排列组合中涂色问题复习过程

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列组合中涂色问题

解决排列组合中涂色问题的常见方法及策略与涂色问题有关的试题新颖有趣,其中包含着丰富的数学思想。解决涂色问题方法技巧性强且灵活多变,故这类问题的利于培养学生的创新思维能力、分析问题与观察问题的能力,有利于开发学生的智力。本文拟总结涂色问题的常见类型及求解方法。

一、区域涂色问题

1、根据分步计数原理,对各个区域分步涂色,这是处理染色问题的基本

方法。

例1、用5种不同的颜色给图中标①、②、③、④的各部分涂色,每部分只涂一种颜色,相邻部分涂不同颜色,则不同的涂色方法有多少

种?

分析:先给①号区域涂色有5种方法,再给②号涂色有4种方法,接着给③号涂色方法有3种,由于④号与①、②不相邻,因此④号有4种涂法,根据分步计数原理,不同的涂色方法有5434240

⨯⨯⨯=

2、根据共用了多少种颜色讨论,分别计算出各种出各种情形的种数,再

用加法原理求出不同的涂色方法种数。

仅供学习与交流,如有侵权请联系网站删除谢谢2

仅供学习与交流,如有侵权请联系网站删除 谢谢3

例2、(2003江苏卷)四种不同的颜色涂在如图所示的6个区域,且相邻两个区域不能同色。

分析:依题意只能选用4

种颜色,要分四类: (1)②与⑤同色、④与⑥同色,则有44A ; (2)③与⑤同色、④与⑥同色,则有44A ; (3)②与⑤同色、③与⑥同色,则有44A ; (4)③与⑤同色、② 与④同色,则有44A ;(5)②与④同色、③与⑥同

色,则有44A ;

所以根据加法原理得涂色方法总数为544A =120

例3、(2003年全国高考题)如图所示,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着方法共有多少种?

分析:依题意至少要用3种颜色

1) 当先用三种颜色时,区域2与42) 区域3与5必须同色,故有3

4A 种;

3) 当用四种颜色时,若区域2与4同色,

4) 则区域3与5不同色,有44A 种;若区域3与5同色,则区域2与

4不同色,有44A 种,故用四种颜色时共有244A 种。由加法原理可

知满足题意的着色方法共有3

4A +244A =24+2 24=72

⑤ ⑥

仅供学习与交流,如有侵权请联系网站删除 谢谢4

3、根据某两个不相邻区域是否同色分类讨论,从某两个不相邻区域同色与不同色入手,分别计算出两种情形的种数,再用加法原理求出不同涂色方法总数。

例4用红、黄、蓝、白、黑五种颜色涂在如图所示的四个区域内,每个区域涂一种颜色,相邻两个区域涂不同的颜色,如果颜色可以反复使用,共有多少种不同的涂色方法?

分析:可把问题分为三类:

(1) 四格涂不同的颜色,方法种数为45A ; (2) 有且仅两个区域相同的颜色,即只

有一组对角小方格涂相同的颜色,涂法种数为

12542C A ;

5) 两组对角小方格分别涂相同的颜色,涂法种数为25A ,

因此,所求的涂法种数为212

255

452260A C A A ++= 4、根据相间区使用颜色的种类分类

例5如图, 6个扇形区域A 、B 、C 、D 、E 、F ,现给这6个区域着

色,现有4种不同的颜色可1A 解(1)当相间区域A 、颜色时,

有4种着色方法,此时,B 、D 、F 各有3种着色方法,

仅供学习与交流,如有侵权请联系网站删除 谢谢5

此时,B 、D 、F 各有3种着色方法故有4333108⨯⨯⨯= 种方法。

(2)当相间区域A 、C 、E 着色两不同的颜色时,有2234C A 种着色方法,此时B 、D 、F 有322⨯⨯种着色方法,故共有2234322432C A ⨯⨯⨯=种着色方法。

(3)当相间区域A 、C 、E 着三种不同的颜色时有3

4A 种着色方法,此时B 、D 、F 各有2种着色方法。此时共有3

4

222192A ⨯⨯⨯=种方法。

故总计有108+432+192=732种方法。

说明:关于扇形区域区域涂色问题还可以用数列中的递推公来解决。 如:如图,把一个圆分成(2)n n ≥个扇形,每个扇形用红、白、

解:设分成n 个扇形时染色方法为n a 种

(1) 当n=2时1A 、2A 有24A =12种,即2a =12

(2) 当分成n 个扇形,如图,1A 与2A 不同色,2A 与3A 不同

色,

,1n A -

与n A 不同色,共有143n -⨯种染色方法, 但由于n A 与1A 邻,所以应排

除n A 与1A 同色的情形;n A 与1A 同色时,可把n A 、 1A 看成一个扇形,与前

仅供学习与交流,如有侵权请联系网站删除 谢谢6

2n -个扇形加在一起为1n -个扇形,此时有1n a -种染色法,故有如下递推关系:

1143n n n a a --=⨯-

1211243(43)43n n n n n n a a a -----∴=-+⨯=--+⨯+⨯

21321

234343434343n n n n n n n a a -------=-⨯+⨯=-+⨯-⨯+⨯124[33(1)3]

(1)33

n n n n

n

--=

=⨯-+

+-⨯=-⨯+

二、

点的涂色问题

方法有:(1)可根据共用了多少种颜色分类讨论,(2)根据相对顶点是否同色分类讨论,(3)将空间问题平面化,转化成区域涂色问题。 例6、将一个四棱锥S ABCD -的每个顶点染上一种颜色,并使同一条棱的两端点异色,如果只有5种颜色可供使用,那么不同的染色方法的总数是多少?

解法一:满足题设条件的染色至少要用三种颜色。

(1) 若恰用三种颜色,可先从五种颜色中任选一种染顶点S ,再

从余下的四种颜色中任选两种涂A 、B 、C 、D 四点,此时

只能A 与C 、B 与D 分别同色,故有12

5

460C A =种方法。 (2) 若恰用四种颜色染色,可以先从五种颜色中任选一种颜色染

顶点S ,再从余下的四种颜色中任选两种染A 与B ,由于

相关文档
最新文档