第3章-二元合金相图及应用

合集下载

第三章1-2节 二元合金与相图(同济-王国华).

第三章1-2节 二元合金与相图(同济-王国华).

3.1.1 固态合金中的相结构及组织概念
合金:一种元素同另一种或几种其他元素 ,通过熔化或其他方法结合在一起所形成 的具有金属特性的物质。
组元:组成合金独立的最基本的单元。组元可以是元 素或是稳定化合物。 由两个组元组成的合金称为二元合金。
如:铁碳合金、铜镍合金
相:凡化学成分相同(可连续变化 )、晶体结构相同 并有界面与其他部分分开的均匀组成部分称为相。 合金组元通过溶解 形成一种成分和性 能均匀、且结构与 组元之一相同。
片状珠光体
w(c)=0.77%
球状珠光体
3.组织与性能的关系
金属材料的性能由金属内部的组织结构所决定。
注意: (1)在某些情况下,金属的组织名称相同,组成相 也相同,但晶粒形状、大小不同,则它们的性能 也不同。
(2)在某些合金中,在显微镜下观察它们的组织, 组成相相同,且形状、大小无明显差异,只是其 成分有所不同,这时表现出来的性能也不相同。
(1) 固溶体的分类
按溶质原子在溶剂晶格中的位置,固溶体可分为: 置换固溶体和间隙固溶体
按溶解度固溶体可分为:有限固溶体和无限固溶体
溶解度:溶质在固溶体中的极限浓度即为溶质在 固溶体中的溶解度。 若超过这个溶解度有其他相形成,则此种固溶体 为有限固溶体。 若溶质可以任意比例溶入,即溶质的溶解度可达 100,则固溶体为无限固溶体。 按溶质原子在固溶体中分布是否有规律可分为: 无序固溶体和有序固溶体
3.1.2金属材料的组织 1.组织的概念 金相试样的制备: 取样(小块金属材料) →磨光(用金相砂纸) →抛 光(用绒布+抛光剂) →腐蚀→吹干 在显微镜下观察,可以看到金属材料内 部的微观形貌。这种微观形貌2-拨盘 3-底座物镜 4-孔径光阑 5-视场光阑旋钮 6-视场光阑滚花螺丝 7-固定滚花螺钉 8-双筒目镜镜管 9-目镜 10-载物台 ll-物镜 12-物镜转换盘 13-镜架 14-粗调手轮 15-微调手轮

二元合金相图及其应用

二元合金相图及其应用
作枝晶偏析。 • 不仅与冷速有关,而且与液固相线的间距有关。 • 冷速越大,液固相线间距越大,枝晶偏析越严重。 • 枝晶偏析会影响合金的力学、耐蚀、加工等性能。 • 生产上常将铸件加热到固相线以下100-200℃长时间保温,
以使原子充分扩散、成分均匀,消除枝晶偏析,这种热处
理工艺称作扩散退火。
Cu-Ni合金的平衡组织与枝晶偏析组织
➢ 随温度下降, 和 相的成分分别沿CF线和DG线变化, Ⅱ
的重量增加。
➢ 室温下α、Ⅱ的相对重量百分比为:
w
4G FG

由于二次相析出温度较低,一般十分细小。w
F4 FG
Ⅰ合金室温组织为
➢ + Ⅱ 。
A C
F
B ➢ 成分大于 D点合金结晶过程
E
D
与Ⅰ合金相似,室温组织为
+ Ⅱ。
G
② 共晶合金(Ⅱ合金)的结晶过程 ➢ 液态合金冷却到E 点时同时被Pb和Sn饱和, 发生共晶反
二元合金相图及其应用
第三章 二元合金相图及其应用
3.1 合金的相结构 纯金属的局限 合金 3.1.1 基本概念 ➢ 合金:两种或两种以上的金属与金属,或金属与非金属经
一定方法合成的具有金属特性的物质。
➢ 组元:组成合金最基本、能够独立存在的物质。可以是元 素,也可以是稳定化合物。(如二元、三元合金〕
• 相图中,结晶开始点的连线叫液相线。结晶终了点的连线 叫固相线。
3.2.2 二元匀晶相图 • 两组元在液态和固态下均
无限互溶时所构成的相图
称二元匀晶相图, • 结晶时只结晶出单相固溶
体组织, • 以Cu-Ni合金为例进行分析。
(1)相图分析
• 相图由两条线构成,上 面是液相线,下面是固 相线。

二元合金相图的绘制与应用

二元合金相图的绘制与应用

实验 二元合金相图的绘制与应用一、目的要求1、理解步冷曲线,学会用热分析方法测绘Sn-Bi 二元合金相图2、学会铂电阻的测温技术,尝试用金属相图测量装置测量温度的方法3、掌握微电脑控制器的使用方法4、理解产生过冷现象的原因及避免产生过冷现象的方法二、基本原理相图是用几何图形来表示多相平衡体系中有哪些相、各相的成分如何,不同相的相对量是多少,以及它们随浓度、温度、压力等变量变化的关系图。

对蒸气压较小的二组分凝聚体系,常以温度-组成图来描述。

热分析方法与步冷曲线热分析方法是绘制相图常用的基本方法之一。

将两种金属按一定比例配成并把它加热成均匀的液相体系,然后让它在一定的环境中自行冷却,并每隔一定的时间(例如0.5min 或1min )记录一次温度,以温度T 为纵坐标,以时间t 为横坐标,做出温度-时间(T-t )曲线,称为步冷曲线。

