金属材料力学性能实验断裂韧度试验
7050铝合金平面应变断裂韧度KIC试验研究
202 军民两用技术与产品 2018·3(下)随着节能和环境保护日益受到人们的关注,高强度的轻质材料被广泛应用于工程领域中。
铝合金以其低密度、高比强度、耐腐蚀性、良好的成形性能等优点,已被广泛应用于许多领域中如车辆、化工、机械工程、航空航天等[1-2]。
在诸多铝合金中,7050强度高可热处理铝合金,具有良好的机械性能,可使用性能好,易于加工,耐磨性能好,其T7451状态增强了耐腐蚀断裂性能,适合飞机构架及高强度配件,适用于高压结构零件的高轻度材料,适用于航空航天,模具加工、机械设备、工装夹具,特别适用于飞机结构及其他要求强度高、抗腐蚀性能强的高应力结构体。
金属材料在工程领域中应用往往要承受循环载荷的作用,在循环载荷作用下,可能会导致零件产生裂纹,断裂韧度是反映材料在静态或准静态载荷下,抵抗裂纹失稳扩展或稳态扩展起始能力的性能指标。
本文主要对7050铝合金平面应变断裂韧度性能研究,从而对材料工艺性能做出准确的判断。
1 试样制备与试验方法1.1 试样制备铝合金板材的加工工艺一般都要经过轧制处理,经过轧制后的铝合金板材,其不同方向的力学性能所表现出来的各向异性将会限制合金的使用,工程设计时只能以性能相对较差的方向作为设计依据,因此对铝合金各向异性方面的研究具有重要意义。
通常所说的各向异性表示:在不同的晶体学方向上,材料的宏观性能,表现出由于方向的不同而存在明显差异的特征。
晶体学取向存在方向性,即择优取向(织构)的概念,织构的存在会在一定程度上引起多晶体金属结构方面的各向异性。
组织方面的各向异性通常是晶粒沿某一方向,被压扁或拉长,造成晶界在晶体的多个方向上作用有所区别而形成的[3]。
本文7050平面应变断裂韧度取样方向分为T-L 、L-T 及S-T 三个方向,其取样方向是根据该材料在构件上所承担力或疲劳易产生裂纹方向进行试验。
1.2 试验设备及参数(1)试验在INSTRON8801疲劳试验机上进行,加载频率f=5Hz ;COD 规的输出应显示缺口两侧精确定位的相对位移。
金属断裂韧度测试
金属断裂韧度测试引言:金属断裂韧度测试是一种用来评估金属材料抵抗断裂的能力的方法。
金属的断裂韧度是指在金属受到外力作用下,在断裂前能够吸收的能量大小。
了解金属的断裂韧度对于工程设计和材料选择具有重要意义。
本文将介绍金属断裂韧度测试的原理、常用的测试方法以及测试结果的分析和应用。
一、原理金属断裂韧度是指金属材料在断裂前能够吸收的能量大小。
金属的断裂韧度与材料的力学性能密切相关,可以通过材料的拉伸试验来评估。
拉伸试验是一种常见的金属力学性能测试方法,通过对试样施加拉力,观察试样在外力作用下的变形和断裂行为,从而得到材料的拉伸性能参数。
拉伸试验的结果可以用来计算金属的断裂韧度。
二、测试方法1. 常规拉伸试验常规拉伸试验是最常用的金属断裂韧度测试方法之一。
该方法需要制备符合标准要求的试样,在拉伸试验机上施加均匀的拉力,观察试样的断裂行为。
通过测量试样的断裂前后长度变化和应力-应变曲线,可以计算出金属的断裂韧度。
2. 冲击试验冲击试验也是一种常用的金属断裂韧度测试方法。
该方法利用冲击试验机对试样施加冲击载荷,观察试样在冲击载荷下的断裂行为。
冲击试验的结果可以通过试样的冲击功吸收能力来评估金属的断裂韧度。
3. 复合试验复合试验是一种结合多种测试方法的金属断裂韧度测试方法。
通过对试样进行拉伸、冲击等多种试验,综合评估金属的断裂韧度。
这种方法可以更全面地了解金属材料的断裂行为,提供更准确的韧度评估。
三、测试结果分析和应用根据金属断裂韧度测试的结果,可以评估金属材料的断裂性能,并为工程设计和材料选择提供依据。
1. 工程设计金属的断裂韧度是衡量金属材料抵抗断裂的能力的重要指标。
对于需要承受大量外力的工程结构,如桥梁、飞机等,需要选择具有较高断裂韧度的金属材料,以确保结构的安全可靠性。
2. 材料选择不同金属材料的断裂韧度不同,根据具体应用需求选择合适的金属材料非常重要。
通过金属断裂韧度测试,可以评估不同材料的断裂韧度,并选择适合的材料。
北京科技大学材料力学性能平面应变断裂韧性试验报告材科09级
北京科技⼤学材料⼒学性能平⾯应变断裂韧性试验报告材科09级平⾯应变断裂韧性试验报告⼀、试验⽬的、任务与要求1.通过三点弯曲试验测定40Cr的平⾯应变断裂韧度;2.加深理解平⾯应变断裂韧度的应⽤及其前提条件。
⼆、试验原理断裂条件是:σ√aa=材料常数σ为正应⼒,2aa为试样或者构件中的裂纹长度。
线弹性断裂⼒学断裂判据:KK=YYYY√aa≥KK II IIY是裂纹形状因⼦。
平⾯应变断裂韧度KK II II是材料抵抗裂纹扩展能⼒的特征参量,它与裂纹的尺⼨及承受的应⼒⽆关。
它可以⽤于:●评价材料的适⽤性●作为材料的验收和质量控制标准●对构件的断裂安全性进⾏评价三、试验材料与试样本试验所⽤材料为40Cr钢,热处理⼯艺为:860℃淬⽕,220℃回⽕,屈服强度RR pp0.2= 1400MMMMaa1。
试样为三点弯曲试样SE(B),名义跨距S=4W。
其标准⽐例和公差见图1:图1 弯曲试样SE(B)的标准⽐例和公差1屈服强度由单向拉伸试验得出,并⾮本试验所得。
