热力学统计物理概念概括--总复习
大学热力学与统计物理期末复习笔记1

《热力学统计物理》期末复习一、简答题1、写出焓、自由能、吉布斯函数的定义式及微分表达式(只考虑体积变化功)答:焓的定义H=U+PV,焓的全微分dH=TdS+VdP;自由能的定义F=U-TS,自由能的全微分dF=-SdT-PdV;吉布斯函数的定义G=U-TS+PV,吉布斯函数的全微分dG=-SdT+VdP。
2、什么是近独立粒子和全同粒子?描写近独立子系统平衡态分布有哪几种?答:近独立子系统指的是粒子之间的相互作用很弱,相互作用的平均能量远小于单个粒子的平均能量,因而可以忽略粒子之间的相互作用。
全同粒子组成的系统就是由具有完全相同的属性(相同的质量、电荷、自旋等)的同类粒子组成的系统。
描写近独立子系统平衡态分布有费米-狄拉克分布、玻色-爱因斯坦分布、玻耳兹曼分布。
3、简述平衡态统计物理的基本假设。
答:平衡态统计物理的基本假设是等概率原理。
等概率原理认为,对于处于平衡状态的孤立系统,系统各个可能的微观状态出现的概率是相等的。
它是统计物理的基本假设,它的正确性由它的种种推论都与客观实际相符而得到肯定。
4、什么叫特性函数?请写出简单系统的特性函数。
答:马休在1869年证明,如果适当选择独立变量(称为自然变量),只要知道一个热力学函数,就可以通过求偏导数而求得均匀系统的全部热力学函数,从而把均匀系统的平衡性质完全确定。
这个热力学函数称为特性函数。
简单系统的特性函数有内能U=U (S 、V ),焓H=H (S 、P ),自由能F=F (T 、V ),吉布斯函数G=G (T 、P )。
5、什么是μ空间?并简单介绍粒子运动状态的经典描述。
答:为了形象的描述粒子的运动状态,用r r p p q q ,,,,11 ;共2r 个变量为直角坐标,构成一个2r 维空间,称为μ空间。
粒子在某一时刻的力学运动状态()r r p p q q ,,,,11 ;可用μ空间的一个点表示。
6、试说明应用经典能量均分定理求得的理想气体的内能和热容量中哪些结论与实验不符(至少例举三项)。
热力学和统计物理的基本概念

热力学和统计物理的基本概念热力学和统计物理是物理学中两个重要的分支,它们对于理解和描述物质的性质以及自然界中的各种现象都起到了至关重要的作用。
本文将介绍热力学和统计物理的基本概念,帮助读者更好地理解这两个领域。
一、热力学的基本概念热力学是研究能量转化和宏观物质性质的科学,是物理学的一门重要分支。
它通过研究能量转化过程和各种宏观现象来揭示物质内部的各种规律。
以下是热力学中的一些基本概念:1. 系统系统指的是热力学研究的对象,可以是一个单独的物体、一个容器中的气体或者一个宏观物质系统。
热力学研究的目标是分析系统中能量的转化和宏观性质的变化。
2. 状态系统在一定条件下的特定性质和状态称为系统的状态。
例如,气体系统的状态可以由温度、压力和体积等参数来描述。
3. 热力学定律热力学定律是热力学的基本原理,可以帮助我们理解能量转化的规律。
包括能量守恒定律、热传导定律、热机定律和熵增定律等。
4. 热力学过程系统从一个状态到另一个状态的整个变化过程称为热力学过程。
常见的热力学过程包括等温过程、绝热过程、等压过程和等容过程等。
二、统计物理的基本概念统计物理是描述物质微观粒子运动规律以及宏观宏观现象的科学,它通过建立微观粒子的统计模型来揭示物质的宏观性质。
以下是统计物理中的一些基本概念:1. 微观粒子统计物理研究的对象是物质的微观粒子,如原子、分子和电子等。
通过研究微观粒子的运动和相互作用规律,可以揭示物质宏观性质的起源。
2. 统计模型统计物理使用统计模型来描述物质的微观状态和宏观性质之间的关系。
常用的统计模型包括玻尔兹曼分布、麦克斯韦-玻尔兹曼分布和费米-狄拉克分布等。
3. 热力学极限热力学极限是指在大量粒子数下,统计物理中的微观规律将会近似等同于热力学中的规律。
热力学极限的出现使得统计物理和热力学之间建立了密切的联系。
4. 统计力学统计力学是研究宏观系统平衡态和非平衡态的统计规律以及宏观性质的科学。
它基于统计物理理论,通过分析微观粒子的运动和相互作用来推导宏观性质的统计规律。
热力学与统计物理期末复习笔记1

《热力学统计物理》期末复习一、简答题1、写出焓、自由能、吉布斯函数的定义式及微分表达式(只考虑体积变化功)答:焓的定义H=U+PV,焓的全微分dH=TdS+VdP;自由能的定义F=U-TS,自由能的全微分dF=-SdT-PdV;吉布斯函数的定义G=U-TS+PV,吉布斯函数的全微分dG=-SdT+VdP。
2、什么是近独立粒子和全同粒子?描写近独立子系统平衡态分布有哪几种?答:近独立子系统指的是粒子之间的相互作用很弱,相互作用的平均能量远小于单个粒子的平均能量,因而可以忽略粒子之间的相互作用。
全同粒子组成的系统就是由具有完全相同的属性(相同的质量、电荷、自旋等)的同类粒子组成的系统。
描写近独立子系统平衡态分布有费米-狄拉克分布、玻色-爱因斯坦分布、玻耳兹曼分布。
3、简述平衡态统计物理的基本假设。
答:平衡态统计物理的基本假设是等概率原理。
等概率原理认为,对于处于平衡状态的孤立系统,系统各个可能的微观状态出现的概率是相等的。
它是统计物理的基本假设,它的正确性由它的种种推论都与客观实际相符而得到肯定。
4、什么叫特性函数?请写出简单系统的特性函数。
答:马休在1869年证明,如果适当选择独立变量(称为自然变量),只要知道一个热力学函数,就可以通过求偏导数而求得均匀系统的全部热力学函数,从而把均匀系统的平衡性质完全确定。
这个热力学函数称为特性函数。
简单系统的特性函数有内能U=U (S 、V ),焓H=H (S 、P ),自由能F=F(T 、V ),吉布斯函数G=G (T 、P )。
5、什么是μ空间?并简单介绍粒子运动状态的经典描述。
答:为了形象的描述粒子的运动状态,用r r p p q q ,,,,11 ;共2r个变量为直角坐标,构成一个2r 维空间,称为μ空间。
粒子在某一时刻的力学运动状态()r r p p q q ,,,,11 ;可用μ空间的一个点表示。
6、试说明应用经典能量均分定理求得的理想气体的内能和热容量中哪些结论与实验不符(至少例举三项)。
大学物理热力学与统计物理

