微分几何2-4

合集下载

微分几何 §4 直纹面与可展曲面

微分几何 §4   直纹面与可展曲面

{
}
所以
v′ v ′ v b面
例.证明正螺面
v r = {u cos v, u sin v, av + b} 不是可展曲面。
v 证明:因为 r = {u cos v, u sin v, av + b} v 可以改写成 r = {0, 0, av + b} + u {cos v,sin v, 0} v v = a ( v ) + ub ( v ) .
命题2 一个曲面为可展曲面的充要条件是此曲面为单 参数平面的包络 命题3 一个曲面为可展曲面的充要条件是它的高斯曲 率等于0 命题4 曲面上的曲线是曲率线的充要条件是沿此曲线 的曲面法线构成可展曲面 命题5 可展曲面与平面成等距对应,可展曲面可在 平面上展开.
v 2 1 2 r = u + v, 2u 3 + uv, u 4 + u 2 v 例:证明曲面 3 3 是可展曲面。 v 1 2 2 2 3 4 证明:因为 r = u + 3 v, 2u + uv, u + 3 u v v 可以改写成 r = u 2 , 2u 3 , u 4 + v 1 , u, 2 u 2 3 3 v v = a ( u ) + vb ( u ) . v′ v′ 2 3 4 a ( u ) = {2u, 6u , 4u } , b ( u ) = 0,1, u ,
§4
直纹面与可展曲面
1、直纹面--由直线产生的曲面 生成轨迹的每条直线叫直母线 直纹面上与每条直母线相交的曲线-导线 曲线曲线 2、直纹面的方程 设导线 a = a(u) ,b(u ) 直母线单位方向向量 直纹面 r = ( u, v ) = a (u ) + vb(u ) 3、常见直纹面有柱面、或是锥面、 柱面、或是锥面、 柱面 是一条曲线的切线曲面、正螺面 是一条曲线的切线曲面、正螺面等

微分几何第二章曲面论第三节复习

微分几何第二章曲面论第三节复习

例3 求 曲 面z x2 2 y2在 点(0,0)沿 方 向dx : dy的 法 曲 率.
解: p z 2x,q z 4 y,
x
y
r
2z x 2
2,s
2z xy
0,t
2z y 2
4.
I (1 p2 )dx2 2 pqdxdy (1 q2 )dy2
(1 4x2 )dx2 16xydxdy (1 16 y2 )dy2 .
求法:FF21
( (
x, x,
y) y)
a11 a12
x x
a12 a22
y y
a13 a23
0 0
中心方程组
(1)中心曲线 曲线的分类:
I2
a11 a12
a12 0, a22
(2)非中心曲线
I2
a11 a12
a12 0, a22
(i)无心曲线 a11 a12 a13 .
a12 a22 a23
叫 做 曲 面(S)在 点P的 渐 近 方 向.
杜邦指标线的方程为L:x2 2Mxy Ny2 1 曲面(S )在点P的方向du : dv是渐近方向
Ldu2 2Mdudv Ndv2 0. 渐近方向方程 注 (1) 渐近方向的个数
若LN M 2 0,即椭圆点,有两个虚渐近方向.
若LN M 2 0,即双曲点, 有两个实渐近方向. 若LN M 2 0,即抛物点, 有一个实渐近方向. 若L N M 0,即平点,任何方向都是渐近方向.
II
r
dx2
2s
dxdy
t
dy 2
1 p2 q2
1 p2 q2
1 p2 q2
2
dx2
4
dy 2

微分几何

微分几何
第一章向量函数4学时
第二章曲线的概念4学时
第三章空间曲线12学时
第四章曲面的概念4学时
第五章曲面的第一基本形式8学时
第六章曲面的第二基本形式12学时
第七章直纹面和可展曲面6学时
第八章曲面论的基本定理8学时
第九章曲面上的测地线10学时
第十章常高斯曲率的曲面4学时
如果总课时数少于70,可以只讲授第一至第八章。
第八节高斯曲率的几何意义
教学要求
领会:理解曲面第二基本形式,曲面上曲线的曲率、曲面的渐进(线)方向、共扼方向、主方向和曲率线,主曲率、Gauss曲率和平均曲率等的意义。
掌握:曲面的第二基本形式,曲面上曲线的曲率、曲面的渐进(线)方向、共扼方向、主方向和曲率线,主曲率、Gauss曲率和平均曲率,曲面的局部结构等基本概念及它们的相关运算。
第一章向量函数4学时第二章曲线的概念4学时第三章空间曲线12学时第四章曲面的概念4学时第五章曲面的第一基本形式8学时第六章曲面的第二基本形式12学时第七章直纹面和可展曲面6学时第八章曲面论的基本定理8学时第九章曲面上的测地线10学时第十章常高斯曲率的曲面4学时如果总课时数少于70可以只讲授第一至第八章
教学目的
引入正则参数曲面,曲面的切平面,切向量,法线,单位法向量等概念,为进一步学习曲面论作好铺垫。
主要内容
第一节简单曲面及其参数表示
第二节光滑曲面曲面的切平面和法线
第三节曲面上的曲线族和曲线网
教学要求
掌握:简单曲面的参数表示;简单曲面及其上面曲线族(网)的特征;曲面的法线、切面的求法。
第五章曲面的第一基本形式
第二节空间曲线的基本三棱形
第三节空间曲线的曲率、挠率和伏雷内(Frenet)公式
第四节空间曲线在一点邻近的结构

微分几何第四版习题答案梅向明知识分享

微分几何第四版习题答案梅向明知识分享

第一章曲统论§2向虽函敎缶向试曲数只/)具冇固定方向的充雯条件衆产⑺X ?'(/)= 0・分析:一个向量函数只刀•般可以写成尺/)二久⑺2(/)的尬式’其中乳0为单位向量函数‘ 粗刀为数量函数.那么尺”具有因宦方向的充要条件是只"具有固宦方向*即罠/)为常向量, (例为秋/)的长度固定人证对F向虽函数?(/),设机/)为梵单位向負则尺f)二几⑺&⑺,若疋具有園定方向1 如巩“对常向殳’那么?(/) = A r(/) e ,所以rX7 = ^ }:<^X ) =o・反 Z,若?x?=0 ★对 ^(/) = A(/) e(/)求 A 1i+A 0・rft?XF=A1〔3><了)”6・则有Z 7 或e\e'=Q时* ?(^) = 0可与任意方向平杜hZ * 0 时,有&x 0—6.血(Ex 0 ~(e e* )2-e,2t (因为$ 貝冇固运匕t所以?=O.即P为常向第。

所以,r(/)A有固运方向.6.向绘歯数半行于固立屮面的充摆杀件是(F尹产)司卩分析:向呈诵数?W平If于固定平面的充要余件是存在•牛定向向蚩50*使?(心 = 0 ,所以我们蹩耳求这个向旅亓及万与尹.严的尢系"证若尺刀半苻于個址羊面—设乔足¥面斗的•个单位迖向嵐则习为常向議H?(/) 7t-0 -两次求微商色尸7 =0・?y 7i=0 ,即问最孑,戸‘唾直于同•非零向輦无因而典而*即(F戶尹')刃.反之,若(? r1 F M) =0i则有r x ?=6戒产x戸工6 .若产x? = 0i由匕题柯产(/) 具冇■的崔方向、白然半fr于一固宦半面,若rx? H 0(则存圧数母焰数入(“、H&n使戸'= 乔*尹①令聞*厂桁丰6,且;V)丄讯/)* 4^7 X?求微商井将①式代入得用=Fx P*—/I t r X r1)—p f是x ^' —6 .市上题划另4fhM眾方向,而F(f)丄苑即巩f) 平存于固進半而S3曲线的概念1-求圆柱螺^T=cosr- ,F=sinr, f *在(1Q 0)的切线和注平面。

微分几何2-2

微分几何2-2

第二章 曲面:局部理论
上一条弧长参数曲线, 假设 α ( s ) 为曲面 M 上一条弧长参数曲线,满足
α (0) = P, α ′(0) = V .
那么由之前的计算得到 ΙΙ P (V , V ) = κ N ⋅ n . 它给出了曲线 α 的曲率向量 κ N 在曲面 M 的单 位向量上的投影, 处的法曲 位向量上的投影,我们称它为α 在点P 处的法曲 率,记为 κ n 。
第二章 曲面:局部理论
定理(Euler公式 公式) 定理(Euler公式)令 e1 , e2 为曲面 M 在点 P 的 单位主方向, 单位主方向,分别对应主曲率 k1 和 k2 。假设 切向量 V = cos θ e1 + sin θ e2,其中 θ ∈ [0, 2π ) 。 则 ΙΙ(V , V ) = k cos 2 θ + k sin 2 θ .
α ( s) , α (0) = P, α ′(0) = V .
则它在点 P 的主法向量 N 为 ± n( P) ,曲率
±κ = κ N ⋅ n = T ′ ⋅ n = −T ⋅ (n α )′(0) = −V ⋅ DV n( P).
第二章 曲面:局部理论
对任意切向量 V ∈ TP M , n 的方向导数 DV n( P) ∈ TP M 仍然是切向量。由此定义的映射 仍然是切向量。 命题
xu ⋅ n v . xv ⋅ n v
类似第一基本形式,我们得到曲面的第二基本形 类似第一基本形式,我们得到曲面的第二基本形 式的二次微分形式
l m du ΙΙ = (du, dv) = −dx ⋅ d n m n dv
第二章 曲面:局部理论
是单位正交标架, 如果 { xu , xv } 是单位正交标架,则矩阵 ΙΙ P 就是 但是一般情形下, 形状算子 S P 。但是一般情形下,S P 有矩阵表示

微分几何第二章曲面论第四节直纹面和可展曲面

微分几何第二章曲面论第四节直纹面和可展曲面

则 沿 每 一 条 直 母 线 有 唯一 的 切 平 面 ,
而且只依赖于参数u,从而S在任 一点(u, v)处的 切平 面
只 与u有 关 ,即S的 切 平 面 族 为 单 参 数 平面 族 ,
显 然S即 为 此 单 参 数 切 平 面 族的 包 络.
"" 若曲面S为单参数平面族
{ : A( )x B( ) y C( )z D( ) 0}的包络,
如 一 个 曲 面 由 两 个 参 数来 决 定 , 曲 面 在 每 一 个 点 有 一 个切 平 面 , 这 个 切 平 面 依 赖 于 两 个参 数 ,
因 此 曲 面 可 以 看 作 双 参数 切 平 面 族 的 包 络. 但 是 可 展 曲 面 则 不 同它,可 以 看 作 单 参 数 平 面族 的 包 络. 这正是可展曲面与一般曲面的区别.

