⨯+=. (2)模型1中相同的x 值一定得到相同的y 值,所以是确定性模型;模型2中相同的x 值,因δ的不同,所得y 值不一定相同,且δ为误差项是随机的,所以模型2是随机性模型. 8. 解:(1)(2)由题意:37.97x =,39.1y =;102114633.67ii x==∑,10115202.9i ii x y==∑,于是1011022211015202.91037.9739.11.44714663.671037.9710i ii i i x y x yb x x==--⨯⨯==≈-⨯-∑∑,39.1 1.447a y bx =-=-⨯37.9715.843≈-.所以所求线性回归方程为 1.44715.843y bx a x ∧=+=-.9.解:(1)4x =,5y =,52190i i x ==∑,51112.3i i i x y ==∑,于是回归系数2112.35459054b -⨯⨯=-⨯ 1.23=,5 1.2340.08a y bx =-=-⨯=;(2)线性回归方程是 1.230.08y x ∧=+,当10x =年时,1.23100.0812.38y ∧=⨯+=(万),即估计使用10年时,维修费用是12.38万元.10.解:(1)(2)可求得13.958412.5503y x ∧=+。

高中数学必修三《线性回归》练习题

高中数学必修三《线性回归》练习题

线性回归练习题[A.基础达标]1.(2015·张掖高一检测)有几组变量:①汽车的重量和汽车每消耗1升汽油所行驶的平均路程;②平均日学习时间和平均学习成绩;③立方体的棱长和体积.其中两个变量成正相关的是()A .①③B .②③C .②D .③解析:选 C.①是负相关;②是正相关;③是函数关系,不是相关关系.2.对于给定的两个变量的统计数据,下列说法正确的是()A .都可以分析出两个变量的关系B .都可以用一条直线近似地表示两者的关系C .都可以作出散点图D .都可以用确定的表达式表示两者的关系解析:选 C.由两个变量的数据统计,不能分析出两个变量的关系,A 错;不具有线性相关的两个变量不能用一条直线近似地表示他们的关系,更不能用确定的表达式表示他们的关系,B ,D 错.3.对有线性相关关系的两个变量建立的回归直线方程y ^=a ^+b ^x 中,回归系数b ^()A .不能小于0B .不能大于0C .不能等于0D .只能小于0解析:选 C.当b ^=0时,r =0,这时不具有线性相关关系,但b ^能大于0,也能小于0.4.(2013·高考湖北卷) 四名同学根据各自的样本数据研究变量x ,y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:()①y 与x 负相关且y ^=2.347x -6.423;②y 与x 负相关且y ^=-3.476x +5.648;③y 与x 正相关且y ^=5.437x +8.493;④y 与x 正相关且y ^=-4.326x -4.578.其中一定不正确的结论的序号是()A .①②B .②③C .③④D .①④解析:选 D.由正负相关性的定义知①④一定不正确.5.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n),用最小二乘法建立的回归方程为y ^=0.85x -85.71,则下列结论中不正确的是()A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(x -,y -)。