若体系均匀冷却时,冷却过程不发生相变化,则体系的温度随时间的变化是均匀的,则步冷曲线不出现转折或平台,而是一条直线,冷却速度快。

若冷却过程中发生了相变化,由于相变化过程中伴随有热效应,发生相变热,所以体系温度随时间的变化速度将发生改变,体系的冷却速度减缓,步冷曲线就出现转折或平台。

测定一系列组成不同的样品的步冷曲线,从曲线上找出各相对应体系发生相变的温度,就可以绘制出被测系统的相图。

这就是用热分析法绘制液固相图的概要.如图所示:Bi-Cd 合金冷却曲线曲线1、5是纯物质的步冷曲线。

当系统从高温冷却时,开始没有发生相变化,温度下降比较快,步冷曲线较陡;冷却到A 的熔点时,固体A 开始析出,系统出现两相平衡(固体A 和溶液平衡共存),根据相律,此时f= k-Ø+1=1-2+1=0,系统温度维持不变,步冷曲线出现bc 的水平线段;直到液相完全凝固后,温度又继续下T /℃t降。

曲线2、4是A与B组成的混合物的步冷曲线。

与纯物质的步冷曲线不同。

系统从高温冷却到温度b’时,开始有固体A不断析出,这时体系呈两相,溶液中含A的量随之减少,由于不断放出凝固热,所以温度下降速度变慢,曲线的斜率变小(b’c’段)。

第三章二元相图和合金的凝固

第三章二元相图和合金的凝固

固溶体的平衡结晶过程: 固相成核
相内浓度梯度 相内扩散
界面浓度不平衡 晶体长大
重新建立平衡 固溶体的平衡结晶过程 原子的扩散过程 液相和固相均匀一致 原子的扩散进行完全 缓慢冷却 冷却速度大 相内成分不均匀 偏离平衡结晶条件(不平衡
结晶)
17
三、固溶体合金的不平衡结晶
条件:液相完全均匀化,而固相内却来不及进行扩散。
C1平衡重新建立→浓度梯度→原子
扩散→进一步长大
C1
→重复进行
溶 质
LC1

k0C1

k 0C1
L
(a)


L
k0C1 T1
C1
k0C2 T2
C2
L+
C0
C0

C0’


k0C1

பைடு நூலகம்
L
C1
溶 C0’ 质

k0C1

L
C1 溶

浓 度
k0C1
L
(b)
(c)
(d) 15
温度T2的结晶过程: LC 2 k 0C 2
§3.1 二元相图的建立
一、相图的表示方法 对二元合金来说,通常用横 坐标表示成分,纵坐标表示 温度。 坐标平面上的任一点称为表 象点,表示合金的成分和温度
1
二、相图的建立
通过实验测定:
先配制一系列成分不同的合金,然后测定这些合金的相变临 界点,最后把这些点标在温度—成分坐标图上,把各相同 意义的点连结成线,这些线就在坐标图上划分出一些区域, 即相区,将各相区所存在的相的名称标出,相图的建立工 作即告完成。
25
形成成分过冷临界条件:G mC 0 1 k0

第三章 二元合金的相结构与结晶(包晶相图)4(16)-10-2剖析

第三章  二元合金的相结构与结晶(包晶相图)4(16)-10-2剖析

α
包晶偏析:因包晶转变 不能充分进行而导致的 成分不均匀现象。
四、包晶转变的实际应用
包晶转变特点:
包晶转变的形成相依附在初生相上形成; 包晶转变的不完全性。(不彻底性)
组织设计:如轴承合金需要的软基体上分布硬质点的组织。 首先形成硬质点,包晶反应形成软固溶体包于其外层
晶粒细化。 包晶反应生成细小化合物,异质形核。
包晶反应的推广
包晶反应(Peritectic) L + 包析反应(Peritectoid) + 合晶反应(Syntectic) L1 + L2
第三章 二元合金的相结构与结晶
§3-1 合金中的相 §3-2 合金的相结构 §3-3 二元合金相图的建立 §3-4 匀晶相图及固溶体的结晶 §3-5 共晶相图及其合金的结晶 §3-6 包晶相图及其合金的结晶 §3-7 其它类型的合金相图 §3-8 二元相图的分析及使用
§3-6 包晶相图及其合金的结晶
室温组织组成:β+αⅡ
室温相组成: α+β
三、不平衡结晶及其组织
原因 新生β相依附于α相生核长大, β相将α相包围
液体和α相反应形成β相,须 通过β相层进行扩散
原子在固体中的扩散低于液体, 包晶转变缓慢
冷却速度快.包晶转变被抑制 不能完全进行
剩余的液体在低于包晶转变温 度直接转变为β
保留下来的α,以及形成的β 相成分都不均匀。
(2) 线:
液相线: ACB,固相线:APDB。 固溶线:PE、DF线分别为中的固溶线(溶解度曲线)。
包晶线:水平线PDC
一、相图分析
(3)相区:
三个单相区: L、、; 三个两相区:L+、L+、+; 一个三相区:即水平线PDC; L + + 。