腰曲
线 为 导 线于,是
有a
b
0,
(i)
当a
0时
,a(u)



,这
表示
腰曲
线
退化
为 一点

(即ii)可当展b 曲 0面时为,b锥(u面). 常 向 量 ,所有的直母线都互相平行,
即可展曲面为柱面.
(iii)当a
0,
b
并且b 1,
b
0时b,,(aa,//bb, b,这) 时0,,直a母 b线是0,导
直母线
柱面
锥面
(C )
导线
单叶双曲面
双曲抛物面
注 (1)直纹面上除了直母线之外,还可能有其它的直线.
如正螺面的轴.
(2)直纹面可能不只一族直母线. 如以上两个曲面.
本 书 只 限 于 讨 论 一 族 直母 线 中 的 直 线.

微分几何二四五章_课后习题答案_

微分几何二四五章_课后习题答案_

微分几何参考答案:P51页1. 求曲线r = { t t sin ,t t cos ,t t e } 在原点的密切平面、法平面、从切面、切线、主法线、副法线。

解 原点对应t=0 , 'r(0)={ t sin +t t cos ,t cos - t t sin ,t e +t t e 0}=t ={0,1,1},=)0(''r{2t cos + t t cos ,t cos - t t sin ,2t e +t t e 0}=t ={2,0,2} ,所以切线方程是110zy x == ,法面方程是 y + z = 0 ; 密切平面方程是202110zy x=0 ,即x+y-z=0 ,主法线的方程是⎩⎨⎧=+=-+00z y z y x 即112zy x =-= ;从切面方程是2x-y+z=0 ,副法线方程式111-==zy x 。

2.求以下曲面的曲率和挠率⑴ },sinh ,cosh {at t a t a r =,⑵ )0)}(3(,3),3({323a t t a at t t a r +-=。

解 ⑴},cosh ,sinh {'a t a t a r = ,}0,sinh ,cosh {''t a t a r = ,}0,cosh ,{sinh '''t t a r =,}1,cosh ,sinh {'''--=⨯t t a r r,所以t a t a t a r r r k 2323cosh 21)cosh 2(cosh 2|'||'''|==⨯= ta t a a r r r r r 22422cosh 21cosh 2)'''()''','','(==⨯=τ 。

⑵ }1,2,1{3'22t t t a r +-= ,}1,0,1{6'''},,1,{6''-=-=a r t t a r,'r ×''r =}1,2,1{18222+--t t t a ,22322223)1(31)1(2227)1(218|'||'''|+=++=⨯=t a t a t a r r r k22224232)1(31)1(2182618)'''()''','','(+=+⨯⨯⨯=⨯=t a t a a r r r r r τ 。

微分几何第二章曲面论第四节直纹面和可展曲面分解

微分几何第二章曲面论第四节直纹面和可展曲面分解

(1) F [ x, y, z , ( x, y, z )] 0 对于S上的点, 上式为恒等式. 其次在包络S上任取一条曲线 (C ):r r (t ), r x(t )e1 y(t )e2 z(t )e3 , 即
曲线(C )上点的坐标也应满足 (1)式, 必有恒等式: F [ x(t ), y(t ), z(t ), (t )] 0
消去参数而得 ( x, y, z ) 0. 证: 若曲面族{ S }存在包络S, 由包络的定义, , P S , 对P( x, y, z ) S, 即对包络S上每一个点对应于 的一个确定值, 因而为S上点的坐标( x, y, z )的函数 ( x, y, z ), 代入S的方程F ( x, y, z, ) 0得:
换言之, 对包络S上每一点 ( x, y, z ), 可以找到这样的值,
使得四个数x, y, z, 满足方程组(3). 从方程组(3) 消去 , 得方程 ( x , y, z ) 0.
{ S }的判别曲面 . 这个方程表示一个曲面 S , 叫做曲面族
(3)高斯曲率. 直纹面的参数方程为r a ( u) vb ( u) ru a(u) vb(u), rv b(u), ruu a vb, ruv b, rvv 0,
ru rv a b v(b b ) n ru rv EG F 2 a b v (b b ) L ruu n (a vb ) , 2 EG F a b v (b b ) ( b , a , b ) M ruv n b 2 EG F EG F 2 N rvv n 0 2 2 2 LN M ( b , a , b ) ( a , b , b ) K 0. , 即K 2 2 2 2 2 EG F ( EG F ) ( EG F )

微分几何知识点总结

微分几何知识点总结

微分几何知识点总结微分几何主要包括对曲线和曲面的研究,这些研究包括曲线和曲面的参数方程、切线、法线、曲率、曲率半径,包括封闭曲线、曲面的欧拉特性、高斯-博内定理等。

在微分几何中,有一些基本的概念和知识点是必须掌握的,下面我们来进行一些总结:1. 参数曲线在微分几何中,曲线是最基本的研究对象之一。

我们可以通过参数方程来描述曲线的形状。

设曲线上的点为P(x, y, z),则曲线在空间中的参数方程可以表示为:\[\begin{cases}x = x(t) \\y = y(t) \\z = z(t) \\\end{cases}\]其中t为参数,通过曲线上的点随参数的变化来描述曲线的形状。

参数曲线的切线方程为:\[\begin{cases}x = x(t_0) + x'(t_0)(t-t_0) \\y = y(t_0) + y'(t_0)(t-t_0) \\z = z(t_0) + z'(t_0)(t-t_0) \\\end{cases}\]其中\(t_0\)为给定的参数值,切线方程也叫做一次逼近线。

2. 曲率曲线的曲率描述了曲线的弯曲程度,曲率越大,曲线越弯曲。

在微分几何中,曲线在某一点处的曲率可以通过下列公式来计算:\[k= \frac{|r'(t)\times r''(t)|}{|r'(t)|^3}\]其中k为曲率,r(t)为参数方程,r'(t)为r(t)的导数,r''(t)为r(t)的二阶导数。

曲率的倒数称为曲率半径,曲率半径越小,曲线越弯曲。

3. 曲面的参数表示与曲线类似,我们也可以用参数方程来表示曲面。

设曲面上的点为P(x, y, z),则曲面在空间中的参数方程可以表示为:\[\begin{cases}x = x(u, v) \\y = y(u, v) \\z = z(u, v) \\\end{cases}\]其中u、v为参数,通过曲面上的点随参数的变化来描述曲面的形状。

微分几何第二章 (2)

微分几何第二章 (2)

2.1 平面曲线- b 的指向
由导数的定义我们可知 b 总是指向曲线弯 曲的那一侧.
a(s)
C
பைடு நூலகம்
α ( s s) α ( s ) β ( s) s
2.1 平面曲线-伏雷内公式
由 b 的定义有 a ∙ (s) = |a ∙(s)| b (s). 令 k(s) = |a ∙ (s)|,则有 a ∙ (s) = k (s)b (s). 我们把 k (s) 叫曲线 C 在 r(s) 处的曲率. 定理. (伏雷内公式)我们有 a ∙ = kb , b ∙ = – ka . 以上伏雷内公式叫平面曲线的基本公式.
2.1 平面曲线-曲率计算公式
定理. 设曲线 C: r(t) = (x(t), y(t)),则其曲 率为 | x(t ) y(t ) x(t ) y(t ) | k (t ) . 3/ 2
x(t ) 2 y(t ) 2
如果曲线方程为 y = y(x),取 x 为参数,则 曲线的参数表示为 r = (x, y(x)),其曲率为 | y | k ( x) . 3/ 2 1 ( y) 2 平面曲线为直线的充分必要条件是其曲率 为零.
练习题 1.求曲线 y = sinx 的曲率. 2.求曲线 x = acos3t, y = asin3t 的曲率.
2.1 平面曲线-标准伏雷内标架
前面我们定义了平面曲线上的伏雷内标架 [r(s) ; a (s), b (s)].但伏雷内标架不一定是平 面正标架(即它们关于平面上的标准基的分 量的行列式不一定为正数).但我们总可以 在曲线上选取一单位法向量 n(s),使 [r(s) ; a (s), n(s)] 构成正标架,这个标架叫平面曲 线的标准伏雷内标架.

微分几何第四版答案

微分几何第四版答案

微分几何第四版答案第一部分曲线与曲面的局部微分几何第一章欧氏空间1.1 向量空间1.2 欧氏空间第二章曲线的局部理论2.1 曲线的概念2.2 平面曲线2.3 E的曲线2.4 曲线论基本定理第三章曲面的局部理论3.1 曲面的概念3.2 曲面的第一基本形式3.3 曲面的第二基本形式3.4 法曲率与weingarten变换3.5 主曲率与Gauss曲率3.6 曲面的一些例子第四章标架与曲面论基本定理4.1 活动标架4.2 自然标架的运动方程4.3 曲面的结构方程4.4 曲面的存在惟一性定理4.5 正交活动标架4.6 曲面的结构方程(外微分法)第五章曲面的内蕴几何学5.1 曲面的等距变换5.2 曲面的协变微分5.3 测地曲率与测地线5.4 测地坐标系5.5 Gauss-Bonnet公式5.6 曲面的Laplace算子5.7 Riemann度量第二部分整体微分几何选讲第六章平面曲线的整体性质6.1 平面的闭曲线6.2 平面的凸曲线第七章曲面的若干整体性质7.1 曲面的整体描述7.2 整体的Gauss-Bonnet公式7.3 紧致曲面的Gauss映射7.4 凸曲面7.5 曲面的完备性第八章常Gauss曲率曲面8.1 常正Gauss曲率曲面8.2 常负Gauss曲率曲面与sine-Gordon方程8.3 Hilbert定理8.4 Backlund变换第九章常平均曲率曲面9.1 Hopf微分与Hopf定理9.2 Alexsandrov惟一性定理9.3 附录:常平均曲率环面第十章极小曲面10.1 极小图10.2 极小曲面的weierstrass表示10.3 极小曲面的Gauss映射10.4 面积的变分与稳定极小曲面索引。

微分几何第二章曲面论第四节直纹面和可展曲面讲课讲稿

微分几何第二章曲面论第四节直纹面和可展曲面讲课讲稿

(3)高 斯 曲 率.
直纹
面的

数 方 程

ra(u )vb(u )
ru a (u ) v b (u )r,v b(u),
ruu avb, ruvb, rvv 0,
nL M rrruruuuu vnrrn vv (a ba abv Eb G b)vE (ba FG v (2bF bb E ) 2bv G )(b F 2(b Eb),Ga ,bF,)2
直母线
柱面
锥面
(C )
导线
单叶双曲面
双曲抛物面
注 (1)直纹面上除之 了外 直, 母还 线可能直 有线 .其
如正螺面的轴 .
(2)直纹面可能不只直 一母 族线. 如以上两个曲面 .
本书只限于讨论一 母族 线直 中的直 . 线
2.参设 b(数u)是 表( 示过 C 导 ): 导a 线 (Ca )( 线 上 u )点a(u)
垂足M的极限位M置0
称为直母l上 线的腰.点a(uu)
腰点的轨迹称为腰曲线 .
注 腰曲线沿直纹面的狭窄
a(u)
M•0 M a(u)vb(u)
(C )
l
部位“围绕着”这直纹面.
方程 直设 则 纹M 导 面M 的线 (参C 数 )[ 的 a 方( 程u 方 为 程u ) 为 a r ( v a (a u ()v , u ) )b ( u vb (u )u ) [ a ( ] u ) v b ( u )
上式 a 除 ( b u 以 )2得 : b b v b v ( b b ) 0 ,
u u u u u u 当 假 ub 设 (u 0)时,0 上(对 式取b (极 于 u )限 0 得 的 a : b 情 vb 20 ,以 况 ,v后 是 ab)2b ,再 柱 故腰点的向径表达式为 : ra (u)a (u )b (u)b (u) 即腰曲线的方程 .