大学物理热力学与统计物理热力学与统计物理是大学物理中重要的分支,它研究了物质的热学性质以及微观粒子的统计规律。
本文将简要介绍热力学与统计物理的基本概念、原理和应用。
一、热力学基本概念热力学研究的是能量的转化与守恒,包括传热、传能和能量转换等方面的内容。
热力学基本定律包括能量守恒定律、熵增加原理等。
能量守恒定律指出能量在封闭系统中不会凭空产生或消失,只能通过各种形式的转化转移到其他物体或形式。
熵增加原理则是指随着时间的推移,封闭系统中的熵(系统无序程度)总是增加的。
二、热力学基本原理热力学基本原理包括热平衡、热力学第一定律和热力学第二定律。
热平衡是指系统内各部分之间的温度是相等的状态,这是热力学的基础概念。
热力学第一定律是能量守恒的表示,它表明系统的内能变化等于吸收的热量与对外做功的代数和。
热力学第二定律则是热力学的核心内容,它描述了自然界的不可逆性和熵增加的趋势。
三、统计物理基本原理统计物理是热力学的基础,它从微观角度研究了物质中微观粒子的统计规律。
统计物理主要利用统计学方法描述了大量微观粒子的行为,并推导出宏观热力学定律。
基于统计物理,我们可以计算系统的平均能量、熵以及其他宏观状态量。
四、热力学与统计物理的应用热力学和统计物理在各个领域具有广泛的应用,包括能源开发、材料科学、天体物理等。
在工程领域,热力学可以用来设计高效的能源转换系统,提高能源利用效率。
在材料科学领域,热力学对材料的相变、热膨胀等性质有着重要的解释和研究价值。
而在天体物理学中,热力学与统计物理的应用可以帮助我们理解星际物质的形成和演化过程。
总结:本文简要介绍了大学物理中的热力学与统计物理。
热力学是研究能量转化与守恒的学科,其基本定律包括能量守恒定律和熵增加原理。
统计物理是基于热力学的微观解释,通过统计学方法研究大量微观粒子的行为,推导出宏观热力学规律。
热力学与统计物理在能源、材料和天体等领域有着广泛的应用。
通过深入研究热力学与统计物理,我们能够更好地理解和解释自然界中的物质与能量转化过程。
热力学与统计物理总结

热力学与统计物理总结简介热力学与统计物理是研究物质宏观性质与微观粒子行为之间关系的学科。
热力学研究物质的热学性质,如温度、压力、热量等,并给出了一系列基本定律;统计物理则通过对大量微观粒子的统计分布来揭示物质的宏观性质。
热力学基本定律热力学的基本定律是研究物质热学性质的基础,常用的有以下四个定律:1.第一定律:能量守恒定律。
能量在物理和化学变化过程中,既不能创造也不能消灭,只能由一种形式转化为另一种形式。
2.第二定律:熵增定律。
孤立的热力学系统中,熵不断增加,且在可逆过程中熵不变,可逆过程是指无摩擦、无阻力的过程。
3.第三定律:绝对零度不可达定律。
无限远温度下凝固的时候,熵趋于0,达到绝对零度是理论上不可达到的。
4.第零定律:温度的等温性。
当两个物体与一个第三物体都达到热平衡时,这两个物体之间也必定达到热平衡,即温度相等。
统计物理基本原理统计物理是通过对大量微观粒子的统计行为研究物质的宏观性质。
主要包括以下几个基本原理:1.统计假设:假设大量粒子的运动遵循统计规律,可用概率进行描述。
2.巨正则系综:描述粒子和热平衡与热脱平衡之间的关系。
3.等概率原理:在能量等概率的微观态中,一个系统在各个可能的微观态上出现的概率是相等的。
4.统计特性:研究粒子的统计性质,如分布函数、平均值等。
热力学与统计物理的关系热力学和统计物理是相辅相成的学科,热力学通过实验和观察,总结出了一系列定律和规律;而统计物理则通过对微观粒子的统计行为进行分析和计算,从微观层面揭示了这些定律和规律的产生机制。
热力学的基本定律是从宏观角度看待系统的性质,而统计物理则是从微观角度看待系统的性质。
统计物理给出了基本的统计规律,研究了粒子的分布函数、平均能量等,而热力学则从中总结出了熵增定律、能量守恒定律等基本定律。
可以说,热力学是统计物理的应用,而统计物理则是热力学的基础。
应用领域热力学与统计物理广泛应用于各个科学领域,主要包括以下几个方面:1.材料科学:热力学与统计物理研究材料的热学性质、相变等,对材料的设计和制备有重要指导作用。
热力学统计物理

《热力学统计物理》复习资料热力学部分第一章 热力学的基本定律基本概念:平衡态,热力学参量,热平衡定律,温度,三个实验系数(、、),转换关系,物态方程,功及其计算,热力学第一定律(数学表述式),热容量(C 、C V 、C P 的概念及定义),理想气体的内能,焦耳定律,绝热过程特征,热力学第二定律(文学表述、数学表述),克劳修斯不等式,热力学基本微分方程表述式,理想气体的熵,熵增加原理及应用。
综合计算:利用实验系数的任意二个求物态方程,熵增(S )计算。
第二章 均匀物质的热力学性质基本概念:焓H ,自由能F ,吉布斯函数(自由焓)G 的定义,全微分式,热力学函数的偏导数关系、麦克斯韦关系及应用,能态公式,焓态公式,节流过程的物理性质,焦汤系数定义及热容量(C P )的关系,绝热膨胀过程及性质、特性函数F 、G ,辐射场的物态方程,内能、熵,吉布函数的性质、辐射通量密度的概念。
综合运用:重要热力学关系式的证明,由特性函数F 、G 求其它热力学函数(如S 、U 、物态方程)。
第三章、第四章 单元及多元系的相变理论该两章主要是掌握物理基本概念:热动平衡判据(S 、F 、G 判据),单元复相系平衡条件,复相多元系的平衡条件,多元系的热力学函数及热力学方程,相变的分类、一级与二级相变的特点及相平衡曲线斜率的推导、吉布斯相律,单相化学反应的化学平衡条件,热力学第三定律的标准表述,绝对熵的概念。
统计物理部分第六章 近独立粒子的最概然分布基本概念:能级的简并度,μ空间,运动状态代表点,三维自由粒子的μ空间,德布罗意关系(=,=),相格,量子态数、等概率原理,对应于某种分布的玻尔兹曼系统,玻色系统,费米系统的微观态数(热力学概率)的计算公式,最概然分布,玻尔兹曼分布律(),配分函数(),用配分函数表示的玻尔兹曼分布(),f s ,P λ, P s的概念,经典配分函数(),麦克斯韦速度分布律。
综合运用:能计算在体积V 内,在动量范围p —p+dp 内,或能量范围+d ε内,粒子的量子态数;了解运用最可几方法推导三种分布。
热力学与统计物理