四、试验仪器与设备1.WDW-200D万能拉伸试验机;2.⼯具显微镜,最⼩分度为0.001 mm;3.YYJ-4/10引伸计,能够准确指⽰裂纹嘴标距间的相对位移,且能稳妥地安在试样上;4.游标卡尺,精度为0.02 mm。
五、试验步骤1.试验之前按照国标要求预先制备好疲劳裂纹;2.测量试样厚度B:从疲劳裂纹顶端⾄试样的⽆缺⼝边,沿着预期的裂纹扩展线,在三个等间隔位置上测量厚度B,准确到0.025 mm或0.1%B,取较⼤者,取三次测量平均值;3.测量试样宽度W:在缺⼝附近⾄少三个位置上测量宽度W,准确到0.0025 mm或0.1%W,取较⼤者,计算平均值;4.在试样上粘贴引伸计卡装⼑⼝2;5.在试样上装载引伸计后,将试样装于试验机上,不断调整试样位置,使其处于载样台的正中,裂纹扩展⾯与加载压头要处于⼀个平⾯上,避免⼆者错位或形成明显不为0的夹⾓。
然后设置加载速率为0.3mm/min进⾏加载;6.试样断裂后,测量裂纹长度aa:在B/4、B/2、3B/4的位置上测量裂纹长度aa2、aa3、aa4,同时测量aa1与aa5。
金属材料表面裂纹拉伸试样断裂韧度试验方法
金属材料是工程领域中广泛应用的材料之一,其性能对于工程结构的安全性和稳定性有着重要的影响。
而金属材料的表面裂纹拉伸试样断裂韧度试验方法是评定金属材料韧性能的重要手段之一。
本文将介绍金属材料表面裂纹拉伸试样断裂韧度试验方法的具体步骤和注意事项。
一、试验目的金属材料的表面裂纹拉伸试样断裂韧度试验旨在评定金属材料在受力状态下的抗拉性能和韧性能,为工程结构设计和材料选用提供参考依据。
二、试验样品的准备1. 样品的选择:一般选用金属材料的板材作为试验样品,尺寸一般为200mm*50mm*10mm。
2. 表面处理:样品的表面应保持平整,无凹凸不平或者明显的划痕。
三、试验步骤1. 样品标记:在样品上标注好试验样品的编号和方向。
2. 制作缺口:在样品上制作缺口,缺口长度为10mm,宽度为0.5mm。
3. 夹具安装:将样品安装在试验机的夹具上,夹具的张合长度为100mm。
4. 载荷施加:在试验机上施加加载,载荷速度控制在1mm/min。
5. 记录数据:在试验过程中,记录载荷和位移的数据,以便后续分析。
四、试验注意事项1. 缺口制作:缺口的制作应该尽量避免产生裂纹,可以使用慢速切割或者加工。
2. 夹具安装:夹具的安装要稳固,保证试验过程中的样品不会出现偏移或者松动。
3. 载荷施加:载荷的施加速度要均匀,避免过快或者过慢导致试验结果的偏差。
4. 安全防护:在试验过程中,要保证操作人员的安全,并严格遵守安全操作规程。
五、试验结果分析根据试验数据,可以得到金属材料在受拉状态下的应力-应变曲线,并据此分析金属材料的屈服强度、最大应力、断裂韧性等性能指标。
通过以上试验方法,我们可以准确评定金属材料在受拉状态下的韧性能,并为工程设计和材料选用提供科学依据。
试验过程中需要特别注意安全事项,确保工作人员的安全。
希望本文对金属材料表面裂纹拉伸试样断裂韧度试验方法有所帮助。
六、试验结果分析通过表面裂纹拉伸试样断裂韧度试验得到的金属材料在受拉状态下的应力-应变曲线,可以为工程设计和材料选择提供重要参考信息。
大连理工大学精品课程-材料力学性能-第四章-金属的断裂韧度(2)
建立符合塑性变形临界条件(屈服)的函数表达
式r=f(),该式对应的图形即代表塑性区边界形状,
其边界值即为塑性区尺寸。
由材料力学可知,通过一点的主应力1、2、 3和x、y、z方向上各应力分量的关系为:
7
2020年7月30日 星期四
第四章 金属的断裂韧度
1 x y
2
x
2
y
2
2 xy
1 K cos 1 sin
展。我们将x方向(=0)的塑
性区尺寸r0定义为塑性区宽 度。
10
图4-2 裂纹尖端附近塑性区 的形状和尺寸
2020年7月30日 星期四
第四章 金属的断裂韧度
r0
1
2
K
ys
2
KI—应力场强度因子
ys—有效屈服应力
s—单向拉伸时的屈服强度 —泊松比
r0
1
2
K
s
2
(平面应力)
r0
(1 2 2
)2
、有效裂纹及KI的修正 由于裂纹尖端塑性区的存在,会降
低裂纹体的刚度,相当于裂纹长度的增
加,因而会影响应力场及KI的计算,所 以要对KI进行修正。最简单和实用的方 法是在计算KI时采用虚拟等效裂纹代替 实际裂纹。
20
2020年7月30日 星期四
第四章 金属的断裂韧度
如图4-5所示,裂纹a前方
区域未屈服前,y的分布曲线
2020年7月30日 星期四
第四章 金属的断裂韧度
KI≥KI(KIC)是一个很有用的关系式,它将 材料的断裂韧度同机件的工作应力及裂纹尺寸 的关系定量地联系起来了。应用这个关系式可 解决有关裂纹体的断裂问题:如可以估算裂纹
体的最大承载能力、允许裂纹尺寸a及材料断
材料力学性能-第四章-金属的断裂韧度(4)
公式进行判断:
ac
0.25
KIC
2
2021年10月21日 星期四
第四章 金属的断裂韧度