第3章合金相图和合金的凝固

第3章合金相图和合金的凝固

rb wL 100% ab
w
ar 100% ab
动画3-3 杠杆定律证明
3.3 匀晶相图及固溶体的结晶 匀晶相图:两组元在液态无限互溶、固态也无限互溶的二元合 金相图。 匀晶转变:从液相结晶出单相固溶体的结晶过程。
主要二元合金系:Cu-Ni、Ag-Au、Cr-Mo、Cd-Mg、Fe-Ni、 Mo-W等。
2)温度t3 温度到t3时,最后一滴液体结晶成固体,固溶体的成分完全与合 金成分一致,成为均匀(C0)的单相固溶体组织时。
固溶体结晶过程概述:
固溶体晶核的形成(或原晶体的长大),产生相内(液相或固相)的 浓度梯度,从而引起相内的扩散过程,这就破坏了相界面处的 平衡(造成不平衡),因此,晶体必须长大,才能使相界面处重新
不是3,与合金的成分C0不同, 因此,仍有一部分液体尚未结 晶,一直要到t4温度才能结晶 完毕。
晶内偏析:一个晶粒内部化学成分不均匀的现象 枝晶偏析:固溶体树枝状晶体枝干和枝间化学成分不同的现象
影响晶内偏析的因素: 1)分配系数k0 当k01时,k0值越小,则偏析越大; 当k01时,k0越大,偏析也越大。 2)溶质原子的扩散能力 结晶的温度较高,溶质原子扩散能力又大,则偏析程度较小;反之,则 偏析程度较大。 3)冷却速度 冷却速度越大,晶内偏析程度越严重。 削除晶内偏析的方法: 扩散退火或均勺化退火
两相。
对二元系来说,组元数c=2,当f=0时,P=2-0+1=3,说明 二元系中同时共存的平衡相数最多为3个。
(2)利用相律可以解释纯金属与二元合金结晶时的一些差别。 纯金属结晶时存在液、固两相,其自由度为零,说明纯金属 在结晶时只能在恒温下进行。 二元合金结晶时,在两相平衡条件下,其自由度f=2-2+1, 说明此时还有一个可变因素(温度),因此,二元合金将在一定

第三章二元合金与相图介绍

第三章二元合金与相图介绍

第一节 固态合金相结构
金属化合物
具有相当程度的金属键并具有一定程度的金属性质的化合物


金属化合物的晶格结构类型不同于任一组元(可用分子式大致表示)


举例:
渗碳体是由Fe和C构成的金属化合物, 其晶格类型与Fe和C都不形同,而是形 成一种复杂晶格(如右图)。Fe与C原 子比例固定为3:1,故可以Fe3C来表示
第三章 二元合金与相图
第二节 二元合金相图
基本知识 二元合金基本相图
匀晶相图 共晶相图 包晶相图 共析相图 稳定化合物相图
第三章 二元合金与相图
第二节 二元合金相图
匀晶相图
两组元在液态时无 限互溶,在固态时 也无限互溶,且形 成单相固溶体,所 构成的相图
I:纯铜;II:75%Cu+25%Ni III:50%Cu+50%Ni
共晶相图
• 共晶相图——当两组元在液态时无限互溶,在固态 时有限互溶,而且发生共晶反应,所构成的合金相 图(或者说以共晶转变为主的相图)
• 共晶转变——一定化学成分的合金在一定的温度下 (恒温),同时由液相中结晶出两种不同成分和不 同晶体结构的固相
第三章 二元合金与相图
第二节 二元合金相图
共晶相图
第三章 二元合金与相图
第二节 二元合金相图
共晶相图
固溶体合金 结晶过程
室温下合金I的显微组织:a)相组成:α、β;b)组织组成:α、βII
第三章 二元合金与相图
第二节 二元合金相图
共晶相图
共晶合金 结晶过程
合金II的结晶过程:L→L+(α+β)→(α+β)
ห้องสมุดไป่ตู้
第三章 二元合金与相图

二元合金相图与铁碳合金课件

二元合金相图与铁碳合金课件

图3-8 杠杆定律的应用
16
3.2.2 二元共晶相图
共晶转变——二元合金系中,一定成分的液相,在一定温度下同 时结晶 出两种不相同的固相的转变,称为共晶转变。
二元共晶相图——凡二元合金系中两组元在液态下能完全互溶, 在固态下形成两种不同固相,并发生共晶转变的 的相图属于二元共晶相图。
17
3.2.2 二元共晶相图
11
3.2 二元合金相图的基本类型
3.2.1 匀晶相图及杠杆定律 3.2.2 共晶相图 3.2.3 包晶相图 3.2.4 具有共析反应的相图 3.2.5 含有稳定化合物的相图
12
3.2.1 匀晶相图及杠杆定律
n 凡是二元合金系中两组元在液态下可以任何比例均匀相互溶解,在固态 下能形成无限固溶体时,其相图属于二元匀晶相图。例如Cu-Ni、Fe-Cr、 Au-Ag等合金系都属于这类相图。 由液相结晶出均一固相的过程就称为 匀 晶 转 变 。 下 面 就 以 Cu- Ni合 金 相 图 为 例 , 对 匀 晶 相 图 进 行 分 析。
这样就获得了Cu-Ni合金相图,如图3-3b所示。
图中各开始结晶温度连成的相界线tA LtB线称为液相线,各
终了结晶温度连成的相界线tAαtB线称为固相线。
5
3.1.1 二元合金相图的建立
图3-3 用热分析法测定Cu-Ni合金相图
6
3.1.1 二元合金相图的建立
(3) 相律 n 按照热力学条件,这种限制可用吉布斯相律表示,即:
26
3.2.2 二元共晶相图
合金中相组成物和组织组成物的相对量,均可利用杠杆定律来计算。 合金Ⅲ在183℃ (共晶转变结束后) 时由α、β两相组成,其相对量为:
合金Ⅲ在183℃ (共晶转变结束后) 时由初晶αD与共晶体 (αD+βB) 两 种组织组成物组成,其相对量为:

第三章 金属的结晶与二元合金相图

第三章 金属的结晶与二元合金相图

液相区L 双相区L+α 固相区α 液相线 固相线
固相区
匀 晶 相 图 合 金 的 结 晶 过 程 (P33)
☆在不同温度下刚刚结晶出来的固相的化学成分是 不相同的,其变化规律是沿着固相线变化.与此同 时剩余液相的化学成分也相应地沿着液相线变化.
2,晶内偏析——枝晶偏析 (P33)
晶内偏析: 晶内偏析: 在一个晶粒内,各处 成分的不均匀现象. 因为金属通常以枝晶 方式结晶,先形成的 主干和后形成的支干 就会有化学成分之差, 枝晶偏析. 所以也称枝晶偏析 枝晶偏析
第一节 金属结晶的基础知识
一,金属结晶的温度与过冷现象(P26) 金属结晶的温度与过冷现象 3,过冷度(△T):理论结晶温度与实际结 过冷度( 晶温度之差.对于纯金属: △T= T0- Tn 4,金属的结晶都 是在一定的过冷 度下进行的,这 种现象称过冷现 过冷现 象.
第一节 金属结晶的基础知识
(二)共晶相图 1,相图分析 (P35)
7)α固溶体溶解度变化曲线——cf 8) β固溶体溶解度变化曲线——eg 9)三个单相区:L,α,β
10)液相线——adb 11)固相线——acdeb 12)共晶线——cde
(二)共晶相图 1,相图分析 (P35)
13)三个两相区:L+α,L+β,α+β 14)一个三相区:L+α+β,在共晶转变过程中三相同时存在.
第一节 金属结晶的基础知识
一,金属结晶的温度与过冷现象(P26) 金属结晶的温度与过冷现象 1,理论结晶温度 0: 又称平衡结晶温度. 理论结晶温度T 理论结晶温度 (冷速极慢)也就是金属的熔点Tm. 2,实际结晶温度 n:在某一实际冷却速度下 实际结晶温度T 实际结晶温度 的结晶温度.

Chapter-3-二元相图及其合金解析

Chapter-3-二元相图及其合金解析
合金相 :指合金中结构相同,成分和性能均一,并有
界面与其他部分分开的均匀组成部分(phase)
金属或合金均由相构成——单相合金、多相合金 ——用α、β、γ、δ、η、θ等表示
合金中,形成条件不同,可能形成不同的相,相的数量、 形态及分布状态不同,形成不同的组织的相:α-Fe 钢中的相:铁素体(α)+渗碳体(Fe3C)
§ 3-3 二元合金相图的建立
给定的合金系究竟以什么状态(相)存在,包 含哪些相,这由内、外因条件决定,外因是温度 和压力,内因则是化学成分 ——用相图来表示它们之间的关系
几个概念: 相图: 表示合金系中的状态(相)与温度,成分
之间关系的图解。又称状态图或平衡图 相变:相与相之间的转变
合金相图可作为合金熔炼、铸造、锻造及热处理的重要依据。
电负性因素
电负性:元素的原子获得电子的相对倾向。
两元素的电负性相差越大,化学亲合力越 强,易生成金属化合物。
两元素间的电负性相差越小,越易形固溶 体,所形成的固溶体的固溶度也越大。
电子浓度因素
在尺寸有利的情况下,溶质原子的价越高,固溶度越 小。
电子浓度定义为合金中价电子数目与原子数目的比值。 固溶度受电子浓度控制,存在一临界值。
算方法。
难点:
1 相与组织的差别;间隙相与间隙化合物的区别; 2 相组成及组织组成相对量的计算; 3 形成金属化合物的相图
§3-1 合金中的相
合金: 一种金属元素与另一种或几种其它元素,经熔炼或 其它方法结合而成的具有金属特性的物质。如黄铜是铜 锌合金,钢、铸铁是铁碳合金。 组 元 :组成合金最基本的、独立存在的物质
一、固溶体
与固溶体的晶格相同的组成元素称为溶剂,在固溶体中一般 都占有较大的含量;其它组成元素称为溶质。