热力学与统计物理热力学是研究物质的宏观性质和它们之间相互关系的科学,而统计物理则是从微观角度探索物质的性质,两者在理论和实践中相辅相成。
本文将从热力学和统计物理的基本概念、研究方法和应用领域等方面进行探讨,以全面介绍热力学与统计物理的重要性和相关知识。
一、热力学的基本概念热力学是一门研究能量转移和转化的学科,它涉及热量、功、熵等基本概念。
热力学通过定义和推导热力学定律和方程,揭示了能量守恒和自发性等自然规律。
熵是热力学中的重要概念,它是描述系统无序度的物理量。
熵增定律说明了系统在孤立条件下总是趋于无序增加,反映了自然界中的一种普遍趋势。
二、统计物理的基本概念统计物理是一门从宏观到微观的探索物质性质的学科,它通过概率统计的方法研究大量微观粒子的行为。
统计物理将微观粒子的统计规律与宏观观测进行联系,揭示了物质性质背后的微观基础。
玻尔兹曼方程是统计物理中的重要理论工具,它描述了系统在不同微观状态下的分布函数以及相应的宏观性质。
通过求解玻尔兹曼方程,我们可以揭示物质的热力学性质和相变行为。
三、热力学和统计物理的关联热力学和统计物理是相互关联的两个学科,热力学从宏观角度描述物质的性质和行为,而统计物理则从微观角度揭示了物质的微观基础,两者相结合可以更全面理解和解释物质的性质。
热力学中的熵概念可以通过统计物理的方法进行解释和计算,熵的增加可以通过微观粒子的排列和状态数量增加来理解。
统计物理通过计算系统的微观状态数和分布函数,揭示了熵增定律的微观基础。
四、热力学与统计物理的应用领域热力学和统计物理广泛应用于各个领域,如化学、材料科学、天体物理学等。
在化学中,热力学可以解释化学反应的热效应和平衡态等性质,而统计物理则可以通过微观模型揭示化学反应的动力学过程。
在材料科学中,热力学可以描述材料的相变行为和热性质,而统计物理可以通过分子动力学模拟等方法研究材料的微观结构和力学性质。
在天体物理学中,热力学可以解释星体的辐射和能量转移,而统计物理可以通过模拟宇宙早期的微观粒子行为揭示宇宙的起源和演化过程。
热力学和统计物理

热力学和统计物理一、基本概念1. 热力学- 系统与外界- 热力学研究的对象称为系统,系统以外与系统有相互作用的部分称为外界。
例如,研究气缸内气体的性质时,气缸内的气体就是系统,气缸壁、活塞以及周围的环境等就是外界。
- 平衡态- 一个孤立系统经过足够长的时间后,宏观性质不再随时间变化的状态称为平衡态。
例如,将一个盛有热水的容器放在绝热环境中,经过一段时间后,水的温度不再变化,水就达到了平衡态。
平衡态可以用一些宏观参量来描述,如压强p、体积V、温度T等。
- 状态参量- 用来描述系统平衡态的宏观物理量称为状态参量。
- 几何参量:如体积V,它描述了系统的几何大小。
对于理想气体,体积就是气体分子所能到达的空间范围。
- 力学参量:压强p是典型的力学参量,它是垂直作用于容器壁单位面积上的力。
- 热学参量:温度T是热学参量,它反映了物体的冷热程度。
从微观角度看,温度与分子热运动的剧烈程度有关。
2. 统计物理- 微观态与宏观态- 微观态是指系统内每个粒子的微观状态(如每个粒子的位置、动量等)都确定的状态。
而宏观态是指由一些宏观参量(如压强、体积、温度等)确定的状态。
一个宏观态往往包含大量的微观态。
例如,对于一个由N个粒子组成的气体系统,给定气体的压强、体积和温度,这就是一个宏观态,但这些粒子的具体位置和动量有多种可能组合,每一种组合就是一个微观态。
- 等概率原理- 对于处于平衡态的孤立系统,系统各个可能的微观态出现的概率相等。
这是统计物理的一个基本假设。
二、热力学定律1. 热力学第零定律- 如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡,则这两个系统彼此也必定处于热平衡。
这一定律为温度的测量提供了依据。
例如,我们可以用温度计(第三个系统)去测量不同物体(两个系统)的温度,当温度计与物体达到热平衡时,就可以确定物体的温度,并且如果两个物体与同一温度计达到热平衡,那么这两个物体之间也处于热平衡,它们具有相同的温度。
(完整word版)热力学与统计物理总复习提纲