1、高强度钢的脆断倾向 这类钢的强度很高,0.2≥1400MPa,主要用于航 空航天,工作应力较大,但断裂韧度较低,如18Ni马 氏体时效钢,0.2=1700MPa,KIC=78MPa·m1/2,若工 作应力=1250MPa时,利用上述公式可得ac=1mm,这 样小的裂纹在机件焊接过程中很容易产生,用无损检 测方法也容易漏检,所以此类机件脆断几率很大,因 此在选材时在保证不塑性失稳的前提下,尽量选用0.2 较低而KIC较高的材料。
B工艺:/0.2=1400/2100=0.67<0.7,故不必考虑
塑性区修正问题。由公式 KIC YcB a
可得: cB
1 Y
KIC a
Φ 1.1
KIC
a
1.273
47
1.1 3.14 0.001
971MPa
与其工作应力=1400MPa相比, cB< ,即工
作时会产生破裂,说明B工艺是不合格的,这和
2021年10月21日 星期四
第四章 金属的断裂韧度
其0.2=1800MPa,KIC=62MPa·m1/2,焊接后发现焊缝
中有纵向半椭圆裂纹,尺寸为2c=6mm,a=0.9mm,
试问该容器能否在p=6MPa的压力下正常工作?
t
D
解:根据材料力学理 论可以确定该裂纹受 到的垂直拉应力:
pD 61.5 900MPa
趋于缓和,断裂机理不再发生
变化。
2021年10月21日 星期四
第四章 金属的断裂韧度
7.应变速率:应变速率έ具有 KIC
与温度相似的效应。增加έ相 当于降低温度,使KIC下降,
平面应变断裂韧度K1c的测定(实验报告)
1、实验目的:2、学习了解金属平面应变断裂韧度K1C试样制备, 断口测量及数据处理的关键要点。
3、掌握金属平面应变断裂韧度K1C的测定方法。
一、实验原理本实验按照国家标准GB4161-84规定进行。
(一)断裂韧度是材料抵抗裂纹扩展能力的一种量度, 在线弹性断裂力学中,材料发生脆性断裂的判据为: K1≤K1C, 式中K1为应力场强度因子, 它表征裂纹尖端附近的应力场的强度, 其大小决定于构件的几何条件、外加载荷的大小、分布等。
K1C是在平面应变条件下, 材料中Ⅰ型裂纹产生失稳扩展的应力强度因子的临界值, 即材料平面应变断裂韧度。
裂纹稳定扩展时, K1和外力P、裂纹长度a、试件尺寸有关;当P和a达到Pc和ac时, 裂纹开始失稳扩展。
此时材料处于临界状态, 即K1=K1C。
K1C与外力、试件类型及尺寸无关(但与工作温度和变形速率有关)。
(二)应力场强度因子K1表达式三点弯曲试样:K1=(PS/BW3/2)f(a/W)式中: S为试件跨度, B为试件厚度, W为试件高度, a为试件裂纹长度。
试件B.W和S的比例为: B: W: S=1: 2: 8, 见图2-1所示:图2-1三点弯曲试件图(三)修正系数f(a/W)为a/W的函数, 可以查表2-1, a/W在0.45-0.55之间。
(四)试样尺寸要求及试样制备平面应变条件对厚度的要求:中间三个读数平均值a=1/3(a2+a3+a4);3.根据测得到a和W值, 计算a/W值(精确到千分之一), f(a/W)数值查表或计算。
f(a/W)={3(a/W)1/2[1.99-(a/W)(1-a/W)×(2.15-3.93a/W+2.7a2/W2)]}/2(1+2a/W)(1-a/W)3/2将PQ、B.W和f(a/W)代入下式:K Q=(P Q S/BW3/2)f(a/W)即可算出KQ值, 单位MPam1/2。
相关换算单位公式:MPam1/2=MNm-3/2, MPa=MNm-2, 1kgf=9.807N, 1kgfmm-3/2=0.310MPam1/2。
最新06断裂韧性的测试原理详解
• 然后再依据一些规定判断Kq是不是平面应变状态下的KIC, 如果Kq不符合判别的要求,则仍不是KIC,需要增大试样尺 寸重新试验,直到测出材料的KIC值。
1
11
2 试件
• 三点弯曲试样SENB(Single edged notched bend specimen) • 紧凑拉伸试样CT(Compact tension specimen) • C形拉伸试样 • 圆形紧凑拉伸试样 • 单边缺口拉伸试样(Single edged notched tension specimen) • 宽板试样(curved wide plate testing)
ASTM E1820-09 Standard Test Method for Measurement for Fracture Toughness
ASTM E1823-09 Technology Relating to Fatigue and Fracture Testing
ASTM E1921-09
1
4
Related specifications
ASTM E399-09 Standard Test Method for Plane Strain Fracture Toughness of Metallic Materials
ASTM E1290-09 Standard Test Method for Crack-Tip Opening Displacement (CTOD) Fracture Toughness Measurement
断裂韧性实验报告材料
