随钻测井
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内容摘要
摘要:随钻测井是在钻开地层的同时实时测量地层信息的一种测井技术,自1989年成功投入商业应用以来得到了快速的发展,目前已具备了与电缆测井对应的所有技术,包括比较完善的电、声、核测井系列以及随钻核磁共振测井、随钻地层压力测量和随钻地震等技术,随钻测井已成为油田工程技术服务的主体技术之一。随钻测井(LWD)技术的萌芽只比电缆测井晚10年。由于基础工业整体水平的制约,随钻测井技术在前50多年发展缓慢。其业务收入和工作量快速增长。勘探开发生产的需要仍是随钻测井继续发展的强劲动力。作为一种较新的测井方法,随钻测井技术仍有许多有待发展和完善的方面,尤其是数据传输技术、探测器性能、资料解释和评价等。
关键词:随钻测井 LWD 研究进展
第一章随钻测井技术现状
迄今为止,随钻测井能提供地层评价需要的所有测量,如比较完整的随钻电、声、核测井系列,随钻地层压力、随钻核磁共振测井以及随钻地震等等。有些LWD 探头的测量质量已经达到或超过同类电缆测井仪器的水平。
1.1随钻测井数据传输技术
多年来,数据传输是制约随钻测井技术发展的“瓶颈”。泥浆脉冲遥测是当前随钻测量和随钻测井系统普遍使用的一种数据传输方式。泥浆脉冲遥测技术数据传输速率较低,为4~10 bit/s,远低于电缆测井的传输速率,这种方法不适合欠平衡水平井钻井。电磁波传输数据的方法也用于现场测井,但仅在较浅的井使用才有效。哈里伯顿公司的电磁波传输使用的频率为10Hz,在无中继器的情况下传输距离约10000 ft。此外,声波传输和光纤传输方法还处于研究和实验阶段。
1.2随钻电阻率测井
与电缆测井技术一样,随钻电阻率测井技术也分为侧向类和感应类2类。侧向类适合于在导电泥浆、高电阻率地层和高电阻率侵入的环境使用,目前的侧向类随钻电阻率测井仪器能商业化的只有斯伦贝谢公司的钻头电阻率仪RAB及新一代仪器GVR。GVR使用56个方位数据点进行成像,图像分辨率比RAB有较大提高。感应类在导电性地层测量效果好,适合于导电或非导电泥浆。新型随钻电磁波电阻率的仪器结构相似,使用多个发射器和多个接收器,测量2个接收器之间的相移和衰减,工作频率相近,只能使用有限的几种频率才能消除钻铤等背景影响而测量到地层信号,如低频20、250、400、500 kHz,高频一般都使用2 MHz。
通过比较随钻电阻率测井和电缆电阻率测井曲线之间的区别可知,在储层内部二者相差不大;在界面处由于受地层界面表面电荷、钻井液侵入等影响,随钻电阻率数值远大于电缆测井数值;在界面附近,二者电阻率数值还受地层界面表面电荷、钻井液侵入井眼轨迹与地层倾角之间的夹角大小影响。
井眼轨迹与地层倾角之间的关系对电阻率有较大的影响,有效地控制井眼轨迹能大大降低钻井成本和提高效益。同时根据电阻率响应特征和其他测井曲线正确地划分地层界面,能有效地提高测井解释精度及为工程施工提供更好地依据。
1.3随钻声波测井
现场服役的随钻声波测井仪器使用的声源有单极子、偶极子和四极子,如贝克休斯INTEQ公司的AP既使用单极子也使用四极子声源,斯伦贝谢公司的Son-icVision使用单极子声源,哈里伯顿Sperry公司的BAT是偶极子仪器。这些仪器可测量软/硬地层纵/横波速度和幅度,测量数据一般保存在井下存储器内,
起钻后回放使用。随钻声波测井数据可用于岩性识别、孔隙度计算、岩石力学参数计算、井眼稳定性预测、泥浆比重优化、下套管位置选择等。
1.4随钻核测井
随钻中子测井仪器使用5.0~10 Ci的AmBe源或脉冲中子发生器,探测器使用He闪烁计数器或Li玻璃闪烁体,通过远/近探测器计数率比值计算孔隙度。随钻密度仪器使用1.5~2 Ci的Cs源,探测器使用NaI晶体,大部分仪器使用脊肋图计算地层密度和Pe值。目前的随钻核测井一般具有方向性,如方位伽马、方位密度等。由于数据是在仪器旋转的过程中采集的,方位的加入,使得这些测量可用图像显示出来,形象直观。可进行成像测井的有伽马、密度、中子和PEF等测量。例如斯伦贝谢公司的随钻中子仪adnVision使用GVR的遥测技术,仅在编码算法上作了较小修改,尽管只使用16个方位数据点进行成像,分辨率有所下降,仍可用于地质导向和构造分析。
1.5随钻地震
目前仅斯伦贝谢公司提供随钻地震服务,其Seis-micVISION系统在钻井的过程中提供时间、深度、速度信息,帮助优化钻井决策,减少成本,降低事故风险。该系统独特的“前视”能力提供钻头前面8 000 ft之内地层的信息,数据的质量足以对钻头前面和侧面的地层进行成像。系统的应用包括:预测孔隙压力、预测目的层或灾害层深度、帮助选择最佳的下套管和取心深度、优化泥浆比重、识别盐层、使井眼轨迹保持最佳。
1.6随钻测井资料应用
随钻测井资料主要用于优化钻井作业和地层评价。在钻井过程中,随钻测井数据可以用于早期探测高压层,将井眼精确地导向目标地层,确定压力梯度及流体界面,实时调整泥浆比重以便有效地增加机械钻速,优化下套管位置,更加安全地钻入高压层段。随钻测井资料的应用,使得钻井作业更加快速、安全和有效,减少了钻井时间和成本。随钻测井是在钻井泥浆未侵入或侵入地层浅的情况下进行的,测量资料更接近原始地层。用这些资料进行油水层划分和地层评价准确性高,效果好。在深井、大斜度井、钻机日费用高、钻速高(松软地层)的情況下,使用LWD的地层评价总成本低于使用电缆测井的地层评价总成本。
第二章随钻测井技术的新认识
(1)LWD的测井资料可能是目前所有测井方法中受井眼影响最小的岩石地球物理参数。许多油藏在完钻后未被发现,其主要原因就是电缆测井受井眼影响而无法提供出准确的解释结果所致。
认为一些测井解释软件能够校正电缆测井资料受井壁破损和钻井液侵入的影响,这是极不实际的,测井项目中除电阻率测井方法径向探测深度可达 2.0 m,其余测井的探测深度均不超过0.4 m,在正压钻井条件下,钻井液滤液的侵入深度往往超出所有测井仪的探测范围,任何校正方法都无济于事。
因此,有相当一部分油藏原始的地球物理数据是不准确的。比如探井的测井资料受到了无法复原的钻井液侵入影响后,油气层的电性描述就会定义为“低阻油藏”或“低饱和度油藏”等错误结论。
(2)对于侵入深度与时间的关系以及对测井资料的影响程度是一大难题。但LWD可以提供一些有利的佐证,将对解决测井信息的校正,甚至是油气层污染研究起到至关重要的作用。
(3)为在勘探初期采集到准确的数据,最好在预探井目的层段使用LWD,避免测井资料因受井眼影响而失真,此举对安全钻井也十分有益。