导言热力学和统计物理学的任务:研究热运动的规律,研究与热运动有关的物性及宏观物质系统的演化热力学是热运动的宏观理论,通过对热现象的观测、实验和分析,人们总结出热现象的基本规律。
统计物理学是热运动的微观理论,统计物理学从宏观物质系统是由大量微观粒子所构成这一事实出发,认为物质的宏观性质是大量微观粒子的性质的集体表现,宏观物理量是微观物理量的统计平均值。
热力学和统计物理学研究方法是不同的:热力学是热运动的宏观理论。
它以由观察和实验总结出的几个基本定律为基础,经过严密的数学推理,来研究物性之间的关系。
统计物理学是依据微观粒子遵循的力学规律,找出由大量粒子组成的系统在一定的宏观条件下所遵从的统计规律,并用概率统计的方法求出系统的宏观性质及其变化规律。
第一章 热力学的基本规律1、物态方程(理想气体物态方程、范氏方程)理想气体物态方程:nRT V =p (n 表示的是mol 数)范式方程:()nRT nb V V an =-⎪⎪⎭⎫⎝⎛+22p (n 表示的是mol 数)2、热力学第一定律文字表述、数学表述、实质文字表述:(1)第一类永动机是不可能实现的 (2)能量守恒定律,即自然界一切物质都具有能量,能量有各种不同的形式,可以从一种形式转化为另一种形式,从一个物体传递到另一个物体,在传递和转化中能量的数量不变数学表述:ΔQ W U +=在绝热条件下,Q =0:Δ绝热W U =而在绝功条件下,W =0:Δ绝功Q U =实质:能量守恒和转换原理在热力学中的具体体现3、热容量:等容热容量、等压热容量(3种表示,分别用热量、熵、内能焓)等容热容量:V T U C ⎪⎭⎫ ⎝⎛∂∂=v (热量表示) V V T S T C ⎪⎭⎫ ⎝⎛∂∂=(熵) VVT H C ⎪⎭⎫⎝⎛∂∂=(内能焓表示) 等压热容量:p p p ⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂=T V T U C P (热量表示) p p ⎪⎭⎫ ⎝⎛∂∂=T H C (内能焓表示) pp ⎪⎭⎫⎝⎛∂∂=T S T C (熵) 4、理想气体的内能只是温度的函数(掌握自由膨胀实验特点:迅速,来不及与外界交换热量;向真空膨胀,外压为0的膨胀,所以系统不对外做功)理想气体内能函数的积分表达式为:⎰+=0v d U T C U 理想气体的焓为:RT U V U H n p +=+=理想气体的焓的积分表达式为:⎰+=0p d H T C H 理想气体的等压热容量与等容热容量之差:R C C n -v p = 等压热容量与等容热容量之比:vp C C =γ 1-n 1-n v γγγRC R C P ==∴, 5、理想气体的绝热过程,过程方程理想气体准静态绝热过程的微分方程:0d p dp 0pd dp =+=+VVV V γγ或理想气体的温度在过程中变化不大,可以把γ看做常数。
大学物理总复习——热学汇总

E 3RT
2
E 5RT
2
E 3RT
麦克斯韦速率分布函数:
f
v
dN Ndv
4 ( m 2 kT
) v e 3/2
2
m v2 2kT
---- 概率密度
明确表达式的物理意义:
(1)nf (v)dv
(2)
Nf
(v)dv
(3) n
v2 v1
f (v)dv (4)
N v2 v1
f (v)dv
气体的三种统计速率: a.最概然速率大小: vp
热学总结
一:基本概念 二:热力学第一定律 三:热力学第二定律
一:基本概念
宏观:
温度T: 反映物质分子运动的剧烈程度。
热力学第零定律: ~ 温标:温度的数值表示。 热力学第三定律:热力学零度(绝对零度)不能达到
理想气体状态方程: pV RT NkT
注:R =8.31(J/mol.K),普适气体常数; k 1.381023 J / K
判断正误:
1、物体的温度愈高,则热量愈多
Q是过程量
2、物体的温度愈高,则内能愈大
只适用于理想气体
判断正误:
1.功可以全部转化为热,但热不能全部转化
为功。 等温膨胀
2.热量能够从高温物体传向低温物体,但不
能从低温物体传向高温物体。 致冷机 3.不可逆过程就是不能向相反方向进行的过程。
4.气体能够自由膨胀,但不能自动收缩。
答:[ B ]
a
2a/3
a/3 O
v
v0 2v03v0 4v0 5v0
P5 5. 金属导体中的电子,在金属内部作无规则运动,
与容器中的气体分子很类似.设金属中共有N个
关于热力学统计物理各章总结归纳

第一章1、 与其他物体既没有物质交换也没有能量交换的系统称为孤立系;2、 与外界没有物质交换,但有能量交换的系统称为闭系;3、 与外界既有物质交换,又有能量交换的系统称为开系;4、 平衡态的特点:1.系统的各种宏观性质都不随时间变化;2.热力学的平衡状态是一种动的平衡,常称为热动平衡;3.在平衡状态下,系统宏观物理量的数值仍会发生或大或小的涨落;4.对于非孤立系,可以把系统与外界合起来看做一个复合的孤立系统,根据孤立系统平衡状态的概念推断系统是否处在平衡状态。
5、 参量分类:几何参量、力学参量、化学参量、电磁参量6、 温度:宏观上表征物体的冷热程度;微观上表示分子热运动的剧烈程度7、 第零定律:如果物体A 和物体B 各自与处在同一状态的物体C 达到热平衡,若令A 与B 进行热接触,它们也将处在热平衡,这个经验事实称为热平衡定律8、 t=9、 体胀系数α=1V ⁄(?V ?T ⁄)p 、压强系数β=1p ⁄(?p ?T ⁄)v 、等温压缩系数K t =−1V ⁄(?V ?p ⁄)T 、三者关系α=k T βp10、 理想气体满足:玻意耳定律、焦耳定律、阿氏定律、道尔顿分压11、准静态过程:进行得非常缓慢的过程,系统在过程汇总经历的每一个状态都可以看做平衡态。
12、广义功dd=∑d d d ddd13、热力学第一定律:系统在终态B和初态A的内能之差UB-UA 等于在过程中外界对系统所做的功与系统从外界吸收的热量之和,热力学第一定律就是能量守恒定律. UB-UA=W+Q.能量守恒定律的表述:自然界一切物质都具有能量,能量有各种不同的形式,可以从一种形式转化为另一种形式,从一个物体传递到另一个物体,在传递与转化中能量的数量保持不变。
14、等容过程的热容量;等压过程的热容量;状态函数H;P2115、焦耳定律:气体的内能只是温度的函数,与体积无关。
P2316、理想气体准静态绝热过程的微分方程P2417、卡诺循环过程由两个等温过程和两个绝热过程:等温膨胀过程、绝热膨胀过程、等温压缩过程、绝热压缩过程18、热功转化效率η=1−T2/T119、热力学第二定律:1、克氏表述-不可能把热量从低温物体传到高温物体而不引起其他变化;2、开氏表述-不可能从单一热源吸热使之完全变成有用的功而不引起其它变化,第二类永动机不可能造成20、如果一个过程发生后,不论用任何曲折复杂的方法都不可能把它留下的后果完全消除而使一切恢复原状,这过程称为不可逆过程21、 如果一个过程发生后,它所产生的影响可以完全消除而令一切恢复原状,则为可逆过程22、 卡诺定理:所有工作于两个一定温度之间的热机,以可逆机的效率为最高23、 卡诺定理推论:所有工作于两个一定温度之间的可逆热机,其效率相等24、 克劳修斯等式和不等式d d d d ⁄+d d d d ⁄≤d25、 热力学基本微分方程:dd =ddd −ddd26、 理想气体的熵P4027、 自由能:F=U-FS28、 吉布斯函数:G=F+pV=U-TS+pV29、 熵增加原理:经绝热过程后,系统的熵永不减少;孤立系的熵永不减少30、 等温等容条件下系统的自由能永不增加;等温等压条件下,系统的吉布斯函数永不增加。
热力学和统计物理学