二元合金与相图课件PPT

二元合金与相图课件PPT

2021/3/10
4
1. 固溶体的分类
(1)按溶质原子在溶剂晶格中的位置分固溶体可分为置换 固溶体与间隙固溶体两种。
置换固溶体中溶质原子代换了溶剂晶格某些结点上的原子
形成置换固溶体时,溶质原子在溶剂晶格中的溶解度主要取 决于两者的晶格类型、原子直径及它们在周期表中的位置。
2021/3/10
5
间隙固溶体中溶质原子进入溶剂晶格的间隙之中。
电子化合物主要以金属键结合, 具有明显的金属特性, 可 以导电。它们的熔点和硬度较高,塑性较差,在许多有色金属 中为重要的强化相。
2021/3/10
11
3. 间隙化合物 由过渡族金属元素与碳、氮、氢、硼等原 子半径较小的非金属元素形成的化合物为间隙化合物。尺寸较 大的过渡族元素原子占据晶格的结点位置,尺寸较小的非金属 原子则有规则地嵌入晶格的间隙之中。根据结构特点,间隙化 合物分间隙相和复杂结构的间隙化合物两种。
提高的现象称为固溶强化。
固溶体引起的晶格畸变
2021/3/10
8
固溶强化是金属强化的一种重要形式。在溶质含量适当
时,可显著提高材料的强度和硬度,而塑性和韧性没有明显降
低。例如:纯铜的σb为220 MPa, 硬度为40 HB, 断面收缩率 ψ为70%。当加入1%的镍形成单相固溶体后, 强度升高到390
第三章 二元合金相图 概述
纯金属具有良好的导电导热性,但机械性能差,而且提炼 困难,价格昂贵,故工业上广泛应用的是合金材料。
合金 一种金属元素同另一种或几种其它元素, 通过熔化 或其它方法结合在一起所形成的具有金属特性的物质。
例如:钢(铁和碳的合金) 黄铜(铜和锌的合金) 组元 组成合金的独立的、最基本的单元叫做组元。组元可以 是金属、非金属元素或稳定化合物。

二元合金相图

二元合金相图

21
四 平衡结晶分析及其组织1源自金的结晶过程固溶体合金的结晶过程 22
结晶过程
1.当温度到达1点或稍下时,由L→α固溶体随着温度 的降低α% ↑ ,L%↓。并呈树枝状形态……
2.当温度到达2点时液相完全消失,得到100%α。
液相的成分1→α1→α2→…以致消失。 固相成分由c1→c2→2→… α(ob成分) 最后得到成分均匀的ob成分等轴状的α固溶体。
16
第二节 匀晶相图
一.相图的基本概念
● 相图:研究合金在平衡的条件下(无限缓慢冷却,比如 0.5~1.50C/min) ,合金的状态与温度、 成分间的关系的图解称 为相图或平衡图。
● 合金系:指研究的对象。如:Fe-C系,Pb-Sn系等。
● 状态:指合金在一定条件下有哪几相组成, 称为合金在该条 件下的状态。 如纯铁在1538℃以上的状态为液相;在1538℃时为液相和固 相两相共存; 1538℃以下为固相.
匀晶转变:在一定温度范围内,不断由液相中凝固出 固溶体,液相、固相成分都不断随温度的下降而沿液 相线和固相线变化的过程,叫做匀晶转变。
23
五 匀晶结晶的特点
1)树枝状长大:a固溶体在从液相中结晶出来的过程中, 包括有生核和长大两个过程,但固溶体更趋于呈树枝状 长大。
2)变温结晶过程:在一个温度区间进行。
14
B.复杂结构的间隙化合物
当非金属原子半径(rB)与金属原子半径(rA)之比rB /rA大于0.59时,形成具有复杂结构的间隙化合物。
(1)形成条件:两类元素的负电性相差较大且满足rB /rA > 0.59
(2)特性
(a) 复杂结构如:Fe3C 、Cr7C3 Cr23C6 (b) 高熔点、高硬度,但比间隙相的略低,在钢中也起强化作用; 塑性为零,加热容易分解 © 常形成Cr、Mn、Co、Fe的碳化物或它们的合金碳化物,常见 的类型有:M3C、M7C3、M23C6、M6C。

二元合金相图及相变基础知识

二元合金相图及相变基础知识
3.3
第3章 二元合金相图及相变基础知识
相图的概念
二、 冷却曲线
在液态合金的冷却过程中,可以用热
分析法测定其温度随时间的变化规律,即 冷却曲线。纯金属的冷却曲线上有一个平 台[图3.2(a)、(f)],说明结晶是在恒温下进 行的。这是因为纯金属在结晶过程中放出 大量的结晶潜热,补偿了向外散失的热量, 达到了热平衡。与纯金属相比,合金结晶 过程中放出的结晶潜热,一般情况下只能 抵消部分散失的热量,结晶是在一定的温 度范围内进行的[图3.2(b)、(c)、(e)],在冷 却曲线上表现为两个临界点,一个是结晶 开始温度,另一个是结晶终了温度。
以图3.2Pb-Sn合金相图为例,ED线表示Sn在固溶体中的溶解度极限,又 称固溶线,随着温度的降低,Sn在固溶体中的溶解度不断地减少,过剩的Sn 则以固溶体的形式析出,为了区别直接从液相中结晶出的固溶体(称为初生 相),这种从固溶体中析出的固溶体称为二次相或次生相(用Ⅱ表示);同 理FG线表示Pb在固溶体中溶解度极 限,随着温度的降低,Pb在固溶体中
2. 两组元液态下完全互溶固态下部分互溶 多数合金尽管在液态下能无限互溶,固态下一个组元在另一组元中却存在
一定的溶解度,它们可以构成共晶相图或包晶相图。 如果当合金组元的含量超出固溶体的溶解度时,合金从液态冷却到某一温
度会同时结晶出两种不同的固相,形成机械混合物,即能发生共晶转变,这类 合金系的相图就称为共晶相图。具有共晶相图的合金系有Pb-Sn、Al-Cu、AlSi等。
LC αP
β 1186℃ D
D点是包晶点。包晶转变终了时,成分为D点的合金组织中原来的L、 相全部转变成相。但成分在PD之间的合金还有相过剩,DC之间的合金 则有L相剩余。
3. 两组元液态完全互溶固态互不溶解 有些合金组元在液态下能够完全互溶,但在固态下彼此互不溶解,这