《微分几何》教学大纲

《微分几何》教学大纲

《微分几何》课程教学大纲课程名称:《微分几何》课程编码:074112303适用专业及层次:数学与应用数学(本科)课程总学时:72学时课程总学分:4一、课程的性质、目的与任务等。

1、微分几何简介及性质微分几何是高等院校数学和数学教育各专业主要专业课程之一,是运用微积分的理论研究空间的几何性质的数学分支学科。

古典微分几何研究三维空间中的曲线和曲面,而现代微分几何开始研究更一般的空间--流--形。

微分几何与拓扑学等其他数学分支有紧密的联系,对物理学的发展也有重要影响,爱因斯坦的广义相对论就以微分几何中的黎曼几何作为其重要的数学基础。

本课程的前导课程为解析几何、高等代数、数学分析和常微分方程。

2、教学目的:通过本课程的教学,使学生掌握三维欧氏空间中的曲线和曲面的局部微分理论和方法,分析和解决初等微分几何问题,并为进一步学习微分几何的近代内容打下良好的基础。

3、教学内容与任务:本课程主要应用向量分析的方法,研究一般曲线和曲面的局部理论,同时还采用了张量的符号讨论曲面论的基本定理和曲面的内蕴几何内容,并且讨论了属于整体微分几何的高斯崩尼(B公式。

重点让学生把握理解本教材的前二章。

二、教学内容、讲授大纲与各章的基本要求第一章曲线论教学要点:本章主要研究内容为向量分析,曲线的切线,法平面,曲线的弧长参数表示,空间曲线的基本三棱形,曲率和挠率的概念和计算,曲线论的基本公式和基本定理,从而对空间曲线在一点邻近的形状进行研究,同时对特殊曲线特别是一般螺线和贝特朗曲线进行研究。

通过本章的教学,使学生理解和熟记有关概念,掌握理论体系和思想方法,能够证明和计算有关问题教学时数:22学时。

教学内容:第一节向量函数1.1向量函数的极限1.2向量函数的连续性1.3向量函数的微商向量函数的泰勒()公式1.5向量函数的积分第二节曲线的概念2.1曲线的概念2.2光滑曲线、曲线的正常点2.3曲线的切线和法面2.4曲线的弧长、自然参数第三节空间曲线3.1空间曲线的密切平面3.2空间曲线的基本三棱形空间曲线的曲率、挠率和伏雷内公式3.4空间曲线在一点邻近的结构3.5空间曲线论的基本定理3.一6般螺线考核要求:i理解向量函数的极限、连续性、微商、泰勒(L公式和积分等概念,能推导和熟记有关公式,并能使用它们熟练地进行运算。