热力学和统计物理学热力学和统计物理学是研究物质的宏观性质和微观规律的重要学科。
热力学研究热现象与能量转换的规律,以及系统热力学性质的描述和分析;统计物理学则利用统计学方法分析微观粒子的行为,从而推导出热力学现象的统计规律。
本文将分别介绍热力学和统计物理学的基本概念和应用。
一、热力学热力学研究物质的宏观性质和能量转化方式,其中包括能量、温度、熵等基本概念。
能量是物质的一种基本属性,在热力学中,能量可以分为内能、外能和总能量。
内能是物质微观粒子的平均动能,外能是物质相对于外界能量的变化,总能量则是内能和外能的总和。
温度是物质内能和热平衡状态的度量,其单位为开尔文(K)。
根据热动力学第零定律,如果两个物体分别与第三个物体处于热平衡状态,那么它们之间也处于热平衡状态,即它们的温度相等。
热平衡是热力学中的基本概念,也是温度测量的基础。
熵是热力学中衡量系统无序程度的物理量,通常用S表示。
熵的增加与系统的无序程度增加有关,根据热力学第二定律,孤立系统熵不断增加,而逆过程是不可能的。
热力学第二定律是热力学的核心定律,揭示了能量转化过程的方向性。
热力学应用广泛,例如在能量转化方面,热力学可以解释传热、传质和传动过程;在化学反应方面,热力学可以研究反应热和平衡常数;在生物系统中,热力学可以分析生物能量转化等。
二、统计物理学统计物理学研究微观粒子的运动规律,通过统计学方法来推导宏观热力学性质。
统计物理学的基本理论是统计力学,其中包括平衡统计力学和非平衡统计力学。
平衡统计力学是研究物质在热平衡状态下的统计规律。
根据统计力学的基本假设,系统的微观状态对应不同的能量和位置,系统在宏观上处于产生最大熵的状态。
平衡态下的宏观物理量可以通过统计平均值来计算,例如平均能量、平均温度等。
非平衡统计力学则研究物质在非平衡状态下的行为,例如输运过程和涨落等。
非平衡态下的系统通常无法通过统计平均值来描述,需要考虑系统的动态演化和微观涨落。
热力学统计物理总复习第四章_多元系的复相平衡

=热统1>热统2>=在多元系中既可以发生相变,也可以发生化学变化。
多元系:含有两种或两种以上化学组分的系统。
氧气一氧化碳二氧化碳混合气体三元(单相)均匀系盐的水溶液和水蒸气二元二相系复相系均匀系热统3>=选T, P, n 1, n 2, …n k (n i 为i 组元的摩尔数)为状态参量,系统的三个基本热力学函数体积、内能和熵为),...,,,(1k n n P T V V =1(,,,...,)k U U T P n n =1(,,,...,)k S S T P n n =一、多元均匀系的热力学函数广延量的性质§4. 1 多元系的热力学函数和热力学方程对于K 个组元的多元均匀系(这指单相系或者是复相系中的一个相),因有可能发生化学变化,所以,需引进描述物质量的状态参量.热统4>=体积、内能和熵都是广延量。
如果保持系统的温度和压强(与物质量无关的强度量)不变而令系统中各组元的摩尔数都增为λ倍,系统的体积、内能和熵也增为λ倍11(,,,...,)(,,,...,)k k V T P n n V T P n n λλλ=11(,,,...,)(,,,...,)k k U T P n n U T P n n λλλ=11(,,,...,)(,,,...,)k k S T P n n S T P n n λλλ=热统5>=11(,...,)(,...,)m k k f x x f x x λλλ=如果函数满足以下关系式:1(,...,)k f x x 这个函数称为的m次齐函数.1,...,k x x 补充数学知识:(1)齐次函数定义:当m=1时,对应的就是一次齐次函数。
热统6>=欧勒定理11(,...,)(,...,)mk k f x x f x x λλλ=i i ifx mf x ∂=∂∑(2)齐次函数的一个定理——欧勒(Euler)定理(将上式两边对λ求导数后,再令λ=1,即可得到)补充数学知识:多元函数f(x 1, x 2, …, x n )是x 1, x 2, …,x n 的m 次齐次函数的充要条件为下述恒等式成立热统7>=ii ifx fx ∂=∂∑,,()j i T P n i i V V n n ∂=∂∑,,()j i T P ni i U U n n ∂=∂∑,,()ji T P n i iSS n n ∂=∂∑式中偏导数的下标n j 指除i 组元外的其它全部组元11(,,,...,)(,,,...,)k k V T P n n V T P n n λλλ=11(,,,...,)(,,,...,)k k U T P n n U T P n n λλλ=11(,,,...,)(,,,...,)k k S T P n n S T P n n λλλ=由欧勒定理如前所述因此,体积、内能和熵都是各组元摩尔数的一次齐函数热统8>=定义:,,()j i T P n i Vv n ∂=∂,,()j i T P n i U u n ∂=∂,,()j i T P n iS s n ∂=∂物理意义为:在保持温度、压强及其它组元摩尔数不变的条件下,增加1摩尔的i 组元物质时,系统体积(内能、熵)的增量。
热力学统计物理各章重点总结