第三章、二元相图与铁碳合金

第三章、二元相图与铁碳合金
第三章、二元相图与铁碳合金相图
第一节、二元合金相图 (一)二元合金相图的建立 (二)基本相图 第二节、铁碳合金相图 (一)铁碳合金的基本组织 (二)铁碳合金相图
复习:
一、匀晶相图
二、共晶相图新课: 第二Fra bibliotek、铁碳合金相图
回答问题: 一、最常见的合金是什么合金? 答案:钢铁(铁碳合金)。 二、举例,生活中我们用到哪些铁碳合 金制品? 三、大家都看过古装电视电影,铁匠打 铁需要哪些工具?
思考:
常温下,铁碳合金所含的组织有哪些? 只有在一定温度下存在的组织有哪些?
作业:P56,第二题。

机械工程材料教学课件第3章二元合金及相图

机械工程材料教学课件第3章二元合金及相图
晶格畸变几率越大,变形程度也就越大,固溶强化作用也就 越显著,在固溶强化时合金的塑性和韧性也都得到了提升。
3.1 合金及其种类
固溶体的特点:
(1)固溶体的晶格类型与溶剂元素相同,但晶格常数发生了 改变。
(2)固溶体中溶质原子越多,固溶体的溶解度越大,晶格畸 变越严重,因此固溶强化的效果也就越显著。
分和晶格结构完全不同的新固相的转变过程。 相图如图3-2所示。
3.5 合金的性能与相图的关系
3.5.1 机械性能与相图的关系
如果合金的组织为两相机械混合物, 那么其性能与合金成分呈正(或反)比例 关系,并且数值为两相性能的算术平均值
总 Q Q
HB总 HB HB HB HB
如果合金的组织为固溶体,那么随着 溶质元素含量的增加,发生固溶强化现象, 合金的强度和硬度也增大。如果是无限互 溶的合金,那么当溶质含量为50%左右时, 合金的强度和硬度最高。
(3)溶质原子溶于溶剂原子后固溶体的成分可能会有所改变, 但其变化范围不大,也就是说溶入的原子数可多可少。 3.1.2金属化合物
金属化合物:合金组元之间发生相互作用而形成的一种新的 固相物质。
金属化合物可以分为以下几种:
(1)正常价化合物 (2)电子价化合物 (3)间隙化合物
3.1 合金及其种类
金属化合物的特点:
3.3常见相图
常见的相图有匀晶相图和共晶相图2种。 3.3.1 匀晶相图
匀晶相图:组成二元合金的组元在固态和液态时均能无限互 溶的合金的相图。
相图和结晶过程分别如图3-5(a)和(b)所示。
3.3常见相图
3.3.2 共晶相图 共晶反应:一定温度下,一定成分的液相同时结晶出两个成
分和结构都不相同的新固相的转变过程。 相图和结晶过程分别如图3-7和3-8所示。

第三章 二元合金相图及应用

第三章 二元合金相图及应用

性能:
加工性能
机械性能
第六节 铁碳合金相图
钢中的渗碳体
铸铁中的石墨
第六节 铁碳合金相图Fra bibliotek灰铸铁(珠光体+片状石墨 )
球墨铸铁(铸态)珠光体+铁素体+球状石墨 400X
第六节 铁碳合金相图
可锻铸铁 400X (铁素体+团絮状石墨)
蠕墨铸铁 (铁素体+蠕虫状石墨)400X
第六节 铁碳合金相图
四、珠光体(P)
共析相图
A
E
( A+Fe3C ) Ld Ld+Fe3CⅠ A+Ld+Fe3CⅡ 727℃
P+Ld′ +Fe3CⅡ Ld′ Ld′ +Fe3CⅠ ( P+Fe3C )
K
0.0218%C 0.77%C Fe
2.11%C
4.3%C
6.69%C Fe3C
第六节 铁碳合金相图
Fe-Fe3C相图分析
点:A、G、Q、D); E、 P; C、 S 线:ACD、AECF; ECF、PSK; ES、PQ; AE、GS; 区:单相区 两相区 三相区
所谓稳定化合物是指具有一定的熔点, 在熔点温度以下能够保持自己固有结构而 不发生分解的化合物,如:Mg2Si
含稳定化合物的相图
第四节 其他相图
温度
L+Mg L+ Mg2Si 638.8℃ 1087℃
L
L+ Mg2Si L+Si 946.7℃
1414℃
Mg+ Mg2Si
Mg Mg2Si
Mg-Si 合金相图
Mg2Si+ Si Si
第五节 相图与性能的关系