微分几何陈维桓第四章讲稿

微分几何陈维桓第四章讲稿

微分⼏何陈维桓第四章讲稿⽬录第四章曲⾯的第⼆基本形式 (50)§ 4.1 第⼆基本形式 (50)§ 4.2 法曲率 (52)§ 4.3 Weingarten映射和主曲率 (55)⼀、Gauss映射和W eingarten变换 (55)⼆、主曲率和主⽅向 (55)§ 4.4 主⽅向和主曲率的计算 (57)⼀、Gauss曲率和平均曲率 (57)⼆、Weingarten变换在⾃然基底下的矩阵 (59)三、第三基本形式 (61)§ 4.5 Dupin标形和曲⾯参数⽅程在⼀点的标准展开 (61)§ 4.6 某些特殊曲⾯ (64)⼀、Gauss曲率K为常数的旋转曲⾯ (65)⼆、旋转极⼩曲⾯ (66)第四章曲⾯的第⼆基本形式本章内容:第⼆基本形式,法曲率,Gauss 映射和Weingarten 变换,主⽅向与主曲率,Dupin 标形,某些特殊曲⾯计划学时:12学时,含习题课3学时. 难点:主⽅向与主曲率§ 4.1 第⼆基本形式设:(,)S r r u v = 为正则曲⾯,(,)n n u v = 是单位法向量. 向量函数(,)r u v的⼀阶微分为u v dr r du r dv =+,⼆阶微分为()222222u v u v uu uv vv d r d r du r dv r d u r d v r du r dudv r dv =+=++++ .由于0dr n ?= ,再微分⼀次,得2d r n dr dn ?=-? .定义⼆次微分式222II 2d r n dr dn Ldu Mdudv Ndv =?=-?=++ (1.6)称为曲⾯S 的第⼆基本形式(second fundamental form),其中uu u u L r n r n =?=-? ,uv u v v u M r n r n r n =?=-?=-?,vv v v N r n r n =?=-? (1.4-5) 称为曲⾯S 的第⼆类基本量.第⼆基本形式的⼏何意义:刻划了曲⾯偏离切平⾯的程度,也就是曲⾯的弯曲程度.由微分的形式不变性可知第⼆基本形式在保持定向的参数变换下是不变的,⽽在改变定向的参数变换下会相差⼀个符号. 但是,在参数变换下第⼆类基本量,,L M N ⼀般都会改变.第⼆基本形式与空间坐标系的选取⽆关. 对曲⾯:(,)S r r u v =作参数变换(,),(,)u u uv v v uv == (1.7) 在新的参数下,u u v u v r r r u u ??=+?? ,v u v u v r r r v v=+ .因此(,)(,)u v uv uv u vu v u v r r r r r r u v v u u v=-=. (1.10)当(,)0(,)u v uv ?>? 时,n n = ,从⽽ I I ,,I Id r d nd r d n =-=-=;当(,)0(,)u v uv ?n =- ,从⽽ II ,,II dr d n dr dn =-==- . 在保持定向的参数变换下,第⼆类基本量有和第⼀类基本量相同的变化规律. 事实上,记参数变换(1.7)的Jacobi 矩阵为u vu uu v vvJ =. 则()()(),,,u vu uu v vvdu dv dudv dudv J== ??. (1.14) 从⽽T II (,)(,)(,)II LM du L M dudu L M du dv du dv J J du dv MN dv M N dv dvMN ==== ?,即有T L M L M J J M N M N = ? ?. (1.13) 例求平⾯(,,0)r u v =和圆柱⾯()cos ,sin ,u u a ar a a v = 的第⼆基本形式. 解. (1) 对平⾯,(1,0,0)(0,1,0)dr du dv =+ ,20d r =,所以II 0=.(2) 对圆柱⾯,()sin ,cos ,0u uu a a r =- ,()0,0,1v r = ,()cos ,sin ,0u u u v a a n r r =?= . 因此 ()11sin ,cos ,0u u u a a a a dn du r du =-= , ()()211 II u v u a a dr dn r du r dv r du du =-?=-+?=- . □定理1.1 正则曲⾯S 是平⾯(或平⾯的⼀部分),当且仅当S 的第⼆基本形式II 0≡. 证明 “?”平⾯S 的单位法向量n是常向量,故II 0dr dn =-?=. “?” 由0u n n ?= ,0u u n r L ?=-= ,0u v n r M ?=-= 得0u n = . 同理有0v n =. 所以0n n =是常向量. 于是0()0dr n d r n ?=?=. 故0r n C ?=. □定理 1.2正则曲⾯S 是球⾯(或球⾯的⼀部分),当且仅当S 的第⼆基本形式是第⼀基本形式的⾮零倍数:II I λ≡,其中(,)u v λλ=是⾮零函数.证明 “?”不妨设球⼼为原点,半径为a . 则22r a = ,0r dr ?= ,1an r =. 从⽽211II I aadr dn dr =-?=-=-.“?”由条件,L E λ=,M F λ=,N G λ=(因为,du dv 是独⽴的变量). 所以()0u u u n r r L E λλ+?=-+= ,()0u u v n r r M F λλ+?=-+=.⼜()0u u n r n λ+?=. 故u u n r λ=-. (1) 同理有v v n r λ=-. (2)因为S 是三次以上连续可微的,uv vu n n =. 于是v u uv uv vu u v vu r r n n r r λλλλ--===--,即有v u u v r r λλ=. 由于,u v r r线性⽆关,0,0u v λλ==. 故λ是⾮零常数. 由(1)和(2)得()0u n r λ+= ,()0v n r λ+=.所以110()n r n r r λλλ+=+=是常向量. 从⽽S 上的点满⾜球⾯⽅程2210()r r λ-= . □课外作业:习题1(1,4,5),2(3),3,6§ 4.2 法曲率设:(),()C u u s v v s ==是曲⾯:(,)S r r u v =上过点p 的⼀条正则曲线,s 是C 的弧长参数,00(,)((0),(0))u v u v =为p 点的曲纹坐标. 则C 的单位切向量为du dvu v ds ds dr ds r r r α===+ . (2.3) 根据Frenet 公式,C 的曲率向量22222222()2()d r d u d vdu du dv dv u vuu uv vv ds ds ds ds dsds dsr r r r r κβα===++++ , (2.4) 其中κ是C 的曲率. 设n 为S 的单位法向量,(,)n θβ=∠,则cos n θβ=? .定义函数000000(,,,):(0)cos (0)(0)(,)(0)(,)n n u v du dv n u v r n u v κκκθκβ===?=?(2.6)22000000(,)()2(,)(,)()du du dvdv ds ds ds dsL u v M u v N u v =++ (2.5) 称为曲⾯S 在p 点沿着切⽅向(,)du dv (即d r)的法曲率(normal curvature).注曲⾯上所有在p 点相切的曲线在p 点有相同的法曲率,并且在p 点这些曲线的曲率中⼼位于垂直于切⽅向的平⾯(C 的法平⾯∏)内的⼀个直径为1/||n κ的圆周上:曲率中⼼为11((0),(0))(0)((0),(0))cos (0)(0)nc r u v r u v βθβκκ=+=+.沿着曲线C ,有dr rds= . 由于s 是弧长参数,因此在p 点成⽴ 22200000(,)2(,)(,)d s d r d r E u v d u F u v d u d v G u vd v=?=++.定义2.1 在曲⾯S 上对应于参数(,)u v 的点p 处,沿着切⽅向(,)du dv 的法曲率为22222II (,,,)2In n Ldu M dudv Ndv u v du dv Edu Fdudv G dvκκ++===++. (2.8)注法曲率除了与点p 有关,还与切⽅向即⽐值:du dv 有关. 但是与切向量d r的⼤⼩⽆关. 上⾯的定义不要求以d r为切向量的曲线C 以弧长s 为参数.定义曲⾯S 上过p 点的⼀个切⽅向(,)d u d v 与p 点的法线确定的平⾯π称为由切⽅向(,)du dv 确定的法截⾯. 法截⾯π与曲⾯S 的交线称为该点的⼀条法截线.定理2.1 曲⾯S 在(,)u v 点,沿切⽅向(,)du dv 的法曲率n κ等于该切⽅向确定的法截线C 在相应的有向法截⾯π(以d r n ?为平⾯π的定向)中的相对曲率,即有n r κκ=.证明设该点是000(,)r r u v =,沿切⽅向(,)du dv 的单位切向量为000(,)()|u v uv r du r dv α=+,在00(,)u v 点的单位法向量为000(,)n n u v =. 则法截⾯的定向是00n α?,从⽽法截线C 的弧长参数⽅程为000()()()r s r x s y s n α=++,其中(0)(0)0x y ==. 因为00(0)(0)(0)r x y n α=+ 是S 的切向量,0(0)(0)0y r n =?= . 从⽽(0)1x = . 因此0(0)r α= 是由(,)du dv 确定的切⽅向. 由定义,沿切⽅向(,)du dv 的法曲率 0000(0)[(0)(0)](0)n r n x y n n y κα=?=+?=.另⼀⽅⾯,法截线C 在该点的相对曲率(0)(0)(0)(0)(0)r x y x y y κ=-= . 所以有n r κκ=. □例 (1) 平⾯的法曲率.在平⾯S 上,II 0≡. 所以在任意点p S ∈,沿任意切⽅向(,)du dv ,都有法曲率0n κ=.(2) 圆柱⾯()cos ,sin ,u u a ar a a v =的法曲率. 对圆柱⾯,由上⼀节的例,22I du dv =+,21II adu =-,所以222()dun a du dv κ+=-.(3) 球⾯()2():cos cos ,cos sin ,sin S a r a u v a u v a u = 的法曲率.由定理1.2,1II I a =-. 所以1n aκ=-是⾮零常数. □定理2.2 在曲⾯S 上任意⼀点p 处,法曲率必定在两个彼此正交的切⽅向上分别取到最⼤值和最⼩值.证明在固定点p ,,,,,,E F G L M N 都是常数,法曲率n κ仅与⽐值:du dv 有关. 取p 点邻近的正交参数⽹. 则任意单位切向量p dr T S ∈,可以写成12cos sin u v dr r du r dv e e θθ=+=+,其中12,u v e e ==,1(,)dr e θ=∠即,du dv θθ==.沿着切⽅向:du dv 的法曲率22()cos sin sinn n L N E G κκθθθθθ==++ ()θ∈R是R 上的连续可微周期函数,必定在闭区间[0,2]π上取到最⼤值和最⼩值.如果n κ是常值函数,则n κ在任意两个彼此正交的切⽅向上分别取到最⼤值和最⼩值. 设()n κθ不是常值函数,则它的最⼤值和最⼩值不相等. 通过对曲⾯作参数变换00cos sin u uv θθ=- ,00sin cos v u v θθ=+ ,不妨设在0θ=处()n κθ取到最⼤值(0)/n L E κ=. 由于()sin 22nN L G E κθθθ??'=-+ ?,(0)0n κ'==,并且/(/2)(0)/n n N G L E κπκ=≤=,有222()cos sin cos n L N NL N N E GG E G G κθθθθ??=+=+-≥ ?. 所以()n κθ在/2θπ=±处取到最⼩值/N G . □定义2.2在曲⾯S 上⼀个固定点p 处,法曲率取最⼤值和最⼩值的切⽅向称为曲⾯S 在该点的主⽅向(principal direction),相应的法曲率称为S 在该点的主曲率(principal curvature).注由上⾯的推导过程可知,如果在p 点n κ不是常值函数,()()sin 2NL nGEκθθ'=-在闭区间[0,2]π上只有4个零点,所以在p 点n κ只有两个主曲率1/L E κ=,2/N G κ=. 于是有下⾯的Euler 公式:2212()cos sin n κθκθκθ=+,其中(,)u dr r θ=∠,12κκ>,并且12()n κκθκ≥≥.定义 2.3 (1) 在曲⾯S 上⼀点,使法曲率为零的切⽅向(,)du dv 称为该点的⼀个渐近⽅向(asymptotic direction).(2) 设C 是曲⾯S 上的⼀条曲线. 若C 上每⼀点的切向量都是曲⾯在该点的渐近⽅向,则称C 是曲⾯S 上的⼀条渐近曲线(asymptotic curve).在⼀点(,)u v 处,渐近⽅向(,)du dv 是⼆次⽅程 2220Ldu Mdudv Ndv ++= (2.5) 的解. 当20LN M-<时,有两个实渐近⽅向::du dv M L N M =-±=-当20LN M -=时,只有⼀个实渐近⽅向:::du dv M L N M =-=-;当20LN M ->时,没有实渐近⽅向.让(,)u v 变动,则(2.5)就是渐近曲线的微分⽅程. 如果在曲⾯上每⼀点,20LN M -<,则曲⾯上存在两个处处线性⽆关的渐近⽅向向量场. 根据第三章定理4.1,在曲⾯上有由渐近曲线构成的参数曲线⽹,称为渐近线⽹.定理2.3 参数曲线⽹是渐近线⽹的充分必要条件是:0L N ==.证明 “?” 在u -曲线上0,0dv du =≠. 由(2.5)得0L =. 同理可得0N =. “?” (2.5)现在成为0M dudv =. 因此u -曲线和v -曲线都是渐近曲线. □定理 2.4 设C 是曲⾯S 上的⼀条曲线. 则C 是渐近线,当且仅当C 是直线,或C 的密切平⾯与曲⾯的切平⾯重合.证明由公式cos (,)n n κκβ=∠可得. □课外作业:习题1,4,7.§ 4.3 Weingarten 映射和主曲率⼀、Gauss 映射和W eingarten 变换设:(,)S r r u v = (2(,)u v ∈Ω? )是⼀个正则曲⾯,(,)n n u v =是它的单位法向量. 向量函数(,)n u v 定义了⼀个映射2::(,)(,)n S u v n u v Ω→,其中2S 是3E 中的单位球⾯. 因为空间3E 中的点与它的位置向量是⼀⼀对应的,映射n诱导了映射12::(,)((,))(,)g n r S S r u v g r u v n u v -=→= . (3.1)这个映射2:g S S →称为Gauss 映射. 