热力学统计物理各章重点总结3.准静态过程和非准静态过程准静态过程:进行得非常缓慢的过程,系统在过程汇总经历的每一个状态都可以看做平衡态。
非准静态过程,系统的平衡态受到破坏4.内能、焓和熵内能是状态函数。
当系统的初态A和终态B给定后,内能之差就有确定值,与系统由A到达B所经历的过程无关;表示在等压过程中系统从外界吸收的热量等于态函数焓的增加值。
这是态函数焓的重要特性克劳修斯引进态函数熵。
定义:5.热容量:等容热容量和等压热容量及比值定容热容量:定压热容量:6.循环过程和卡诺循环循环过程(简称循环):如果一系统由某个状态出发,经过任意一系列过程,最后回到原来的状态,这样的过程称为循环过程。
系统经历一个循环后,其内能不变。
理想气体卡诺循环是以理想气体为工作物质、由两个等温过程和两个绝热过程构成的可逆循环过程。
7.可逆过程和不可逆过程不可逆过程:如果一个过程发生后,不论用任何曲折复杂的方法都不可能使它产生的后果完全消除而使一切恢复原状。
可逆过程:如果一个过程发生后,它所产生的后果可以完全消除而令一切恢复原状。
8.自由能:F和G定义态函数:自由能F,F=U-TS定义态函数:吉布斯函数G,G=U-TS+PV,可得GA-GB3-W1定律及推论1.热力学第零定律-温标如果物体A和物体B各自与外在同一状态的物体C达到热平衡,若令A与B进行热接触,它们也将处在热平衡。
三要素:(1)选择测温质;(2)选取固定点;(3)测温质的性质与温度的关系。
(如线性关系)由此得的温标为经验温标。
2.热力学第一定律-第一类永动机、内能、焓热力学第一定律:系统在终态B和初态A的内能之差UB-UA等于在过程中外界对系统所做的功与系统从外界吸收的热量之和,热力学第一定律就是能量守恒定律.UB-UA=W+Q.能量守恒定律的表述:自然界一切物质都具有能量,能量有各种不同的形式,可以从一种形式转化为另一种形式,从一个物体传递到另一个物体,在传递与转化中能量的数量保持不变。
热力学与统计物理复习

《热力学与统计物理》复习提纲第一章热力学的基本定律基本概念:平衡态、热力学参量、热平衡定律温度,三个实验系数(α,β,Tκ),物态方程、功,热力学第一定律(数学表述式)热容量(C,C V,C p的概念及定义),理想气体的内能,绝热过程及特性,热力学第二定律(文字表述、数学表述),热力学基本微分方程表述式,熵增加原理。
第二章均匀物质的热力学性质基本概念:焓(H),自由能F,吉布斯函数G的定义,全微公式,麦克斯韦关系(四个)及应用、能态公式、焓态公式,节流过程的物理性质,焦汤系数定义及热容量(Cp)的关系,绝热膨胀过程及性质,特性函数F、G。
综合运用:重要热力学关系式的证明,由特性函数F、G求其它热力学函数(如S、U、物态方程)第三章、第四章单元及多元系的相变理论该两章主要是掌握物理基本概念:热动平衡判据(S、F、G判据),单元复相系的平衡条件,多元复相系的平衡条件,多元系的热力学函数及热力学方程,一级相变的特点,吉布斯相律,热力学第三定律标准表述。
统计物理部分第六章近独立粒子的最概然分布基本概念:能级的简并度,μ空间,运动状态,代表点,三维自由粒子的μ空间,相格,量子态数,非简并性条件。
等概率原理,对应于某种分布的玻尔兹曼系统、玻色系统、费米系统的微观态数的计算公式,最概然分布,玻尔兹曼分布律,单粒子配分函数Z1,,f s,P l,P s的概念,经典配分函数,麦克斯韦速度分布律。
综合运用:能计算在体积V内,在动量范围P→P+dP内,或能量范围ε→ε+dε内,粒子的量子态数;了解运用最可几方法推导三种分布。
第七章玻尔兹曼统计1.基本概念:熟悉U、广义力、物态方程、熵S的统计公式,乘子α、β的意义,玻尔兹曼关系,能量均分定理,爱因斯坦的固体比热理论的内容和结论。
综合运用:能运用玻尔兹曼经典分布计算理想气体的配分函数内能、物态方程和熵;能运用玻尔兹曼分布计算谐振子系统(已知能量ε=(n+21)ω )的配分函数、内能和热容量。
热力学统计物理知识总结

热力学讲稿(云南师范大学物理与电子信息学院)伍林李明导言1、热运动:人们把组成宏观物质的大量微观粒子的无规则运动称为热运动。
热力学和统计物理的任务:研究热运动的规律、与热运动有关的物性及宏观物质系统的演化。
热力学方法的特点:热力学是热运动的宏观理论。
通过对热现象的观测、实验和分析,总结出热现象的基本规律。
这些实验规律是无数经验的总结,适用于一切宏观系统。
热力学的结论和所依据的定律一样,具有普遍性和可靠性。
然而热力学也有明确的局限性,主要表现在,它不能揭示热力学基本规律及其结论的微观本质和不能解释涨落现象。
统计物理方法的特点:统计物理学是热运动的微观理论。
统计物理从物质的微观结构和粒子所遵从的力学规律出发,运用概率统计的方法来研究宏观系统的性质和规律,包括涨落现象。
统计物理的优点是它可以深入问题的本质,使我们对于热力学定律及其结论获得更深刻的认识。
但统计物理中对物质微观结构所提出的模型只是实际情况的近似,因而理论预言和试验观测不可能完全一致,必须不断修正。
热力学统计物理的应用温度在宇宙演化中的作用:简介大爆炸宇宙模型;3k宇宙微波背景辐射。
温度在生物演化中的作用:恐龙灭绝新说2、参考书(1)汪志诚,《热力学·统计物理》(第三版),高等教育出版社,2003(2)龚昌德,《热力学与统计物理学》,高等教育出版社,1982(3)朗道,栗弗席兹,《统计物理学》,人民教育出版社1979(4)王竹溪,《热力学教程》,《统计物理学导论》,人民教育出版社,1979(5)熊吟涛,《热力学》,《统计物理学》,人民教育出版社,1979(6)马本昆,《热力学与统计物理学》,高等教育出版社,1995(7)自编讲义作者介绍:汪志诚、钱伯初、郭敦仁为王竹溪的研究生(1956);西南联大才子:杨振宁、李政道、邓稼先、黄昆、朱光亚;中国近代物理奠基人:饶毓泰、叶企孙、周培源、王竹溪、吴大猷:中国物理学会五项物理奖:胡刚复、饶毓泰、叶企孙、吴有训、王淦昌。
热力学和统计物理复习