断裂韧性测试实验报告随着断裂力学的发展,相继提出了材料的IC K 、()阻力曲线J J R 、)(阻力曲线CTOD R δ等一些新的力学性能指标,弥补了常规试验方法的不足,为工程应用提供了可靠的断裂判据和设计依据。
下面介绍下这几种方法的测试原理及试验方法。
1、三种断裂韧性参数的测试方法简介1. 1 平面应变断裂韧度IC K 的测试对于线弹性或小围的I 型裂纹试样,裂纹尖端附近的应力应变状态完全由应力强度因子I K 所决定。
I K 是外载荷P ,裂纹长度a 及试样几何形状的函数。
在平面应变状态下,当P 和a 的某一组合使I K =IC K ,裂纹开始失稳扩展。
I K 的临界值IC K 是一材料常数,称为平面应变断裂韧度。
测试IC K 保持裂纹长度a 为定值,而令载荷逐渐增加使裂纹达到临界状态,将此时的C P 、a 代入所用试样的I K 表达式即可求得IC K 。
IC K 的试验步骤一般包括:(1) 试样的选择和准备(包括试样类型选择、试样尺寸确定、试样方位选择、试样加工及疲劳预制裂纹等);(2) 断裂试验;(3) 试验结果的处理(包括裂纹长度a 的测量、条件临界荷载Q P 的确定、实验测试值Q K 的计算及Q K 有效性的判断)。
1. 2 延性断裂韧度R J 的测试J 积分延性断裂韧度是弹塑性裂纹试样受I 型载荷时,裂纹端点附近区域应力应变场强度力学参量J 积分的某些特征值。
测试J 积分的根据是J 积分与形变功之间的关系:a B U J ∂∂-= (1-1) 其中U 为外界对试样所作形变功,包括弹性功和塑性功两部分,a 为裂纹长度,B 为试样厚度。
J 积分测试有单试样法和多试验法之分,其中多试样法又分为柔度标定法和阻力曲线法。
但无论是单试样法还是多试样柔度标定法,都须先确定启裂点,而困难正在于此。
因此,我国GB2038-80标准中规定采用绘制R J 阻力曲线来确定金属材料的延性断裂韧度。
这是一种多试样法,其优点是无须判定启裂点,且能达到较高的试验精度。
材料力学性能-第四章-金属的断裂韧度(3)
2021年10月21日 星期四
第四章 金属的断裂韧度
由于材料性能及试样尺寸不同,F-V曲线有三
种类型,如图4-9所示。
F Fmax
Fmax
Fmax
Ⅰ-材料韧性较好或 试样尺寸较小;
Ⅱ-材料韧性或试样 尺寸居中;
2021年10月21日 星期四
第四章 金属的断裂韧度
若材料韧性居中或试样厚度中等时,可能出现
Ⅱ型曲线。此类曲线有明显的迸发平台,这时由于
在加载过程中,处于平面应变状态的中心层先行扩
展,而处于平面应力状态的表面层还未扩展,因此
中心层裂纹迸发式的扩展被表面层阻碍。迸发时常
伴有清脆的爆裂声,这时的迸发载荷就可以作为FQ, 由于材料显微组织可能不均匀,有时在F-V曲线上会
之减小。
2021年10月21日 星期四
第四章 金属的断裂韧度
实测的临界应力场强度因子KC与试样 厚度的关系如图4-11所示。
由图可见,当试样 厚度增加到某一个值Bc 后,KC也趋向一个恒定 值,此值即为材料的平 面应变断裂韧性KIC。
KC/MPa·m1/2
KIC
B/mm
图4-11 临界应力场强度因子 与试样厚度的关系
2021年10月21日 星期四
第四章 金属的断裂韧度
大量试验表明,Bc值也大致等于2.5(KIC/ys)2,
因此,试样厚度的要求也是:
B
2.5
KIC
ys
2
但在实际检验中,KIC值未知,须用KQ代替,
并利用试验标准中的某些规定,使最后的判断条
件被简化为:
B
(完整版)断裂韧性KIC测试试验
实验五断裂韧性K IC测试试验一、试样的材料、热处理工艺及该种钢材的σy 和KⅠC的参考值本实验采用标准三点弯曲试样(代号SE(B)),材料为40Cr,其热处理工艺如下:①热处理工艺:860℃保温1h,油淬;220℃回火,保温0.5~1h ;②缺口加疲劳裂纹总长:9~11mm (疲劳裂纹2~3.5mm)③不导角,保留尖角。
样品实测HRC50,从机械手册中关于40Cr 的热处理实验数据曲线上查得:σy=σ 0.2=1650MPa,σb=1850MPa,δ 5=9%,ψ =34%,KⅠC=42MN · m -3/2。
二、试样的形状及尺寸国家标准GB/T 4161-1984《金属材料平面应变断裂韧度KⅠC 试验方法》中规定了两种测试断裂韧性的标准试样:标准三点弯曲试样(代号SE(B))和紧凑拉伸试样(代号C(T))。
这两种试样的裂纹扩展方式都是Ⅰ型的。
本实验采用标准三点弯曲试样(代号SE(B))。
试样的形状及各尺寸之间的关系如图所示:为了达到平面应变条件,试样厚度 B 必须满足下式:B≧2.5(KⅠC/ σy)2a≧2.5(KⅠC/ σy)2(W-a)≧ 2.5(KⅠC/σ y)2式中:σ y—屈服强度σ 0.2 或σ s 。
因此,在确定试样尺寸时,要预先估计所测材料的KⅠC 和σ y 值,再根据上式确定试样的最小厚度B。
若材料的KⅠC 值无法估计,则可根据σ y/E 的值来确定B 的大小,然后再确定试样的其他尺寸。
试样可从机件实物上切去,或锻、铸试样毛坯。
在轧制钢材取样时,应注明裂纹面取向和裂纹扩展方向。
试样毛坯粗加工后,进行热处理和磨削,随后开缺口和预制裂纹。
试样上的缺口一般在钼丝电切割机床上进行切割。