注意Gauss 映射的象不⼀定是2S 的⼀个区域.Gauss 映射g 的切映射2():p g p g T S T S *→是⼀个线性映射,满⾜()g dr dn *=,即 ()u v u v g r du r du n du n dv *+=+,p dr T S ?∈,p S ?∈. (3.2)特别有()u u g r n *= ,()v v g r n *=. (3.4)因为(,)n u v同时也是2()g p T S 的法向量,S 在(,)p u v 点的切平⾯与2S 在()g p 点的切平⾯是平⾏的,从⽽在⾃由向量的意义下可将2()g p T S 与p T S 等同.定义线性映射2():p p g p W g T S T S T S *=-→≡称为曲⾯S 在p 点的Weingarten 变换(Weingarten transformation).事实上,因为0u v n n n n ?=?= ,所以,u u p n n T S ∈. 由定义可知, ()()()u v uv p W d r W r d u r d v d n n d un d v T S =+=-=-+∈,p dr T S ?∈. (3.5)⼆、主曲率和主⽅向定理3.1 II ()W dr dr =?. □定理3.2 相对于切空间的内积,Weingarten 变换:p p W T S T S →是⾃共轭(对称)的,即()()W dr r dr W r δδ?=?,,p dr r T S δ?∈ .证明 ()()()u v u v W dr r dn r n du n dv r u r v δδδδ?=-?=-+?+L d u u M d u v M d v u N dδδδδ=+++ ()()()(u v uvr d u r d v n u n v d r n d r W r δδδδ=-+?+=?-=?. □根据线性变换理论,Weingarten 变换W 的2个特征值12,λλ都是实的(这2个特征值可能相等). 设12,p X X T S ∈分别是从属于它们的特征向量,即111()W X X λ= ,222()W X X λ= . 当12λλ≠时,12,X X所确定的切⽅向:du dv 和:u v δδ是唯⼀的,且相互正交. 当12λλ=时,p T S 中的任何⾮零向量都是特征向量. 因此仍然有两个相互正交的特征⽅向.定理3.3在曲⾯S 上任意⼀点p 处,W 的2个特征值12,λλ正好是曲⾯S 在p 点的主曲率,对应的特征⽅向是曲⾯S 在p 点的主⽅向.证明取p T S 的由W 的特征向量构成的单位正交基{}12,e e,使得111()W e e λ= ,222()W e e λ=, (3.12)并设12λλ≥.对任意⼀个单位切向量p e T S ∈,可设 12cos sin e e e θθ=+. (3.13)则有121122()cos ()sin ()cos sin W e W e W e e e θθλθλθ=+=+. (3.14)于是沿切⽅向e的法曲率为2211221212II ()()I (cos sin )(cos sin )cos sin .n n W e ee ee e e e κκθλθλθθθλθλθ?===?=+?+=+由12λλ≥可知2222121121()cos ()()sin n λλλλθκθλλλθλ≤+-==--≤,并且()n κθ在0θ=时取最⼤值1λ,在/2θπ=时取最⼩值2λ. 所以12,λλ就是曲⾯S 在p 点的主曲率12,κκ,相应的切⽅向12,e e就是主⽅向. □注1 由定理可知沿特征⽅向:du dv 的法曲率n κ就是对应于特征向量d r的特征值:II()()I nW dr dr dr drdr dr dr dr λκλ??====?? . 注2 曲⾯S 在每⼀点p 有2个主曲率12,κκ. 当12κκ≠时,只有2个主⽅向,它们相互正交. 此时可取2个单位特征向量12,e e. 当12κκ=时,任何⽅向都是主⽅向. 此时可任取2个正交的单位特征向量12,e e.定理3.4(Euler 公式) 设{}12,e e是p 点的2个正交的单位特征向量,对应的主曲率为12,κκ.则对任意单位切向量12cos sin p X e e T S θθ=+∈,沿着X ⽅向的法曲率为2212()cos sin n κθκθκθ=+. (3.15)在曲⾯S 上⼀点p 处,如果12κκλ==,则由Euler 公式可知沿任何切⽅向:du dv ,都有II In κλ==, (3.16)即II I λ=. 这样的点称为脐点(umbilical point). 此时在该点有:::L E M F N G λ===. (3.17)当0λ=时,该点称为平点(planar point);当0λ≠时,该点称为圆点(circle point).定理1.1和定理1.2的推论曲⾯S 是平⾯(或其⼀部分),当且仅当S 上的点都是平点;曲⾯S 是球⾯(或其⼀部分),当且仅当S 上的点都是圆点.定义3.1 设C 是曲⾯S 上的⼀条曲线. 若C 上每⼀点的切向量都是曲⾯在该点的主⽅向,则称C 是曲⾯S 上的⼀条曲率线(curvature line).定理 3.5(Rodriques 定理) 曲⾯:(,)S r r u v =上⼀条正则曲线:(),()C u u t v v t ==是曲率线的充分必要条件是:沿着曲线C ,()//()dn t dr t ,即((),())//((),())dn u t v t dr u t v t. 证明. 由定义,C 是曲率线,当且仅当对所有的t ,()dr t是Weingarten 变换的特征向量,即()()()()W dr t t dr t λ= ,也就是()()()()()dn t W dr t t dr t λ=-=-. □定理3.6 曲⾯S 上⼀条曲线C 是曲率线的充分必要条件是:曲⾯S 的沿着曲线C 的法线构成可展曲⾯.证明. 对曲⾯S 上任意⼀条曲线C ,曲⾯S 的沿着曲线C 的法线构成直纹⾯1:(,)((),())((),())S X X s t r u s v s t n u s v s ==+,其中s 是C 的弧长参数. 由于()()r s s α= 和()n s 是相互正交的单位向量,从⽽是线性⽆关的.1S 是可展曲⾯?()(),(),()0s n s n s α'≡()()()()(n s s s s n s λαµ'=+. 上式两边与()n t作内积可得()0s µ=,从⽽上式等价于 ()()()n s s s λα'=,这正好是曲线C 是曲率线的充分必要条件. □例3.1 求旋转⾯上的曲率线.解设旋转⾯的⽅程为()(,)()cos ,()sin ,()r u v f v u f v u g v =. 其中()0f v >,并且v 是经线的弧长参数,221f g ''+=. 则()sin ,cos ,0u r f u u =- ,()cos ,sin ,v r f u f u g '''=, ()cos ,sin ,u v r r f g u g u f '''?=- ,()cos ,sin ,n g u g u f '''=-. 由于()sin ,cos ,0u n g u u '=- ,()cos ,sin ,v n g u g u f ''''''=-,并且0f fg g ''''''+=,有0v v n r ?= ,0v v n r ?=. 所以u -曲线(纬线圆)和v -曲线(经线)都是曲率线. 当0g '=时,这个旋转⾯是平⾯,任何曲线都是曲率线. 当0g '≠时,1 g g f f -''''''=-. 如果f g f g a ''''''-=是常数,即经线是圆弧,则旋转⾯是球⾯.此时任何曲线都是曲率线. □例3.2 求可展曲⾯上的曲率线.解设可展曲⾯⽅程为(,)()()r u v a u vl u =+ . 已经知道它的单位法向量()n n u =与v ⽆关,沿着v -曲线(直母线)有0//v v n r =. 所以v -曲线是它的⼀族曲率线. 于是v -曲线的正交轨线是它的另⼀族曲率线. 如果可展曲⾯是平⾯,任何曲线都是曲率线. □课外作业:习题1,4,5§ 4.4 主⽅向和主曲率的计算⼀、Gauss 曲率和平均曲率设曲⾯S 的参数⽅程为(,)r r u v =,,,E F G 和,,L M N 分别是S 的第⼀、第⼆类基本量. 引理设λ是(,)p u v 点的主曲率,则λ满⾜0L E M F M FN Gλλλλ--=--, (4.4)即λ是⼆次⽅程222()(2)()0EG F LG M F NE LN M λλ---++-=的根,也就是⽅程220H K λλ-+= (4.8)的根,其中222()LG M F NEH EG F -+=-,22LN MK EG F -=-,分别称为曲⾯S 的平均曲率(或中曲率)(mean curvature)和Gauss 曲率(或总曲率)(Gaussian curvature). 换句话说,H λ= (4.9)证明. 设:du dv 是对应的主⽅向. 则有()W dr dr λ=,即()()u v u u n du n dv r du r dv λ-+=+.分别⽤,u v r r与上式两边作内积,得()Ldu M dv Edu Fdv λ+=+,()M du Ndv Fdu Gdv λ+=+.所以主⽅向:du dv 满⾜ ()()0,()()0.L E d u M F d v M F d uN G d v λλλλ-+-=??-+-=? (4.3)由于,du dv 不全为零,可得(4.4)式. □设12,κκ是(,)p u v 点的两个主曲率. 由根与系数的关系可得12222L G M F N EH E G Fκκ-++==-,2122LN M K EG Fκκ-==-. (4.6-7)因此1H κ=+,2H κ=-(4.9)p 点是脐点的充分必要条件是在p 点成⽴20H K ==.注⽅程(4.4)即(4.8)是Weingarten 变换的特征⽅程,在保持定向的参数变换下保持不变. 事实上,主曲率在保持定向的参数变换下不变,在反转定向的参数变换下相差⼀个符号. 因此平均曲率12()/2H κκ=+在保持定向的参数变换下不变,在反转定向的参数变换下相差⼀个符号. ⽽Gauss 曲率12K κκ=在参数变换下保持不变.定理4.1 假定曲⾯S 是3r ≥次连续可微的. 则主曲率函数12,κκ是连续的,且在⾮脐点邻近是2r -次连续可微的. □在脐点,20K H=≥,12H κκ==. 从⽽由II I H =可知L H E =,M HF =,N H G =,(4.3)中的两个⽅程成为恒等式. 此时,任何⽅向都是主⽅向.在⾮脐点,分别⽤1λκ=和2λκ=代⼊(4.3),得到相应的主⽅向1111:():()():()d u d vM F L E N G M F κκκκ=---=--- (4.10) 和2222:():()():()u v M F L E N G M F δδκκκκ=---=---. (4.11)将(4.3)改写成()()0,()()0.L d u M d v E d u F d v M d u N d v F d uG d v λλ+-+=??+-+=? (4.12)由于1,λ-不全为零,有 0Ldu M dv E du F dv M du N dv F du G dv++=++, (4.14)即22()()()0FL EM du G L EN dudv G M FN dv -+-+-=. (4.15) 上式可写成220dv dudv du E F G LMN-=. (4.16)(4.14)或(4.15)或(4.16)就是曲⾯上曲率线的微分⽅程.定理4.2 设p 是曲⾯:(,)S r r u v =上⼀个固定点,它的曲纹坐标为00(,)u v . 则在该点参数曲线的切⽅向是相互正交的主⽅向,当且仅当在该点有00(,)0F u v =,00(,)0M u v =. 此时,曲⾯S 在该点的两个主曲率分别为00100(,)(,)L u v E u v κ=,00200(,)(,)N u v G u v κ=.证明必要性. 在00(,)p u v 点,u -曲线和v -曲线相互正交,故000000(,)(,)(,)0u v F u vr u v r u v =?=. (1) ⼜00(,)u r u v ,00(,)v r u v是W 的特征向量,故()0000100(,)(,)(,)u u un u v W r u v r u v κ-==, ()0000200(,)(,)(,)v v vn u v W r u v r u v κ-==. 分别⽤,u v r r与上⾯两式作内积得00(,)0M u v =,并且00100(,)(,)L u v E u v κ=,00200(,)(,)N u v G u v κ=. (4.17)充分性. 由条件,0000(,)(,)0u v r u v r u v ?= ,即00(,)u r u v ,00(,)v r u v相互正交. ⼜00000000(,)(,)(,)(,)0u v v u n u v r u v n u v r u v ?=?=.因此()000000(,)(,)//(,)u u u n u v W r u v r u v -= ,()000000(,)(,)//(,)v v vn u v W r u v r u v -=,即00(,)u r u v ,00(,)v r u v是W 的特征向量. □下⾯的两个定理是定理4.2的直接推论.定理4.3 参数曲线⽹是正交的曲率线⽹的充分必要条件是0F M ==,此时222212I ,II Edu G dv Edu G dv κκ=+=+. (4.18) 定理4.4 在⾮脐点,定理4.3中的参数曲线⽹局部总是存在的. □注若曲⾯S 上没有脐点,则可取正交的曲率线⽹作为参数曲线⽹. 事实上,此时由(4.10)和(4.11)可确定两个相互正交的主⽅向:du dv 和:u v δδ. 从⽽有两个相互正交的⾮零向量场u v dr r du r dv =+ 和u v r r u r v δδδ=+,它们是连续可微的. 根据第三章定理4.1,这样的参数曲线⽹是存在的.若曲⾯S 上的点都是脐点,则曲⾯上任意曲线都是曲率线,此时任何正交参数曲线⽹都是曲率线⽹. 但是在孤⽴脐点邻近,未必有正交的曲率线⽹作为参数曲线⽹.⼆、W eingarten 变换在⾃然基底下的矩阵我们知道{},u v r r是切空间p T S 的基,称为p T S 的⾃然基. 在这组基下,设Weingarten 变换的矩阵为11211222a a A a a ??=,即()()()11211222,(),(),u v u v u v a a n n W r W r r r a a ??