统计物理复习提纲
第六章 近独立粒子的最概然分布 第七章 波尔兹曼统计 第九章 系综理论 第十章 涨落理论
第六章 近独立粒子的最概然分布
• 理想气体的物态方程表达式、经典极限条件 • 麦克斯韦速度分布率、最概然速率 • 能量均分定律
单原子和双原子分子的内能、定容和定压热容量
• 理想气体的内能和热容量 • 理想气体的熵 • 固体的热容量
第九章 系综理论
• 相空间、哈密顿量、能量曲面、刘维尔定律 • 概念:
系综、微正则系综、正则系综、巨正则系综 系综:宏观状态、微观(量子态)结构都相 同,但微观状态不同的系统的集合
第二章 均匀物质的热力学性质
• 内能、焓、自由能和吉布斯函数的全微分 • 麦氏关系 • 基本热力学函数 • 特性函数
第三章 单元系的相变
• 热动平衡判据、热动平衡条件、平衡的稳 定性条件 • 开系的热力学基本方程 • 单元系的复相平衡条件、蒸气压方程
第四章 多元系的复相平衡和化学平衡 热力学第三定律
微正则 系综:
以E、N、V为宏观参量完备
集,体系与外界无能量交换 也没有粒子交换——孤立系
系 正则 综 系综:
以N、V、T为宏观参量完备
集,每一个体系与外界有能量 交换,无粒子交换——封闭系
巨正则 系综:
以V、T、μ为宏观参量完备
集,每一个体系与外界既有 能量交换,又有粒子交换— —开放系
• 微正则系综及其热力学公式 • 正则系综
• 粒子运状态的经典描述
广义坐标、广义动量、μ空间
热力学统计物理复习资料