为了使引发的裂纹平直,缺口应尽可能地尖锐。
开好缺口的试样,在高频疲劳试验机上预制裂纹。
疲劳裂纹长度应不小于2.5%W,且不小于1.5mm 。
a/W 值应控制在0.45~0.55 范围内。
本试样采用标准三点弯曲试样(代号SE(B)),其尺寸:宽W=19.92mm ,厚B=10.20mm 总长100.03mm 。
测定40Cr钢的平面应变断裂韧度KIC
测定40Cr 钢的平面应变断裂韧度K IC一、试验目的:加深了解平面应变断裂韧度的应用及其前提条件,体验试验过程。
二、 试验原理:断裂是材料构件受力作用下发生的最危险的变形形式,尤其是没有发生明显的宏观塑性变形的情况下就发生的脆性断裂。
理论分析和大量实践结果表明:在陶瓷、玻璃等脆性材料中,断裂条件是σ=材料常数 (1)式中,σ为正应力,2a 为试样或者构件中的裂纹长度。
这样的结果,对于高强度的金属材料的脆性断裂也于实际符合得很好。
根据线弹性断裂力学,断裂的判据是裂纹前沿应力强度因子K 达到其临界值——材料的平面应变断裂韧度IC K ,IC K Y K σ=≥ (2) 式中Y 是裂纹的形状因子。
平面应变断裂韧度IC K 是材料抵抗裂纹扩展能力的特征参量,他与裂纹的尺寸及承受的应力无关。
三、 试样准备:本试验采用三点弯曲标准试样,宽度与厚度之比W/B 的名义值是2,试样时两个支撑点之间的夸距的名义值S=4W 。
四、试样设备:足够加载能力的试验机,引伸计,工具显微镜 五、 试验过程:1、 测定试样的厚度B=10.10mm ,宽度W=20.10mm2、 对试样粘贴引伸计的卡装刀口。
将试样安放在试验机上,要求裂纹扩展面与加载压头尽量处于同一个平面上,避免二者。
3、 对试样加载,测量载荷P-位移V 关系曲线,直到试样被完全断裂为止4、 在裂纹扩张断裂的试样断口上,如图3示意性给出的那样,借助工具显微镜,在试样的 2.5,5.0,7.5mm 的位置上测量裂纹长度,记做a2,a3,a4; a2=10.178mm, a3=10.184mm,a4=10.186mm (显然a2,a3,a4满足测量准确度0.5%的要求) 同时两个自由表面上的裂纹长度a1=10.130mm, a5=10,223mm 。
试验有效性的判断:裂纹长度a=(a2+a3+a4)/3=10.183mm 。
(说明:a1与a5处于自由表面,不是平面应变状态,a 要求是处于平面应变状态下的裂纹,a2,a3,a4是平面应变状态下的裂纹)a2,a3,a4中任意两个测量值之差最大为a4-a2=0.008mm <a*10%=1.0183mm ;a1,a5,a 中任意两个值之差最大为a5-a1=0.093<a*10%=1.0183mm ; 观察裂纹面与BW 面基本平行,偏差在±10°以内。
断裂韧性实验报告材料
断裂韧性测试实验报告随着断裂力学的发展,相继提出了材料的IC K 、()阻力曲线J J R 、)(阻力曲线CTOD R δ等一些新的力学性能指标,弥补了常规试验方法的不足,为工程应用提供了可靠的断裂判据和设计依据。
下面介绍下这几种方法的测试原理及试验方法。
1、三种断裂韧性参数的测试方法简介1. 1 平面应变断裂韧度IC K 的测试对于线弹性或小围的I 型裂纹试样,裂纹尖端附近的应力应变状态完全由应力强度因子I K 所决定。
I K 是外载荷P ,裂纹长度a 及试样几何形状的函数。
在平面应变状态下,当P 和a 的某一组合使I K =IC K ,裂纹开始失稳扩展。
I K 的临界值IC K 是一材料常数,称为平面应变断裂韧度。
测试IC K 保持裂纹长度a 为定值,而令载荷逐渐增加使裂纹达到临界状态,将此时的C P 、a 代入所用试样的I K 表达式即可求得IC K 。
IC K 的试验步骤一般包括:(1) 试样的选择和准备(包括试样类型选择、试样尺寸确定、试样方位选择、试样加工及疲劳预制裂纹等);(2) 断裂试验;(3) 试验结果的处理(包括裂纹长度a 的测量、条件临界荷载Q P 的确定、实验测试值Q K 的计算及Q K 有效性的判断)。
1. 2 延性断裂韧度R J 的测试J 积分延性断裂韧度是弹塑性裂纹试样受I 型载荷时,裂纹端点附近区域应力应变场强度力学参量J 积分的某些特征值。
测试J 积分的根据是J 积分与形变功之间的关系:a B U J ∂∂-= (1-1) 其中U 为外界对试样所作形变功,包括弹性功和塑性功两部分,a 为裂纹长度,B 为试样厚度。
J 积分测试有单试样法和多试验法之分,其中多试样法又分为柔度标定法和阻力曲线法。
但无论是单试样法还是多试样柔度标定法,都须先确定启裂点,而困难正在于此。
因此,我国GB2038-80标准中规定采用绘制R J 阻力曲线来确定金属材料的延性断裂韧度。
这是一种多试样法,其优点是无须判定启裂点,且能达到较高的试验精度。
实验疲劳实验
N
1 (3392 5382 4372 1362) 13
380
MPa
金属的断裂韧度
金属的断裂韧度
一.线弹性条件下的金属断裂韧度
1.裂纹扩展的基本形式:
张开型(I型) 滑开型(II型) 撕开型(III型)
2.弹性应力场方程的推导
1 v
E 2r
KI
cos