第三章3 金属的结晶与相图之二元相图匀晶

第三章3  金属的结晶与相图之二元相图匀晶

(1)细晶区(2)柱状晶区(3)等轴晶区铸锭结构示意图 (1)细晶区(2)柱状晶区(3)等轴晶区铸锭结构示意图 细晶区(2)柱状晶区(3)
杠杆定律示意图
4.匀晶系合金的非平衡结晶及晶内偏析 匀晶系合金的非平衡结晶及晶内偏析
固溶体结晶时,只有在极缓慢冷却、原子扩散充分的条件下, 固溶体结晶时,只有在极缓慢冷却、原子扩散充分的条件下, 固相的成分才能沿着固相线均匀地变化, 固相的成分才能沿着固相线均匀地变化,最终获得与原合金 成分相同的均匀α固溶体。 成分相同的均匀α固溶体。 实际生产中冷却速度都较快,固态下原子扩散又很困难, 实际生产中冷却速度都较快,固态下原子扩散又很困难,致 使固溶体内的原子来不及充分扩散, 使固溶体内的原子来不及充分扩散,先结晶出的固溶体含高 熔点组元( 中的N 较多, 熔点组元(Cu-Ni中的Ni)较多,后结晶出的固溶体含低 熔点组元( 较多。 熔点组元 ( C u ) 较多 。 这种在一个晶粒内化学成分不均匀 的现象称为晶内偏析。 的现象称为晶内偏析。 偏析会降低合金的力学性能和工艺性能, 生产中采用均匀化 偏析会降低合金的力学性能和工艺性能 退火或扩散退火消除。 退火或扩散退火消除。
三、二元合金相图
相平衡: 在一定条件下, 相平衡: 在一定条件下,合金系中参与相变的各相成 分和相对重量不变所达成的一种状态。 分和相对重量不变所达成的一种状态 。 此时合金系 的状态稳定,不随时间而改变。相平衡是动态平衡。 的状态稳定,不随时间而改变。相平衡是动态平衡。 合金极缓慢冷却结晶过程可认为是平衡结晶过程。 合金极缓慢冷却结晶过程可认为是平衡结晶过程。 合金相图: 合金相图 : 是表明在平衡状态下合金系中各合金的 组成相与温度、 成分之间关系的图解, 组成相与温度 、 成分之间关系的图解 , 又称合金平 衡图或合金状态图。 衡图或合金状态图。 通过相图可以了解合金系中各成分合金在不同温度 的组成相, 及各相的成分和相对量, 的组成相 , 及各相的成分和相对量 , 还可了解合金 在缓慢加热或冷却过程中的相变规律。 在缓慢加热或冷却过程中的相变规律。

第3章 二元相图(匀晶,共晶)

第3章 二元相图(匀晶,共晶)

1400
1400 1300
L
(L+ )
T
1200
T 1200
1100
1000
1000 900

0 20 40 40 60 80 80 100 100
800
800
t
WCu(%)
Cu-Ni合金相图的建立
二、热分析法ቤተ መጻሕፍቲ ባይዱ绘二元相图
液相线 液相区
T,C
1500 1400 1300 1200 1100 1000
匀晶相图的其它类型
有些合金的匀晶相图还有极点: 在Au-Cu、Fe-Co、Ti-Zr等合金 的相图上有极小点;
在Pb-Tl、Al-Mn等合金的相图上 有极大点。
二)固溶体的平衡凝固
平衡凝固:从液态无限缓慢冷却,在相变过程中充分进行组元间互相 扩散,达到平衡相的均匀成分,这种凝固过程叫平衡凝固。
三、杠杆定律
与力学中的杠杆定律相似,因而亦被称为杠杆定律
三、杠杆定律
运用:确定两平衡相的成分(浓度);确定两平衡相的相对量。 注意:只适用于两相区,并且只能在平衡状态下使用; 三点(支点和端点)要选准。
H
Ag-Cu共晶相图及合金的凝固
五、二元相图的几何规律
① 相图中所有的线条都代表发生相转变的温度和平衡相的 成分,所以相界线是相平衡的体现, 平衡相的成分必须 沿着相界线随温度而变化。 ② 两个单相区之间必定有一个由该两相组成的两相区分 开,而不能以一条线接界(即两个单相区只能交于一点而 不能交于一条线)。两个两相区必须以单相区或三相水平 线分开。即:在二元相图中,相邻相区的相数差为1,这 个规则为相区接触法则。
四、杠杆定律
合金成分为C0,总重量为1, 在T 温度时,由液相和固相组成,液 相的成分为CL,重量为WL,固 相成份为Cα,重量为Wα。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章-二元合金相图及应用
相图分析
温 度
a
L
L +
SS
A
ab : 液相线 ab : 固相线 L : 液相区 b S : 固相区 L+S:液固共存区
B
匀晶相图结晶过程分析:冷却曲线+结晶过程
匀晶结晶特点
α固溶体从液相中结晶出来的过程中, 也包括有生核与长
大两个过程。
结晶在一个温度区间内进行, 即为一个变温结晶过程。
在两相区内, 温度一定时, 两相的成分(即Ni含量)是确定的。 确定相成分的方法:过指定温度T1作水平线, 分别交液相线 和固相线于 a1点 c1点, 则 a1点 c1点在成分轴上的投影点 即相应为 L相和 α 相的成分。随着温度的下降, 液相成分 沿液相线变化, 固相成分沿固相线变化。
两相区内, 温度一定时, 两相的重量比是一定的。(应用 杠杆定律计算)
合金的室温组织全部为共晶体,即只含一种组织组 成物;其组成相仍为 α和 β 相。
共晶合金组织的形态
合金Ⅲ的结晶过程
合金Ⅲ是亚共晶合金, 合金冷却到1点温度后, 由 匀晶反应生成 α固溶体, 叫初生 α固溶体。
从1点到2点温度的冷却过程中,按照杠杆定律, 初生 α的成分沿 ac线变化,液相成分沿 ad 线 变化;初生 α逐渐增多,液相逐渐减少。
杠杆定律只适用于相图中的两相区, 并且只能在平衡 状态下使用。杠杆的两个端点为给定温度时两相的成 分点, 而支点为合金的成分点。
杠杆定律的证明和力学比喻
枝晶偏析
1)定义:由于冷却速度快,造成晶体中 晶粒内化学成分不均匀的现象。
2)枝静偏析危害:影响合金力学性能、耐蚀 性能和加工工艺性能
3)消除办法:再结晶退火
固态下组元间不溶解的共晶相图
形成稳定化合物的相图
包晶相图
两组元在液体时无限互溶,在固态时形成有限固 溶体,并发生包晶反应的合金系构成的相图。
Pt-Ag合金相图
包晶相图
相图分析
Pt-Ag合金相图中存在三种相: Pt与Ag形成的液溶体L相; Ag溶于Pt中的有限固溶体α相; Pt溶于Ag中的有限固溶体β相。
Cu-Ni合金枝晶偏析示意图
二元共晶相图
定义:两个组元在液态无限互溶,但固态只 能有限互溶或不能互溶,并发生共晶反应的 合金系所构成的相图为二元共晶相图。
如:Pb-Sb、Pb-Sn、Cu-Ag等
相图分析:点、线、区
1 A
32 L
L+α
温 度
α
C