--==, (4.19) 也就是11122122(),().u u u v v v u v n W r a r a r n W r a r a r -==+??-==+? 分别⽤,u v r r与上⾯⼆式作内积得11211222a a L M E F a a MN FG ??= ? ? ???. 因此11121212221a aE F LM G F LM A a a F G MN FE MN EG F --===--21G L F M G M F NE MF L E NF ME GF --??=---. (4.21) 代⼊(4.19)得()()1,,u v u v E F L M W r r r r F G MN -=()21,u v G L FM G M FN r r EM FL EN FM EG F --?=---. (4.22)我们知道Weingarten 变换W 的特征多项式 ()10()d e t 0EF L M f I A FG M N λλλλ-=-=- ?121E F E L F M E L F MF GF MG NF MG NEG F λλλλλλλλ-----==-----.其中I 是单位矩阵. W 的特征值12,κκ是特征多项式()f λ的根,与基的取法⽆关,从⽽Gauss 曲率2122det LN M K A EG Fκκ-===-和平均曲率12212trace 222()LG M F NE H A EG F κκ+-+===-与参数取法⽆关,是曲⾯的⼏何不变量.Gauss 曲率K 的⼏何意义:从(4.19)可得1112212211221221()()()u v u v u v u v u v n n a r a r a r a r a a a a r r K r r ?=+?+=-?=? .因此曲⾯S 上⼀个区域D 在Gauss 映射g 下的像()g D 的⾯积元素 0||||||||u v u v d n n dudv K r r dudv K d σσ=?=?= . (4.23)所以()g D 的⾯积()0()||()g D DA d K d g D σσ==.根据积分中值定理,存在pD ∈使得 ()|()|||()()()DA K pd K p A D g D σ==? .让区域D 收缩到⼀点p D ∈,取极限得到(())|()|lim()D pA g D K p A D →=. (4.25)这个公式是曲线论中||()limlim||s s s s sθθκ?→?→??==??的⼀个推⼴,其中θ?是曲线上⼀段由s 到s ?的弧在切线像α下的弧长.三、第三基本形式定义设(,)n u v 是曲⾯:(,)S r r u v =的单位法向量. ⼆次微分式22III 2dn dn e du f dudv g dv =?=++ (4.27)称为曲⾯S 的第三基本形式,其中()()22,,u u v v e n f n n g n ==?= . (4.28)注利⽤Gauss 映射,第三基本形式0III I g *=,其中0I 是单位球⾯2S 的第⼀基本形式. 定理4.5 曲⾯:(,)S r r u v =上的三个基本形式满⾜III 2II I 0H K -+=. 证明因为Weingarten 变换W 的特征多项式为2()2f H K λλλ=-+,所以 220W H W K I -+=.其中::p pI T S T S X X →是单位变换. 于是有 ()()()()()2()()()(2)()22.u u u u u u u uu u u e n n W r W r W r r H W K I r r H n K r r H L K E =?=?=?=-?=--?=-同理可得2u v f n n HM KF =?=- ,2u v g n n HN KG =?=-课外作业:习题2,4,6§ 4.5 Dupin 标形和曲⾯参数⽅程在⼀点的标准展开设(,)p u v 是曲⾯:(,)S r r u v = 上⼀个固定点,12,e e是p 点的两个相互正交的单位主向量 (即Weingarten 变换的特征向量),对应的主曲率为12,κκ. 对单位切向量12cos sin e e e θθ=+([0,2]θπ∈),沿该⽅向的法曲率为2212()cos sin n κθκθκθ=+. 当()0n κθ≠时,在p 点的切平⾯π中取⼀点q 使得)1211cos sin pq e e θθ==+. (5.3)p 点切平⾯π中这样的点q 的轨迹称为曲⾯S 在p 点的Dupin 标形(或标线indicatrix ).在平⾯π中取直⾓标架{}12;,p e e, 现在来导出Dupin 标线的⽅程.设轨迹上的点q 在此坐标系中的坐标为(,)x y . 则)1212cos sin xe ye pq e e θθ+==+.因此1x θ=,1y θ=. (5.4)由Euler 公式得到2212sgn(())n x y κκκθ+=. (5.5)这就是Dupin 标线的直⾓坐标⽅程,它是平⾯π中的⼆次曲线. 如果在平⾯π中取极坐标系,那么Dupin 标线的极坐标⽅程可由(5.3)⽴即得到:()ρρθ==当p 点的Gauss 曲率120K κκ=>时,()n κθ,1κ,2κ同号,Dupin 标线(5.5)是⼀个椭圆2212||||1x y κκ+=. (5.6) 当120K κκ=<时,1κ,2κ异号,Dupin 标线(5.5)是两对共轭双曲线2212||||1x y κκ-=±. (5.7)它们的公共渐近线的⽅向正是曲⾯S 在p 点的渐近⽅向00:cos :sin du dv θθ=.当120K κκ==时,若1κ,2κ不全为零,Dupin 标线(5.5)是两条平⾏直线x =±(20κ=) 或y =±(10κ=). (5.8)当p 点为平点,即120κκ==时,Dupin 标线不存在.定义. 设p S ∈,若()0K p >,则称p 点为曲⾯S 上的椭圆点;若()0K p <,则称p 点为曲⾯S 上的双曲点;若()0K p =,则称p 点为曲⾯S 上的抛物点.下⾯考察曲⾯S 在⼀点p 邻近的形状. 在p 点邻近取正交参数曲线⽹(,)u v ,使得p 点对应的参数为(0,0),且(0,0)u r,(0,0)v r是p 点的两个单位主向量. 则(0,0)(0,0)(0,0)u v n r r =?,且在p 点有(0,0)(0,0)E G ==,(0,0)(0,0)0F M ==,1(0,0)L κ=,2(0,0)N κ=. (5.9)以标架{}123;(0,0),(0,0),(0,0)u v p e r e r e n === 建⽴3E 的坐标系. 根据Taylor 公式,(,)(0,0)(0,0)(0uvr u v r r u r v =++22212(0,0)2(0,0)(0,0)()u u u v v v r u r u v r v o ρ??+ +++?, (5.10)其中ρ=. 由于(0,0)0r p p == ,31(0,0)(0,0)uu r e L κ?==, 3(0,0)(0,0)0uv r e M ?==,32(0,0)(0,0)vv r e N κ?==, (5.11)(5.10)可化为()()()2221121232(,)()()()r u v u o e v o e u v oe ρρκκρ=++++++. (5.12)(5.12)称为曲⾯S 在p 点的标准展开.当ρ=我们得到S 的近似曲⾯S *,在标架{}123;,,p e e e 下,S *的参数⽅程为()221122(,),,()r u v u v u v κκ*=+ ,显式⽅程为 221122()z x y κκ=+. (5.14)直接计算可知近似曲⾯S *与原曲⾯S 在p 点相切(即它们的切平⾯相同). 并且沿着p 点切空间的任何相同的切⽅向,两者有相同的法曲率,即在p 点具有公共切⽅向的法截线有相同的曲率和相同的弯曲⽅向.在椭圆点p ,近似曲⾯S *是椭圆抛物⾯. S *在p 点是凸的.在双曲点p ,S *是双曲抛物⾯. S *在p 点不是凸的,且p 点的切平⾯与S *相交成两条直线,它们是S *上过p 点的两条渐近曲线.在⾮平点的抛物点p ,S *是抛物柱⾯,p 点的切平⾯与S *相交成⼀条直线,是S *上过p 点的渐近曲线.在平点p ,S *是平⾯. 此时,要考察曲⾯S 的近似形状,需要将Taylor 展式(5.10)展开到更⾼阶的项. 见例5.2.⽤平⾯12z =±去截近似曲⾯S *,再投影到p 点的切平⾯上,就得到p 点的Dupin 标线.例5.1 考察圆环⾯()(cos )cos ,(cos )sin ,sin r a r u v a r u v r u =++,2(,)u v ∈R上各种类型点的分布,其中常数,a r 满⾜0a r >>.解 ()sin cos ,sin sin ,cos u r r u v u v u =-- ,()(cos )sin ,cos ,0v r a r u v v =+-, ()(cos )cos cos ,cos sin ,sin u v r r r a r u u v u v u ?=-+ ,()cos cos ,cos sin ,sin n u v u v u =-.()1sin cos ,sin sin ,cos u u n u v u v u r r =-=- ,()cos cos sin ,cos ,0cos v v u n u v v r a r u=-=-+.所以两个主曲率为121cos ,cos u r a r uκκ=-=-+.Gauss 曲率和平均曲率分别为其中0a ≥. 它的母线是xO z 平⾯上的曲线:()z f x =. 则由()cos ,sin ,()u r v v f u '= ,()sin ,cos ,0v r u v u v =-.)()cos ,()sin ,1n f u v f u v ''=-- ,()0,0,()uu r f u ''= ,()sin ,cos ,0uv r v v =-,()cos ,sin ,0vv r u v u v =--.可得()21E f '=+,0F =,2G u =, (6.2)L ''=,0M =,N '=. (6.3)因此参数曲线⽹是正交的曲率线⽹. 由定理4.2,主曲率为()13/221L f E f κ''=='+, ()21/221N f Gu f κ'=='+.于是Gauss 曲率和平均曲率分别为 ()221f f K u f '''='+, ()23/22(1)21f f uf H u f ''''++='+. (6.4)⼀、Gauss 曲率K 为常数的旋转曲⾯如果K 是常数,则函数()f u 应满⾜()2211K u f ''=-??'+??. (6.5) 积分得到2211C K u f =-'+, (6.6)其中C 为积分常数. 即有2221C Ku f C Ku-+'=-.于是()f u =±?. (6.7)1.若0K =,则()f u Au B =+,其中A =,B 为积分常数. 当0A =时,S 是平⾯;当0A ≠时,S 是圆锥⾯. 另⼀个0K =的旋转曲⾯是圆柱⾯()cos ,sin ,r a v a v u =,它不能写成(6.1)的形式.2.若0K >,令21a K =(0a >). 则由(6.6)可知0C >. 设2C b =(0b >). (6.7)化为()f u =±?. (6.9)若21b =,则()f u c =±=+?. (6.10)于是S 是由xO z 平⾯上的半圆弧222()x z c a +-=(0x u =>)绕z 轴旋转⽽成的球⾯.当21b >或201b <<时,由(6.9)定义的函数()f u 仍然存在,但旋转曲⾯S 不是球⾯,虽然S 的Gauss 曲率也是常数21a K =.3.若0K <,令21aK =-(0a >).则由(6.6)可知1C <.设21C b =-(0b >). (6.7)可化为()f u =±?. (6.11)若21b =,则[]()ln(sec tan )sin f u a c u=±=±+-+?,其中arccosu a=. 不妨设积分常数0c =. 则旋转曲⾯S 的母线是xO z 平⾯上的两条曳物线[]c o s ,l n (s ec t a n )s i n .x u az a ==??=±+-? (6.13)其中0z >的⼀⽀绕z 轴旋转⽽得的旋转曲⾯S 称为伪球⾯,它的参数⽅程为[]()c o s c o s ,c o s s i n ,l n (s e c t a n )s i n r a a a ?θ?θ=+-, (,)(0,/2)(0,?θππ∈?. (6.14)当21b >或201b <<时,由(6.11)定义的函数()f u 给出Gauss 曲率为负常数的旋转曲⾯的其他例⼦.⼆、旋转极⼩曲⾯平均曲率0H ≡的曲⾯称为极⼩曲⾯. 现在我们来研究有哪些旋转极⼩曲⾯. 由(6.4)可知函数()f u 应满⾜2(1)0f f uf ''''++=. (6.16)也就是()211f uf f ''=-''+.则()()222222ln()ln(1)2ln 1f f f f u uf f '''''''??-+==-=-??'+.积分得2221f Cf u'='+, (6.17)其中积分常数0C ≥.如果0C =,则()f u A =是常数,从⽽S 是平⾯z A =.如果2C a =,0a >. 则22211u C f u-='+,即f '=±故(()ln f u a u c ??=±=±++. (6.19)不妨设积分常数ln c a =-. 令(ln ua. 则cosh u a t =,S 的参数⽅程可改写为()cosh cos ,cosh sin ,r a t v a t v at =,(,)(0,2)t v π∈? .这个旋转极⼩曲⾯S 称为悬链⾯.⽤变分法可以证明,如果在所有以给定曲线C 为边界的曲⾯中,S 的⾯积达到最⼩值,则S ⼀定是极⼩曲⾯.极⼩曲⾯是微分⼏何研究的重要课题之⼀. ⼀百多年来,数学家们在关于以已知曲线为边界的极⼩曲⾯的存在性的Plateau 问题,⼤范围极⼩曲⾯的性质,极⼩曲⾯在⾼维的推⼴⽅⾯作了⼤量的⼯作,取得了丰富的成果.在极⼩曲⾯上,Gauss 曲率21210K κκκ==-≤,只有平点或双曲点. 在双曲点,2个渐进⽅向是正交的. 事实上,根据Euler 公式,渐近⽅向与主⽅向的夹⾓θ满⾜cos 20θ=.著名的Bernstein 定理是说:极⼩图只能是平⾯,即习题6中的⼆阶偏微分⽅程22(1)2(1)0y xx x y xy x yy f f f f f f f +-++=的定义在全平⾯上的解只能是线性函数.平均曲率H 为⾮零常数的曲⾯,即常平均曲率曲⾯,也是微分⼏何研究的⼀个重要课题. 课外作业:习题2,4,6。