2
1 2v sin
2
2
sin
3
2
y
1 v
E 2r
KI
cos 1 2v sin
2
2
2
sin 3
2
xy
2(1 v)K I
E 2r
sin
2
cos cos 3
22
v 式中: ——泊松比 E ——拉伸杨氏模量
θ= 0 则:
x y
KI 2r
xy 0
式中 KI 值的大小直接影响应力场的大小,KI 可以表示应力场的强弱程度故称为应 力场强度因子
1.疲劳S-N曲线
测定S-N曲线(即应力水平-循环次数N曲线)采用成组法。至少取五级应
力水平,各级取一组试件,其数量分配,因随应力水平降低而数据离散增大,故 要随应力水平降低而增多,通常每组5根。升降法求得的,作为S-N曲线最低应 力水平点。然后,以最大应力为纵坐标,以循环数N或N的对数为横坐标,用最佳 拟合法绘制成S-N曲线
裂纹失稳扩展脆断的断裂K判据:
KI KIC (KC )
Y a KIC (KC )
裂纹体受力时,只有满足上述条件就会发生脆性断裂。反之, 即使存在裂纹,也不会断裂。此称为破损安全。
金属的断裂 断裂韧度KIC的测试和影响因素、应用举例
纹的真实扩展和由裂纹尖端产生的塑性区所造成的等效扩 展在内)达到裂纹原始长度a的2%(即 a / a 2% )时的 载荷作为条件临界载荷 F5 FQ ;
Ⅱ:当材料韧性和尺寸居中时,有一个类似于 屈服平台的台阶,同样,越过这个平台载荷有 一个上升段,这时开始屈服的点作为条件临界 载荷 FQ ; Ⅲ:材料很脆或者尺寸很大(裂纹前端处于平 面应变的强约束状态),则裂纹一开始扩展即 呈失稳态而很快导致试样断裂,这时最大裂纹 载荷 Fmax 既是裂纹开始扩展的临界载 荷 Fmax FQ ;
3、杂质及第二相的影响
钢中的非金属夹杂物和第二相如果为脆性,则会 在应力的作用下造成相界面的开裂形成裂纹,造 成 KIC下降;第二相的形状也有影响,例如球状碳 化物比板条状和网状碳化物造成的 KIC 下降要小 一些(如铸铁)。
4、显微组织的影响
(1)板条马氏体是位错型亚结构,具有较高的强度和 塑性,裂纹扩展阻力较大,呈韧性断裂,K IC 较高;
三、试验结果的处理
三点弯曲的实验结果通过Eq.(4-30)进行计算
Eq.(4-30)是计算三点弯曲KQ的
断裂韧度 KIC 有效性判断
(1)厚度判据: B 2.5(KQ /s )2 (2)载荷比判据:Fmax / FQ 1.10
满足上述条件的话 KQ KIC ,否则,应该加 大试样的尺寸重做试验,新试样尺寸至少 应为原试样的1.5倍,直到满足上述条件。
试样的取样规定
美国ASTM E 399取样标准规定
某型动车组车轮取样规定
试样的形状、尺寸及制备
国家标准种规定了四种试样:标准三点弯曲试样、紧 凑拉伸试样、C型拉伸试样和圆形紧凑拉伸试样。常 用的三点弯曲和紧凑拉伸两种试样如下图4-7:
平面应变断裂韧性KIC的测定
平面应变断裂韧性K IC的测定材化08李文迪[试验目的]测试的基本方法,操作顺序及技术要求,体验试验过程。
1. 了解平面应变断裂韧度KIC2.测量40Cr的平面应变断裂韧度。
[试验原理]断裂是材料构件受力作用下发生的最危险的变化形式,尤其是没有发生明显的宏观塑性变形的情况下就发生的断裂-脆性断裂。
理论分析和大量时间结果表明:在陶瓷、玻璃等脆性材料中,断裂条件是=材料常数式中,σ为正应力,2a为试样或者构建中的裂纹长度。
这样的结果,应用于高强度引述材料的脆性断裂也与实际相符合的很好。
根据线弹性断裂力学,断裂的盘踞是断裂前沿应力强度因子K达到其临界值-材料的平面应变,即:断裂韧度KICK Y K=IC是材料抵裂纹拓展能力的特征参式中Y是断裂的形状因子,平面应变断裂韧度KIC量,它与裂纹的尺寸及承受的应力无关。
平面应变断裂韧性,可以用于评价材料是否适用,作为验收和产品质量控制的标准。
材料的断裂韧度收到冶金因素的制造工艺影响。
应用平面应变断裂韧度对构建的断裂安全性进行评价,需要对构件的受力情况、工作环境、无损检测裂纹方法的灵敏度、可靠性等方面进行分析。
[试验式样与样品]本试验采用经过860 o C淬火、220 o C回火处理的40Cr钢,屈服强度s=1400MPa,材料形状尺寸如图一所示:试验工具:微机控制电子式万能材料试验机(试验力准确度优于示值的%)2.游标卡尺(精度)3.双悬臂夹式引伸计(原长)4.工具显微镜15JE(精度)[试验步骤](1)测定试样的厚度B,要求沿着裂纹的语气拓展面在未断开的区域测量厚度,精度要求到或者%B中的较大者。
测量试样的宽度W。
(2)对试样粘贴引伸计的卡装刀口。
将试样安放于试验机上,要求裂纹扩展面与加载压头处于同一个平面上,避免二者错位或者形成明显不足为0的夹角。
(3)对试样加载,测量载荷P-位移V关系曲线,知道试样被完全断裂为止。
加载速度控制标准为:应力强度因子的速率在~(4)在裂纹拓展断裂的试样断口上,借助于测量工具显微镜,在试样厚度方向上1/4,1/2,3/4位置上测量裂纹长度,记作a1和a5,。
金属材料的断裂韧度
汇报人:XX
01
03
05
02
04
金属材料在受 力时能够吸收 的能量与应力 变化幅度的比
值
反映材料抵抗 裂纹扩展的能