高一数学苏教版必修3同步练习:2.4 线性回归方程

高一数学苏教版必修3同步练习:2.4 线性回归方程

2.4 线性回归方程1、某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为( )A. 63.6万元B. 65.5万元C. 67.7万元D. 72.0万元2、某考察团对全国10大城市进行职工人均工资水平x (千元)与居民人均消费水平y (千元)统计调查,y 与x 具有相关关系,回归方程为0.66.52ˆ16yx =+,若某城市居民人均消费水平为7.675千元,估计该城市人均消费额占人均工资收入的百分比约为( )A.83%B.72%C.67%D.66%3、变量X 与Y 相对应的一组数据为()()()()()10,1,11.3,2,11.8,3,12.5,4,13,5,变量U 与V 相对应的一组数据为()()()()()10,5,11.3,4,11.8,3,12.5,2,13,1.1r 表示变量X 与Y 之间的线性相关系数,2r 表示变量V 与U 之间的线性相关系数,则( ) A.210r r <<B.210r r <<C.210r r <<D.21r r =4、四名同学根据各自的样本数据研究变量,x y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y 与x 负相关且 2.34.4ˆ7623yx =-; ②y 与x 负相关且 3.476 5.6ˆ48yx =-+; ③y 与x 正相关且 5.43.4ˆ7893yx =+; ④y 与x 正相关且 4.326 4.5ˆ78yx =--. 其中一定不正确的结论的序号是( ) A.①② B.②③ C.③④ D.①④5、已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测数据算得的线性回归方程可能为( )A. 0.4.3ˆ2yx =+ B. 2 2.4ˆyx =- C. 9ˆ2.5yx =-+ D. 0.3 4.4ˆyx =-+ 6、为了解某社区居民的家庭年收入与年支出的关系,随机调査了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程y bx a =+,其中0.76,b a y bx ==-,据此估计,该社区一户年收入为15万元家庭的年支出为( ) A.11.4万元 B.11.8万元 C.12.0万元 D.12.2万元7、为了考察两个变量x 和y 之间的线性相关性,甲、乙两位同学各自独立地做10次和15次试验,并且利用线性回归方法,求得回归直线分别为1l 和2l ,已知两个人在试验中发现对变量x 的观测数据的平均值恰好相等,都是s ,对变量y 的观测数据的平均值也恰好相等,都是t ,那么下列说法正确的是( ) A.直线1l 和2l 有交点(),s tB.直线1l 和2l 相交,但是交点未必是(),s tC.直线1l 和2l 由于斜率相等,所以必定平行D.直线1l 和2l 必定重合 8、根据如下样本数据y4.0 2.5 0.5- 0.5 2.0- 3.0-得到的回归方程为ˆybx a =+,则( ) A. 0a >,0b < B. 0a >,0b > C. 0a <,0b < D. 0a <,0b >9、某校金融专业的学生学习《统计学》的时间x 与考试成绩y 之间可建立线性回归方程ˆya bx =+,经计算,方程为200.8ˆy x =-,则该方程参数中( ) A. a 值错误 B.b 值错误 C. a 、b 值都错误 D. a 、b 值都正确10、如图,有5组数据,为使剩下的4组数据的线,性相关性最大,则应去掉( ).A.(1,2)B.(3,5)C.(4,10)D.(5,10)11、调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程:0.25402ˆ.31yx =+,由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加__________万元.12、某数学老师身高176cm ,他爷爷、父亲和儿子的身高分别是173cm ,170cm 和182cm .因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为__________cm .13、在一组样本数据11(,)x y ,22(,)x y ,…(),n n x y ,(2n ≥,12,,,n x x x ⋅⋅⋅不全相等)的散点图中,若所有样本点(,)i i x y ()1,2,,i n =⋅⋅⋅都在直线112y x =+上,则这组样本数据的样本相关系数为__________. 14已知与之间的几组数据如下表: x 1 2 3 4 5 6 y 0 2 1 3 3 4假设根据上表数据所得线性回归直线方程为.若某同学根据上表中的前两组数据和求得的直线方程为则以下结论正确的是①;②;③;④15、某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据: 单价x (元) 8 8.2 8.4 8.6 8.8 9 销量y (件)908483807568(1)求回归直线方程ˆˆˆybx a =+,其中ˆ20b =-,ˆˆa y bx =-; (2)预计在今后的销售中,销量与单价仍然服从题(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)答案以及解析1答案及解析: 答案:B解析:由表可计算4235742x +++==, 49263954424y +++==,∵点7,422⎛⎫ ⎪⎝⎭在回归直线ˆˆˆy bx a =+上,且ˆb 为9.4,所以7429.4ˆ2a =⨯+, 解得ˆ9.1a=, 故回归方程为9.4.1ˆ9y x =+, 令6x =,得ˆ65.5y=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档