微分几何初步 (陈维桓 著) 北京大学出版社第四章

微分几何初步 (陈维桓 著) 北京大学出版社第四章

1 fx2 f y2
ww
w.
Ⅱ 0,即S 必定是平面
5.直接证明:若在可展曲面S 上存在两个不同的单参数直线族,则S 必定是平面. 证明:S : r u , v (u ) vl (u ) v um v , 则ru (u ) vl (u ) m v , rv l (u ) 从而ruu rvv 0, ruv l (u ), 又 ru rv ruv vl , l , l , l , l 0 M n ruv 0, L ruu n 0, N rvv n 0




kh

y y | r |3 n
r1 s = ( s ) ( s ) ( s0 ), ( s ) ( s ) n s0 r1 s = ( s ) s0 , s n s0 ,
4.设c为曲面上一非直线的渐近曲线,其参数方程为u u ( s ), v v( s), 其中s为弧参.
co

m
证明 : c的挠率等于 =
1 EG F 2
v E L
2
uv F M
u G
2
EG F 2
的方程.
ww
1 2 rr 1 n 2 2 2 2n2 r r n t Ⅱ t 0 n t 0 Ⅰ t 0 1 2 r r r r 2 1 r 2 1 n 1 t 0 1 1 已知曲率中心C在以 n (t ) nn (t )为中心, 为半径的圆cn上 2 n 2 n n 2, t 0时, n (t ) r , 0, 0 , n (t ) 0, r , 0 nn (t ) 1, 0, 0 r r cn都可表示为 x z 2 , 得证. 2 2

微分几何 §4 直纹面与可展曲面

微分几何 §4   直纹面与可展曲面


v′ a ( v ) = {0, 0, a} v′ b ( v ) = {− sin v, cos v, 0} v ′ v v′ a , b, b = a ≠ 0,
所以曲面不可展。
曲面族的包络 设有单参数曲面族:{s } : F ( x , y , z , a ) = 0 a是参数 有一阶和二阶连续偏导数,若存在曲面S,S中每 一点P是族中一个曲面 S a 上点,而且在P点有相同的 切平面;反之对族中一个曲面 S a ,在曲面S上有 一点 pa 使得两曲面在此点有相同的切平面,则S 称为曲面族的包络。
命题1.1 命题1.1 直纹面的Gauss曲率非正. 证明:对于直纹面 证明:
r r r = a (u ) + vb(u ) r, r, r ru = a + vb , rv = b, r ,, r ,, r, r ruu = a + vb , ruv = b , rvv = 0 ∴ N = 0
LN − M 2 M2 =− ≤0 K= 2 2 EG − F EG − F
K=0的直纹面就是我们要研究的可展曲面 1、定义 沿每条 定义 沿每条直母线只有一个切平面的直纹 面称为可展曲面 ⇔ 沿直母线法向量平行 ⇔ 法向量是单参数的
r r r , r r, 2、特征 r = a (u ) + vb(u )可展 ⇔ (a , b, b ) = 0
命题1 可展曲面⇔ 柱面、锥面、切线曲面
命题2 一个曲面为可展曲面的充要条件是此曲面为单 参数平面的包络 命题3 一个曲面为可展曲面的充要条件是它的高斯曲 率等于0 命题4 曲面上的曲线是曲率线的充要条件是沿此曲线 的曲面法线构成可展曲面 命题5 可展曲面与平面成等距对应,可展曲面可在 平面上展开.

大学_微分几何初步(陈维桓著) 课后答案下载_1

大学_微分几何初步(陈维桓著) 课后答案下载_1

微分几何初步(陈维桓著) 课后答案下载微分几何初步(陈维桓著)内容介绍绪论第一章预备知识1标架2向量函数第二章曲线论1参数曲线2曲线的弧长3曲线的`曲率和Frenet标架4挠率和Frenet公式5曲线论基本定理6曲线在一点的标准展开7平面曲线第三章曲面的第一基本形式1曲面的定义2切平面和法线3曲面的第一基本形式4曲面上正交参数曲线网的存在性5保长对应和保角对应6可展曲面第四章曲面的第二基本形式1第二基本形式2法曲率3 Gauss映射和Weingarten映射4主方向和主曲率的计算5 Dupin标形和曲面在一点的标准展开 6某些特殊曲面第五章曲面论基本定理1 自然标架的运动公式2曲面的唯一性定理3曲面论基本方程4曲面的存在性定理5 Gauss定理第六章测地曲率和测地线1测地曲率和测地挠率2测地线3测地坐标系4常曲率曲面5曲面上切向量的平行移动6 Gauss—Bonnet公式第七章活动标架和外微分法1外形式2外微分3 E3中的标架族4曲面上的标架场5曲面上的曲线附录1关于常微分方程的几个定理2一阶偏微分方程组的可积性3张量索引微分几何初步(陈维桓著)目录《微分几何初步》是北京大学数学系微分几何课程的教材。

主要讲述三维欧氏空间中曲线和曲面的局部理论,内容包括:预备知识,曲线论,曲面的第一基本形式,曲面的第二基本形式,曲面论基本定理,测地曲率和测地线,活动标架和外微分法。

另有附录叙述了《微分几何初步》所用的微分方程的定理,并介绍了张量的概念。

《微分几何初步》力图向近代微分几何的语言和方法靠近,因此在讲述时尽量结合现代流形的概念,并且自始至终使用附属在曲线、曲面上的标架场,对外微分形式有相当详细的介绍。

《微分几何初步》叙述深入浅出,条理清楚,论证严密,突出几何想法,便于读者理解与掌握。

《微分几何初步》可作为综合大学及高等师范院校的微分几何课程教材,也可作为高等教育自学考试的教学参考书。

微分几何初步 课后答案(陈维桓 着) 北京大学出版社

微分几何初步 课后答案(陈维桓 着) 北京大学出版社
| r (t ) r (t ) | 3 . 3 25 | sin t cos t | | r (t ) |
2.求曲线的密切平面方程: (1) r (t )= a cos t , a sin t , bt , a b 0.
2 2

(2) r (t )= a cos t , b sin t , e
(1) r = at , a 2 ln t , (3) r = a t sin t , a 1 cos t , bt . a 0 (4) r = cos t ,sin t , cos 2t . 解: (1) r (t ) (a,





3
3


2a a 2a 2a , 2 ), r (t ) 0, 2 , 3 , t t t t
2 2

dr r (t ) 1 (3cos 2 t sin t ,3sin 2 t cos t , 2sin 2t ). ds | r (t ) | | 5sin t cos t |
3.设曲线 c 是下面两个曲面的交线:
x2 y 2 z 2 1, x ach , a, b 0. 求 c 从点 (a, 0, 0) 到点 2 a b a
( x, y, z ) 的弧长.
t t , y bsh a a t t c 的参数方程为 r (t ) (ach , bsh , t ) a a t b t r (t ) ( sh , ch ,1) a a a
解: :令 z t ,则 x ach
z a 2 b2 t z ch dt a 2 b 2 sh s | r (t ) | dt 0 0 a a a