E
α+β
4
L+β
F
Pb
Sn%
1)点 B 2)线
β 3)区
合金Ⅳ的结晶过程
组织和相的关系
共析相图
d点成分(共析成分)的合金从 液相经过匀晶反应生成 γ相后, 继续冷却到d 点温度(共析温度) 时, 在此恒温下发生共析反应: γ → (α+β)
由一种固相转变成完全不同 的两种相互关联的固相, 此两 相混合物称为共析体。
共析相图中各种成分合金的 结晶过程的分析与共晶相图相 似, 但因共析反应是在固态下 进行的, 所以共析产物比共晶 产物要细密得多。
合金Ⅲ的结晶过程
合金的室温组织为初生 α+ βII + (α+β)
合金的组成相为 α 和 β , 它们的相对重量为:
成分在 cd之间的所有亚共晶合金的结晶过程与
合金Ⅲ相同,仅组织组成物和组成相的相对重量 不同,成分越靠近共晶点,合金中共晶体的含量 越多。
亚共晶合金组织组成物的质量分数
得到合金III在室温下的三种 组织组成物的质量分数为 :
当刚冷却到2点温度时,合金由c点成分的初生 α 相和d 点成分的液相组成。然后液相进行共 晶反应, 但初生 α相不变化。经一定时间到2‘点 共晶反应结束时,合金转变为 α+ (α+β)
。从共晶温度继续往下冷却, 初生 α中不断析出 βII , 成分由 c点降至 f点;共晶体形态、成分和 总量保持不变。
e点为包晶点, e点成分的合金冷却到 e点所对应的温度 (包晶温度)时发生包晶反应Le+cd 。 发生包晶反 应时三相共存, 它们的成分确定, 反应在恒温下平衡地 进行。水平线ced 为包晶反应线。
cf为Ag在Pt 中的溶解度线, eg为Pt在Ag 中的溶解度 线。
相图与性能的关系
具有匀晶相图、共晶相图的合金的机械性能和物理性 能随成分而变化的一般规律见下图
D
4)特征反应式
L α+β
G
Sn
结晶过程分析
合金I结晶过程
其组成相是f点成分的α相和g点成分的β相。运用 杠杆定律, 两相的相对重量为:
合金室温组织由α和β组成,α和βII即为组织组 成物。
合金II的结晶过程
由于析出的 二次β 和 二次α 都相应地同 β 和 α相连在一起,共晶体的形态和成分不发生变化。
固溶体结晶时成分是变化的,如果冷却较快,造成枝晶偏析
杠杆定律


L
a
TL
Tn TS
S
Qs
QL
A dc e
杠杆定理 QS + QL = 1 dQS + eQL = 1× c QL=(dc/de) 100% QS=(ce/de) 100% b
B
杠杆定律是计算合金平衡组织中的组成相或组织组成 物的质量分数的重要工具。应当熟练掌握和运用。
固溶体的性能与溶质元素的溶入量有关, 溶质的 溶入量越多, 晶格畸变越大, 则合金的强度、硬 度越高, 电阻越大。当溶质原子含量大约为50% 时, 晶格畸变最大, 而上述性能达到极大值, 所 以性能与成分的关系曲线具有透镜状。
两相组织合金的机械性能和物理性能与成分呈直 线关系变化。
对组织较敏感的某些性能如强度等, 与组成相或 组织组成物的形态有很大关系。组成相或组织组 成物越细密, 强度越高(见图中虚线)。当形成化 合物时, 则在性能一成分曲线上于化合物成分 处出现极大值或极小值。
组织组成物:初生 α、 βII和共 晶体 (α+β) 。
先求合金在刚冷到2点温度而尚未 发生共晶反应时 α 和 L相的质量
分数相对重量。
液相在共晶反应后全部转变为共晶 体(α+β) , 这部分液相的质量分 数就是室温组织中共晶体 (α+β)
的质量分数。 初生 αc冷却不断析出 βII, 到室 温后转变为 αf和 βII。按照杠杆 定律, 可求出 αf、βII占 αf+ βII的质量分数(注意, 杠杆支点在 c'点), 再乘以初生 αc在合金中的 质量分数, 求得 αf、βII占合金的 质量分数。
相关文档
最新文档