力
是评价金属材 料力学性能的 重要指标之一
单 位 为 J / m ²或 J-m²
断裂韧度是金属材料抵抗脆性断裂 的能力
试样尺寸:符合标 准要求,确保准确 性和可重复性
试样形状:根据测 试方法选择合适的 形状,如紧凑拉伸 试样、弯曲试样等
试样加工:采用精 密加工技术,确保 试样表面光滑无缺 陷
试样温度:根据需 要,对试样进行加 热或冷却,保持恒 温状态
试样制备:选择合适的试样,确保尺寸、形状等符合标准 预处理:对试样进行必要的预处理,如表面处理、加热等 加载装置:将试样安装在试验机上,确保稳定可靠 施加荷载:按照规定的速率或程序施加荷载,记录下相应的力
金属材料的断裂韧度是评估其安全性的重要指标 通过断裂韧度试验,可以确定金属材料在受力时抵抗断裂的能力
断裂韧度测试结果可用于指导金属材料的设计和制造,提高产品的安全性能
金属材料的安全性评估还需要考虑其他因素,如材料的强度、疲劳性能等
断裂韧度在金属材料设计中的应用 断裂韧度对金属材料韧性的影响 金属材料的断裂韧度与疲劳寿命的关系 金属材料设计优化的实践案例
和位移数据 结果处理:对试验数据进行处理和分析,计算出断裂韧度值
试验报告:整理试验数据和结果,编写试验报告并给出结论
试验目的:确定金属材料的断裂韧度
试验原理:通过测量试样在断裂过程中的应力应变曲线,计算出金属材料的断裂韧度
试验步骤:制备试样、加载试验、记录数据 试验结果分析:比较不同金属材料的断裂韧度,分析影响金属材料韧度的因素
实验三 平面应变断裂韧性KIC的测定
八 .参考文献
【1】杨王玥,强文江.材料力学行为[M].北京:化学工业出版社,2009. 【2】GB4161-84 金属材料平面应变断裂韧性 K IC 实验方法.
三 .实验材料与试样
本实验采用经过 860℃淬火, 220℃低温回火处理的 40Cr钢, 其屈服强度σ s =1400Mpa. 试样为 GB4161-84 规定的标准三点弯曲试样,名义尺寸:宽度 W=20mm,厚度 B=10mm,跨 距 S=80mm。 试样需要预先制备出尖端很尖锐的裂纹,为此,经过热处理后的试样首先完成外形尺寸的精 加工然后采用线切割制备出第一条裂纹。由于线切割的钼丝直径一般在 0.2mm 左右,裂纹的 尖端不够尖锐,应力集中效果不够好,故此还要施加循环应力作用,在一段裂纹的前端在制 备出非常尖锐的疲劳裂纹。国标中对于疲劳裂纹的制备条件及形状尺寸规定了严格的要求。
4)计算 Ro
1 KI 1 54.3Mpa m Ro= = 1.69*10-4 m=0.169mm = 2 2 π s 2 2 π 1400MPa
2
2
5)验证小塑性区条件
54.3Mpa m K 3 2.5 I = 2.5 m= 3.76 mm ,小于 B 和 a 1400Mpa =3.76*10 s
四 .实验设备和仪器
1.WDW-200D 微机控制电子式万能材料试验机:试验力准确度优于示值的 0.5% 2.双悬臂夹式引伸计 3.工具显微镜:精度 0.001mm 4.游标卡尺:精度 0.02mm
五 .实验步骤
1.测量试样尺寸。从疲劳裂纹顶端至试样的无缺口边,沿着预期的裂纹扩展线,在三个等间 隔的位置上测量厚度 B,准确到 0.025mm 或 0.1%B,取较大者,取三次平均值;在缺口附近 三个位置测量宽度 W,准确到 0.0025mm 或 0.1%W,取较大者,计算平均值; 2.装卡引伸计。在试样裂纹两侧用 502 胶对称的粘贴一对卡口片来装卡固定引伸计,引伸计 的标距为大约 5mm 3.加载测试。将试样安装于试验机上并调整其位置,尽量使裂纹扩张面与加载压头处于同一 个平面上。在计算机的界面上设置加载速度 0.3mm/min,然后对试样加载,计算机屏幕显示 载荷 P—裂纹嘴张开位移 V 关系曲线。最后可以看见随着裂纹的扩展,试样被压断成两截, 测试结束。 4.观察断口形貌。从试验机上取下试样,观察断口,可以看到黑色的线切割裂纹区,深灰色 的疲劳裂纹扩展区和浅灰色的瞬间断裂区。 5.测量裂纹长度。使用工具显微镜在试样断口的厚度方向 1/4,1/2 和 3/4 的位置上测量裂纹长 度,记做 a2, a3, a4 取它们的平均值为裂纹长度 a。同时,测量两个自由表面上的裂纹长 度,记做 a 1 和 a5。各测量准确到 0.5%。 6.确定条件载荷 Pq。在记录的 P-V 曲线上要确定裂纹长度的表观扩展量为 2% 时的载荷 Pq,而 2%的裂纹扩展量对应的裂纹嘴张开位移的相对增量为 5%,所以确定 Pq 的方法为:沿着 P-V 曲线的线性段作过原点的直线 OA,并通过 O 点画割线 OP5 使割线斜率为 OA 斜率的 0.95 倍。 若在 P5 点之前,每一点的载荷都低于 P5,则取 Pq=P5;如果在 P5 之前还有一个超过 P5 的最大 载荷,则取此最大载荷为 Pq。 7.计算条件值 Kq 以及裂纹前沿塑性区尺寸 Ro。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属材料力学性能试验断裂韧度试验
6.2 断裂韧度试验
6.2.1
结构线Construction line