微分几何第四章主曲率主方向

微分几何第四章主曲率主方向

(3.12)
并设 1 2 . 对任意一个单位切向量 e Tp S ,可设
e cos e1 sin e2 .
(3.13)
则有
W (e ) cos W (e1 ) sin W ( e2 ) 1 cos e1 2 sin e2 .
(3.14)
于是沿切方向 e 的法曲率为
例 3.1 求旋转面上的曲率线. 解 设旋转面的方程为 r (u, v) f (v)cos u, f (v)sin u, g(v) . 其中 f (v) 0 , 并且 v 是经线的弧长参数,f 2 g 2 1 . 则 ru f sin u,cos u,0 , rv f cos u, f sin u, g , ru rv f g cos u, g sin u, f , n g cos u, g sin u, f . 由于 nu g sin u,cos u,0 , nv g cos u, g sin u, f , g g 0 ,有 n r 0 ,nv rv 0 . 所以 u-曲线 并且 f f (纬线圆)和 v-曲线(经线)都是曲率线.
微分几何第四章主曲率主方向微分几何微分几何彭家贵答案微分几何第四版答案微分几何答案微分几何视频微分几何讲义物理学家用微分几何微分几何与广义相对论整体微分几何初步
Weingarten 映射和主曲率
设 S : r r (u, v) 是一个正则曲面, n n (u, v) 是 它的单位法向量. 向量函数 n (u, v) 定义了一个 映射 n : S 2 : (u, v) n(u, v) ,映射 n 诱导了映射 g n r 1 : S S 2 : r (u, v ) g (r (u, v)) n (u, v) . 这个映射 g : S S 2 称为 Gauss 映射.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 曲面:局部理论
定义: 定义:给定正则参数曲面 M ,向量函数
W :M →
(1) W ( P ) ∈ TP M ,
3
上一个( 向量场, 称为 M 上一个(切)向量场,如果它满足
∀P ∈ M ;
(2)对于曲面任意的正则参数表示 x : U → M 函数 W o x : U →
3
都是连续可微的。 都是连续可微的。
第二章 曲面:局部理论
定义 曲面 M 上的可微切向量场 W 关于切向 量 V ∈ TP M 的协变导数为 协变导数为
∇V W = ( DV W )T = DV W − ( DV W ⋅ n) n .
给定 M 上曲线 α : I → M ,如果
∇α ′(t )W = 0, ∀t ∈ I ,
平行。 则称向量场 W 沿参数曲线 α 平行。
du dv cos θ = E , sin θ = G . ds ds
Darboux标架中 Darboux标架中
n× T = − sin θ e1 + cos θ e2 .
第二章 曲面:局部理论
曲率向量 dT dθ de1 de2 κN = = (− sin θ e1 + cos θ e2 ) + cos θ + sin θ , ds ds ds ds
第二章 曲面:局部理论
将单位球面Christoffel Christoffel记号的计算结果带入 解:将单位球面Christoffel记号的计算结果带入 方程(eq 1)中得到 (eq方程(eq-1)中得到 a′(t ) = sin u0 cos u0b(t )
b′(t ) = − cot u0 a (t ).
第二章 曲面:局部理论
是下列方程组的解: 是下列方程组的解: (eq − 1)
W 是沿着 α 的平行向量场当且仅当 a (t ), b(t )
u a′(t ) + a(t )(Γu u′(t ) + Γuv v′(t )) + b(t )(Γu u ′(t ) + Γ u v′(t )) = 0 uu vu vv v v v v b′(t ) + a (t )(Γ uu u ′(t ) + Γuv v′(t )) + b(t )(Γ vu u ′(t ) + Γ vv v′(t )) = 0.
第二章 曲面:局部理论
曲面 M 上一条弧长参数曲线 α : I → M 在考虑法曲率时, 在考虑法曲率时,我们实际上引入了有别于 Frenet标架的另一个标架 Frenet标架的另一个标架 {T , n× T , n} (Darboux 标架)。 标架)。
第二章 曲面:局部理论
此时, 此时,曲率向量可以分解为
加上初始值条件 a(0) = 0, b(0) = 1,解得
a(t ) = sin u0 sin((cos u0 )t ) , b(t ) = cos((cos u0 )t ).
观察到 X (α (t )) = sin u0 。平行移动保持切 向量的长度不变? 向量的长度不变?
2 2
第二章 曲面:局部理论
微分几何
第二章 曲面:局部理论
第一节 参数曲面和第一基本形式 第二节 Gauss映射和第二基本形式 Gauss映射和第二基本形式 第三节 G-C方程和曲面基本定理 协变微分, 第四节 协变微分,平行移动和测地线
第二章 曲面:局部理论
协变微分, 第四节 协变微分,平行移动和测地线 曲面的内蕴几何概念之一: 平行移动” 曲面的内蕴几何概念之一:“平行移动”。 如何比较曲面上任意两点的切向量? 如何比较曲面上任意两点的切向量?怎么判断 它们是否平行? 它们是否平行?
∇α ′α ′ = 0.
参数曲线正则, 测地线满足 α ′(t ) = c ≠ 0 ,参数曲线正则,可 以引进弧长参数 s = ct 。
第二章 曲面:局部理论
曲面上以弧长为参数的测地线 α ( s ) 的曲率向量
κ N = α ′′( s ) = Dα ′( s )α ( s )
在曲面的切平面上投影为零, 在曲面的切平面上投影为零,即测地线在每点的 主法向量与曲面的法向量平行。 主法向量与曲面的法向量平行。 这里曲线的曲率向量在曲面法向量上的投影 恰好是曲线的法曲率。 恰好是曲线的法曲率。
u 于是定理成立。特别的, 于是定理成立。特别的, −曲线和 v − 曲线的测地 曲率分别为
1 ∂ ln E κ g1 = − , 2 G ∂v ∂ ln G = . 2 E以改写成 因此Liouville公式可以改写成 Liouville
Dα ′( s )T ( s ) = T ′( s ) = − n( s ).
第二章 曲面:局部理论
例2 曲面 M 上参数曲线上对应的切向量场的协 变导数恰好可以由Christoffel记号表示。 Christoffel记号表示 变导数恰好可以由Christoffel记号表示。 在给定局部参数表示 x : U → M 下
第二章 曲面:局部理论
例1 单位球面 S 上任意一个大圆 α ( s ) 的切向量 是单位切向量场, 场 T ( s ) 是单位切向量场,
2
恰好是指向球心,所以 ∇α ′ ( s )T ( s ) = 0. 恰好是指向球心, 球面上大圆的切向量场沿着大圆平行。 球面上大圆的切向量场沿着大圆平行。 沿着球面的赤道平行。 另外常向量场 (0, 0,1) 沿着球面的赤道平行。
第二章 曲面:局部理论
例3 单位球面 x (u , v) = (sin u cos v,sin u sin v, cos u ) 上纬线圆 u = u0 (u0 ≠ 0, π ) ,考虑向量 X 0 = xv 从点 P (u = u0 , v = 0)出发沿着纬线逆时针的平行移动。 出发沿着纬线逆时针的平行移动。
dθ de1 + ⋅ e2 计算测地曲率得到 κ g = κ N ⋅ (n× T ) = ds ds de1 1 v du v dv ⋅ e2 = (Γ uu + Γ uv ) 其中 ds ds ds EG 1 − Ev du Gu dv = + ( ). EG 2 ds 2 ds
第二章 曲面:局部理论
第二章 曲面:局部理论
平面中“直线”在曲面的推广--“测地线” 平面中“直线”在曲面的推广--“测地线”。 -- 曲面上两点之间的最短连线是什么? 曲面上两点之间的最短连线是什么? 定义 曲面 M 上一条非常值参数曲线 α : I → M 称为测地线 geodesic) 测地线( 称为测地线(geodesic),如果切向量场 α ′(t ) 平行, 沿 α 平行,即
命题 假设 W 和 V 是沿 α (t ) : I → M 的两个平 行向量场, 为常数。 行向量场,则内积 W (α (t )) ⋅ V (α (t )) 为常数。 平行移动保持向量的长度和夹角。 推论 平行移动保持向量的长度和夹角。 证明: 平行, 证明:向量场 W 沿 α 平行,则 Dα ′(t )W 与 n 平行, 平行,则 W ′(α (t )) ⋅ V (α (t )) = Dα ′(t )W ⋅ V (α (t )) = 0. 同理 W (α (t )) ⋅ V ′(α (t )) = 0. d W (α (t )) ⋅ V (α (t )) = 0 ⇒ W (α (t )) ⋅V (α (t )) = co nst. dt
第二章 曲面:局部理论
于是我们可以考虑对曲面上的切向量场 W 求关 的方向导数: 于切向量 V ∈ TP M 的方向导数: 选取曲面上的一条参数曲线 α : ( −ε , ε ) → M 满足 则
α (0) = P , α ′(0) = V ,
DV W = (W o α )′(0).
注意:曲面上“居民”只看得到上述向量在曲面 注意:曲面上“居民” 切平面的投影! 切平面的投影!
dθ 1 ∂ ln E 1 ∂ ln G κg = − cos θ + sin θ . ds 2 G ∂v 2 E ∂u
第二章 曲面:局部理论
证明: 证明: u −曲线和 v −曲线的单位切向量为 1 1 e1 = xu , e2 = xv . E G
du dv 曲线 α 的切向量 T = E e1 + G e2 , ds ds 夹角 θ 满足
第二章 曲面:局部理论
命题 设 α :[0,1] → M 是曲面 M 上一条参数曲 线,且 α (0) = P ,切向量W0 ∈ TP M 。则沿着 α 存在唯一的平行向量场 W 使得 W ( P ) = W0 。 证明:不妨设曲线 α 包含在某个参数表示 证明:
x(u, v) : U → M 中,有 α (t ) = α (u (t ), v(t )) 。进一步假设
W (α (t )) = a (t ) xu (u (t ), v(t )) + b(t ) xv (u (t ), v(t ))
第二章 曲面:局部理论
由于 α ′(t ) = u ′(t ) xu + v′(t ) xv ,我们计算
∇α ′( t )W = ((W o α )′(t ))T = ( d (a (t ) xu + b(t ) xv ))T dt d d ′(t ) xu + b′(t ) xv + a(t )( xu )T + b(t )( xv )T =a dt dt = a′(t ) xu + b′(t ) xv + a(t )(u′(t ) xuu + v′(t ) xuv )T + b(t )(u′(t ) xvu + v′(t ) xvv )T
由微分方程解的存在唯一性定理, 由微分方程解的存在唯一性定理,只要取定了 a (0), b(0) ,使得 W0 = a (0) xu + b(0) xv , 我们就得到唯一的平行向量场 W 满足 W ( P ) = W0 。
相关文档
最新文档