热力学统计物理第一章:热力学的基本规律 1.焦耳实验:(1)实验结果:水温发生变化(2)结果分析:①气体向真空自由膨胀,气体对外界不作功,即W=0; ②水温没有发生变化,说明气体与水没有交换热量,即Q=0。
∴0=+=∆W Q U 说明气体的内能在过程前后不变。
(3)焦耳定律:理想气体的内能只是温度的函数,与体积无关。
即)(T U U =(4)适用范围:理想气体(5)推论:nRT U pV U H +=+=,故理想气体的焓也是温度的单值函数。
2. 熵增加原理:系统经可逆绝热过程后熵不变,经不可逆绝热过程后熵增加,在绝热条件下熵减少的过程是不可能实现的。
即 0≥-A B S S3. 最大功原理:系统在等温过程中对外界所作的功不大于其自由能的减少量。
即B A F F W -≤-4. 两个例题:1)一理想气体,经准静态等温过程,体积有A V 变为B V ,求过程前后气体的熵变。
解:已知理想气体的物态方程为:nRT pV = 等容热容为:dT C dU dTdUC V V =⇒=∴nRpV pdVTdT C T pdV dU T dQ dS V +=+==V dV nR T dT C V += ∴⎰++==0ln ln S V nR T C dS S V∴初态),(A V T 的熵为:0ln ln S V nR T C S A V A ++= 末态),(A V T 的熵为:0ln ln S V nR T C S B V B ++= 故熵变为:BAA B V V nR S S S ln=-=∆ 2)热量Q 从高温热源T 1传到低温热源T 2,求熵变. 解:根据熵变的定义,得①高温热源的熵变为:11T Q S -=∆(放热) ②低温热源的熵变为:22T QS =∆(吸热) 由于熵是广延量,具有可加性 ∴)11(1221T T Q S S S -=∆+∆=∆ 第二章:均匀物质的热力学性质1.平衡辐射:如果辐射体对电磁波的吸收和辐射达到平衡,热辐射的特性将只取决于温度,与辐射体的其他特性无关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热力学•统计物理 (汪志诚)
概 念 部 分 汇 总 复 习 热力学部分 第一章 热力学的基本规律 1、热力学与统计物理学所研究的对象:由大量微观粒子组成的宏观物质系统 其中所要研究的系统可分为三类 孤立系:与其他物体既没有物质交换也没有能量交换的系统; 闭系:与外界有能量交换但没有物质交换的系统; 开系:与外界既有能量交换又有物质交换的系统。 2、热力学系统平衡状态的四种参量:几何参量、力学参量、化学参量和电磁参量。 3、一个物理性质均匀的热力学系统称为一个相;根据相的数量,可以分为单相系和复相系。 4、热平衡定律(热力学第零定律):如果两个物体各自与第三个物体达到热平衡,它们彼此也处在热平衡. 5、符合玻意耳定律、阿氏定律和理想气体温标的气体称为理想气体。 6、范德瓦尔斯方程是考虑了气体分子之间的相互作用力(排斥力和吸引力),对理想气体状态方程作了修正之后的实际气体的物态方程。 7、准静态过程:过程由无限靠近的平衡态组成,过程进行的每一步,系统都处于平衡态。
8、准静态过程外界对气体所作的功:,外界对气体所作的功是个过程量。 9、绝热过程:系统状态的变化完全是机械作用或电磁作用的结果而没有受到其他影响。绝
热过程中内能U是一个态函数:ABUUW 10、热力学第一定律(即能量守恒定律)表述:任何形式的能量,既不能消灭也不能创造,只能从一种形式转换成另一种形式,在转换过程中能量的总量保持恒定;热力学表达式:
QWUUAB;微分形式:WQUddd
11、态函数焓H:pVUH,等压过程:VpUH,与热力学第一定律的公式一比较即得:等压过程系统从外界吸收的热量等于态函数焓的增加量。 12、焦耳定律:气体的内能只是温度的函数,与体积无关,即)(TUU。
13.定压热容比:ppTHC;定容热容比:VVTUC 迈耶公式:nRCCVp
14、绝热过程的状态方程:constpV;constTV;const1Tp。 15、卡诺循环过程由两个等温过程和两个绝热过程组成。正循环为卡诺热机,效率
211TT,逆循环为卡诺制冷机,效率为211TTT
(只能用于卡诺热机)。
16、热力学第二定律:克劳修斯表述:不可能把热量从低温物体传到高温物体 而不引起其他变化(表明热传导过程是不可逆的);
VpWdd 开尔文(汤姆孙)表述:不可能从单一热源吸收热量使之完全变成有用的功而不引起其他变化(表明功变热的过程是不可逆的); 另一种开氏表述:第二类永动机不可能造成的。 17、无摩擦的准静态过程是可逆过程。 18、卡诺定理:所有工作于两个一定温度T1与T2之间的热机,以可逆机的效率为最高。并
且所有的可逆机的效率都相等211TT,与工作物质无关,只与热源温度有关。
19、热机的效率:121QQ,Q1为热机从高温热源吸收的热量,Q2为热机在低温热源放出的热量。 20、克劳修斯等式与不等式:02211TQTQ。
21、可逆热力学过程0TdQ,不可逆热力学过程0TdQ。 22、热力学基本方程:VpSTUddd。 23、熵函数是一个广延量,具有可加性;对于可逆过程,熵S是一个态函数,积分与路径无关;对于绝热过程中,熵永不减少。
24、理想气体的熵函数S:0lnlnSVnRTnCSV;0lnlnSpnRTnCSp。 25、熵增加原理:系统经过可逆绝热过程后熵不变,经过不可逆绝热过程后熵增加,在绝热条件下熵减少的过程是不可能实现的。熵增加原理用来判断过程进行的方向和限度。 26、孤立系统内所发生的过程的方向就是熵增加的方向,若系统经绝热过程后熵不变,则此过程是可逆的;若熵增加,则此过程是不可逆的。 27、熵是系统中微观粒子作无规则运动的混乱程度的量度。 28、在等温等容过程中,系统的自由能(TSUF)永不增加,系统发生的不可逆过程
总是朝着自由能减少的方向进行;在等温等压过程中,吉布斯函数(pVTSUG)永不增加,系统发生的不可逆过程总是朝着吉布斯函数减少的方向进行。 第二章 均匀物质的热力学性质 1、内能、焓、自由能和吉布斯函数的全微分(记忆方法):
VdpTdSdH;VdpSdTdG;pdVSdTdF;pdVTdSdU 2、麦氏关系:VSSpVT ;pSSVpT
STp
VHd
UdGd
Fd
),(dG),(dH
),(dF),(dU
O VTTpVS ;TppSTV
3、获得低温的方法主要有节流过程和绝热膨胀过程;节流过程前后气体的温度发生了变化,这个效应称之为:焦耳-汤姆孙效应;对于理想气体,节流过程前后温度不变。 4、受热的物体会辐射电磁波,叫做热辐射;热平衡辐射体对电磁波的吸收和辐射达到平衡,热辐射的特性只取决于辐射体的温度,与辐射体的其他性质无关,所以说平衡辐射下,辐射体具有固定的温度。 第三章 单元系的相变 1、孤立系统达到平衡态的时候,系统的熵处于极大值状态,这是孤立系统平衡态的判据;如果极大值不止一个,则当系统处于较小的极大值的时候,系统处于亚稳平衡态。 2.孤立系统处在稳定平衡态的充要条件是:0S;等温等容系统处在稳定平衡态的充要条件是:0F;等温等压系统处在稳定平衡态的充要条件是:0G。 3、当系统对于平衡状态而发生某种偏离的时候,系统中将会自发地产生相应的过程,直到恢复系统的平衡。
4、开系的热力学基本方程:dnpdVTdSdU
5、单元系的复相平衡条件:;;ppTT 6、汽化线、熔解线与升华线的交点称为三相点,在三相点固、液、气三相可以平衡共存。
7、单元系三相共存时,),(),(),(;;00pTpTpTppppTTTT即三相(α β γ)的温度、压强和化学势必须相等。 第四章 多元系的复相平衡和化学平衡 1、多元系是由含有两种或两种以上化学组分组成的系统,在多元系既可以发生相变,也可以发生化学变化。
2、在系统的T和p不变时,若各组元的摩尔数都增加倍,系统的V、U、S也应增加倍。 3、多元系的热力学基本方程:iiidnpdVTdSdU
4、吉布斯关系:0iiidnVdpSdT 5、多元系的复相平衡条件:整个系统达到平衡的时候,两相中各组元的化学势必须分别相等,即ii。 6、化学反应(所有的反应物和生成物都在同一相):iiiA0;其化学平衡条件为:iii0
7、道尔顿分压定律:混合理想气体的压强等于各组元的分压之和,即iipp 8、理想气体在混合前后的焓值相等,所以理想气体在等温等压下混合过程中与外界没有热 量交换。 9、偏摩尔体积、偏摩尔内能和偏摩尔熵:
ivnnVnV
iinpTiii
j,,
;iiinpTiiiunnUnUj,,;iiinpTiiisnnSnSj,,
物理意义:在保持温度(T)、压强(p)和其他组元(nj)摩尔数不变的条件下,每增加1mol的第i组元物质,系统体积(或内能、熵)的增量。
10、混合理想气体的物态方程:iiknRTRTnnnpV)(21,由此可得摩尔分
数iiiiixnnpp。 11、混合理想气体的吉布斯函数iiiiiiipxRTnnG)ln(,混合理想气体的内能iiiviudTcnU0(混合理想气体的内能等于分内能之和),混合理想气体的熵
iiipiispxRdTTcnS0)ln(
统计物理学部分 第六章 近独立粒子的最概然分布
1、粒子的能量是粒子的广义坐标和广义动量的函数),,;,,,(2121rrpppqqq,某一
时刻粒子的运动状态),,;,,,(2121rrpppqqq可以用空间的一点来表示,注意,粒子在空间的轨迹并不是粒子的实际运动轨迹。
2、自由粒子自由度3,空间维数6,能量(球))(21222zyxpppm;线性谐振子自由
度1,空间维数2,能量(椭圆)222212xmmp;(长度一定轻杆连接质点)转子自由度2,空间维数4,能量IM2 2。 3、粒子运动状态的量子描述: E ;kp(德布罗意关系)自旋磁量子数21sm 4、粒子的自由度为r,各自由度的坐标和动量的不确定值iq和ip满足海森伯不确定关系hpqii,相格的大小为rrrhppqq11。
5、近独立粒子系统:系统中粒子之间的相互作用很弱,相互作用的平均能量远小于单个粒子的平均能量,忽略粒子之间的相互作用,系统的能量就简单地认为是单个粒子的能量之和。 6、经典物理:全同粒子可以分辨,可以跟踪粒子的轨道运动轨迹;量子物理:全同粒子不可分辨,不可能跟踪粒子的运动(不确定关系)。