回归分析预测方法

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

BG
上一页 下一页 返9回
8.1回归分析预测法概述
8.1.2回归Leabharlann Baidu析预测法的种类
回归分析预测法的种类很多,可以从不同方面对其进行分类 ,常用的分类方法有以下几个。
1.按照相关关系中自变量的不同,可分为一元相关回归分析 预测法、多元相关回归分析预测法、自相关回归分析预测法
BG
上一页 下一页 返10回
BG
上一页 下一页 返5回
8.1回归分析预测法概述
相关关系,又称非确定性关系,是指变量之间相互关系中不 存在数值一一对应关系的非确定性的依存关系。它有两个显 著的特点:一是市场现象变量之间确实存在数量上的客观内在 关系,表现为一个变量发生数量上的变化,会影响另一个变 量也相应地发生数量上的变化;二是市场现象变量之间的关系 不是确定的,具有一定的随机性,表现为给定一个自变量值, 因变量存在若干个数值与之相对应。例如,市场需求与居民 收入之间,市场需求与商品价格之间,市场需求与人口数量 之间等,都表现为这种相关关系。
BG
上一页 下一页 返8回
8.1回归分析预测法概述
研究它们时,一般将被预测的市场现象称为因交量,其具体 数量称为因交量值;将与市场现象有密切关系的各种影响因素 称为自变量,其具体数量称为自变量值。如将企业零售额作 为自变量,将流通费用水手作为因变量,研究零售额对流通 费用水平的影响;将居民收入水平作为自变量,将市场商品需 求量作为因交量,研究预测收入水平变动对市场需求量未来 发展变化的影响,将人口、价格水平等因素作为自变量,将 市场需求量作为因交量,研究人口变动、价格变动对市场需 求量的影响等。
BG
上一页 下一页 返6回
8.1回归分析预测法概述
函数关系与相关关系的区别,突出表现在变量之间的具体关 系值是否确定和随机。函数关系是相对于确定的、非随机变 量而言的;而相关关系则是相对于非确定的、随机变量而言的。 值得指出的是函数关系与相关关系虽然是两种不同类型的相 互关系,但彼此之间也具有一定的联系,一方面,由于在观 察和测量中存在误差等原因,实际工作中的函数关系有时通 过相关关系表现出来;另一方面,在研究相关关系时又常常借 用函数关系的形式近似地将它表达出来,以便找到相关关系 的一般数量特征,当随机因素不存在时,相关关系就转化为 函数关系。因此,函数关系是相关关系的特例。
BG
上一页 下一页 返11回
8.1回归分析预测法概述
(2)多元相关回归分析预测法,又称复相关回归分析预测法。 是用相关回归分析法对多个自变量与一个因变量之间的相关 关系进行分析,建立多元回归方程作为预测模型,对市场现 象进行预测的方法。这是一种根据多个自变量的变化数值预 测一个因变量数值的方法。例如,根据货币供应量和居民收 入水平预测居民消费总额;根据某种商品的价格、替代品的价 格、居民收入水平等预测该商品的销售量。就属于多元相关 回归分析预测法。
8.1回归分析预测法概述
(1)一元相关回归分析预测法,又称单相关囚归分析预测法, 是用相关回归分析法对一个自变量与一个因变量之间的相关 关系进行分析,建立一元回归方程作为预测模型,对市场现 象进行预测的方法。如根据某地区的居民收入水平预测该地 区的商品需求量;根据企业的销售额预测流通费用水平等,都 必须是分析一个自变量对一个因变量的一元相关关系。
BG
上一页 下一页 返7回
8.1回归分析预测法概述
【阅读材料】
市场的发展变化受到市场内部与外部多种因素的影响,市场 现象变化与各种影响因素变化之间存在着一定的依存关系, 如市场受社会生产总体状况的影;市场受产业结构、就业结 构及各种经济比例关系的影响;市场受积累和消费比例关系 的影响;市场受人口发展变化的影响;市场受居民收入水平 的影响;市场受商品价格的影响等。对这些客观存在的依存 关系可以用数量加以描述和分析研究。市场现象的这些依存 关系,有各种具体的表现。
BG
上一页 下一页 返3回
8.1回归分析预测法概述
在市场经济活动中,任何市场现象的产生和变化,总是由一 定的原因引起,并对其他一些市场现象产生影响。换言之, 各种市场活动总是存在于一定的相互联系之中。市场现象之 间的相互关系可以分为两大类,即函数关系和相关关系。
BG
上一页 下一页 返4回
8.1回归分析预测法概述
第8章 回归分析预测法
8.1回归分析预测法概述 8.2一元线性回归分析预测法 8.3多元线性回归分析预测法 8.4非线性回归分析预测法和自回归分析
预测法
BG
1
8.1回归分析预测法概述
8.1.1回归分析预测法的概念
回归分析预测法,是在分析市场现象自变量和因变量之间相 关关系的基础上,建立变量之间的回归方程,并将回归方程 作为预测模型,根据自变量在预测期的数量变化来预测因变 量在预测期变化结果的预测方法。回归分析预测法是通过发 现某些对所预测结果有重要影响的因素进行分析,找到因变 量和自变量之间的因果关系,从而推测预测对象随自变量而 发生变化的数值。因此,回归分析预测法又称因果分析法。
函数关系,又称确定性关系,是指由某种确定的原因,必然 导致确定的结果的因果关系。即自变量的每一个确定的 x值, 因变量总有一个唯一确定的 y值与之相对应。所以,在人们 已经掌握市场现象之间的函数关系后,已知一个变量的值就 可以确定另一个变量的值。例如,在产品价格不变的条件下, 销售额可以由销售量来确定,在产品销售量不变的条件下, 销售额可以由产品价格来确定。设产品的价格为 p,销售量 为劣,销售额为 Y,则可以得到函数关系式为 y = px。在 数学、物理、化学等自然科学领域中存在大量函数关系,而 在市场现象中函数关系并不多见,大量存在的是相关关系。
BG
下一页 返2回
8.1回归分析预测法概述
[阅读材料]
"回归"一词是英国遗传学家弗兰西斯·盖尔顿 (Francis Galton)和他的朋友卡尔·皮尔逊 (Karl Person)在研究父 亲身高与儿子身高的关系时引人的。他们研究发现,若父亲 为高个子,则儿子个子也高,但其平均身高低于父亲的手均 身高;若父亲为矮个子,则儿子的个子也矮,但其平均身高高 于父亲的平均身高。由此得出·身高的变化不是两极分化,而 是"趋同这是"回归到普通且人"此后回归"的含义逐步被扩大 ,用于表明一种变量的变化,会导致另一变量的变化, 即有 着 "前因后果"的变量之间的相关关系。
相关文档
最新文档