在J-Δa 和δ-Δa 试验记录上画一条线,代表表观裂纹扩展(即裂纹表面的位移量),包括裂纹端钝化
6.2.2
裂纹扩展阻力曲线Crack entension resistance curve
R-曲线
δ 或J 与稳定裂纹扩展Δa 的变化
6.2.3
裂纹平面取向Crack plane orientation
按照裂纹平面的法向方向和试验中裂纹预期的扩展方向处理裂纹,对于锻造产品参考其特征晶粒流动方向
6.2.4
裂纹嘴张开位移Crack-mouth opening displacement (CMOD)
V
在裂纹开始缺口附近,测量与原始裂纹平面垂直的裂纹平面的相对位移量
6.2.5
裂纹尖端张开位移Crack-tip opening displacement
δ
在原始裂纹尖端(即疲劳预裂纹尖端)测量与原始裂纹平面垂直的裂纹平面的相对位移量
6.2.6
临界J Critical J
对应裂纹扩展开始时的J 值
6.2.7
临界δ Critical δ
对应裂纹扩展开始时的δ 值
6.2.8
断裂韧度fracture toughness
准静态单一加载条件下的裂纹扩展阻力的通用术语
6.2.9
J-积分J-integral
与积分路径无关的闭合回路或表面积分,用来表征裂纹前缘周围地区的局部应力-应变场,在塑性效应不可忽视的地方提供能量释放速率,用来表征对应表观裂纹扩展a 时的势能变化
J
与J 积分相当的加载参数,当测定力-加载线位移图时特指裂纹尖端塑性变形不可忽视条件下的断裂
6.2.10
J-R 曲线J-R curve
J-Δa 图,在塑性效应不容忽视的地方,用于描述稳定裂纹扩展阻力
6.2.11
最大疲劳应力强度因子Maximum fatigue stress intensity factor
Kf
在疲劳预裂纹的最后阶段,K 的最大值
6.2.12
类型mode
裂纹平面位移三种方式之一
注:阿拉伯数字1,2 和3 用于通常的例子,分别代表拉伸张开型,平面滑动型,剪切型。
罗马数字用于特指平面应变型(Ⅰ和Ⅱ)或非平面应变型(Ⅲ)
6.2.13
平面应变张开型应力强度因子Plane-strain opening-mode stress intensity factor
KI
对于均匀物体在承受张开型位移(I 型)时,裂纹尖端平面应变单一弹性应力场大小
注:它是施加的力,裂纹长度,试样尺寸和形状的函数,单位是力乘以长度-3/2
6.2.14
平面应变断裂韧度Plane-strain fracture toughness
KIC
当裂纹尖端的应力状态主要是平面应变状态,塑性变形被限制,I 型加载时,表征材料阻止裂纹扩展的一种测量
6.2.15
突进点pop-in
在力位移图上的突然不连续,通常表现为力的下降,位移的突然增加
6.2.16
试样的弹性柔度Specimen elastic compliance
C
位移增量与力增量的比值
注:试样刚度的倒数
6.2.17
试样跨距Specimen span
S
三点弯曲试验装置两支辊之间的距离
6.2.18
试样厚度Specimen thickness
B
试样两平行侧面之间的距离
6.2.19
试样宽度Specimen width
W
参考平面或参考线(例如,弯曲试样的前边或紧凑试样的加载线)与试样后平面之间的距离
6.2.20
稳定裂纹扩展Stable crack extension
施加的位移量被中断时的裂纹扩展量
6.2.21
应力强度因子Stress intensity factor
K
均匀线弹性体在特定的裂纹扩展类型下理想裂纹尖端应力场的单调幅值
6.2.22
应力强度因子幅Stress intensity factor range
ΔK
在一疲劳循环中最大与最小应力强度因子的代数差
ΔK=Kmax-Kmin=(1-R)Kmax
6.2.23
伸张区宽度Stretch zone width
SZW
由于裂纹尖端钝化带来的裂纹扩展长度;出现在不稳定裂纹扩展之前,与疲劳预裂纹在同一平面。
可见的裂纹扩展伴随着裂纹尖端钝化,钝化发生在非稳定裂纹扩展,突进或慢稳定裂纹扩展之前,并且与原始的(未变形的)疲劳预裂纹有些相似
6.2.24
不稳定裂纹扩展Unstable crack extension
在有或没有稳定裂纹扩展之前的裂纹突然扩展
6.2.25
裂纹止裂断裂韧度crack-arrest fracture toughness
Ka
裂纹刚刚止裂时的应力强度因子值。
6.2.26
平面应变裂纹止裂断裂韧度Plane-strain crack-arrest fracture toughness
KIa
裂纹前缘处于平面应变状态下的裂纹止裂韧度值。
6.2.27
平面应变裂纹止裂断裂韧度条件值Conditional value of the plane-strain crack-arrest
fracture toughness
KQa
根据试验结果计算得到的KIa 条件值,还需进行有效性判据。
6.2.28
裂纹启裂应力强度因子Stress intensity factor at crack initiation
K0
快速断裂开始时的应力强度因子值。