第七章 光谱分析法
第七章 红外光谱分析法3
已知分子式CxHyOz,计算不饱和度:所谓不饱 和度即是当一个化合物变为相应的烃时,和同碳的 饱和烃比较,每缺少二个氢为一个不饱和度。
2x 2 y 2
2 2n4 n3 n1 2
n1)原子的数目。
谱图解析应注意以下问题
(4)当某些特殊区域无吸收峰时,可推测不存在某些官 能团,这时往往可以得出确定的结果,这种信息往往 更有用。当某个区域存在一些吸收峰时,不能就此断 定分子中一定有某种官能团,由于红外光谱的吸收频 率还受到各种因素的影响,如电子效应和凝聚态的影 响,峰的强度和位置可能发生一定的变化。另外不同 的官能团可能在同一区域出现特征吸收峰,因此,要 具体分析各种情况,结合指纹区的谱峰位置和形状做 出判断。
谱图解析应注意以下问题
( 3 )由于红外光谱的复杂性,并不是每一个红外谱峰 都是可以给出确切的归属,因为某些峰是分子作为一 个整体的吸收,而有的峰则是某些峰的倍频或合频。 另外有些峰则是多个基团振动吸收的叠加。在解析光 谱的时候,往往只要能给出 10%~20% 的谱峰的确切 归属,由这些谱峰提供的信息,通常可以推断分子中 可能含有的官能团。在分析特征吸收时,不能认为强 峰即是提供有用的信息,而忽略弱峰的信息。例如, 835cm-1的谱峰存在与否是区别天然橡胶与合成橡胶的 重要标志,前者有此峰,后者没有。
应用示例-1
请写出所有的红外吸收频率
应用示例-1
[例1]试推测化合物C8H8O1的分子结构。
解:计算不饱和度 U=(8×2+2-8)/2=5 不饱和度大于4,分子中可能有苯环存在,由于仅含8个氢, 因此该分子应含一个苯环一个双键。 1610cm-1、1580cm-1、1520cm-1、1430cm-1:苯环的骨架振 动( 1600cm-1 、 1585cm-1 、 1500cm-1 、 1450cm-1 )。证明 苯环的存在。
第7章紫外吸收光谱分析
第七章紫外吸收分析法一、判断题(对的打√, 错的打×)1、紫外吸收光谱法只适合分子中含共轭结构的化合物的分析。
(√)2、电磁波的波长越大,能量越大。
()3、紫外吸收是由外层价电子能级跃迁所致,其能级差的大小,决定了其吸收峰的位置。
(√)4、根据朗伯-比耳定律,如果入射光的波长相同,被测物质的浓度不同,则摩尔吸光系数不同。
()5、根据朗伯-比耳定律,被测物质的浓度越大,测定的吸光度值越大,测量结果越准确。
()6、极性溶剂一般使π→π*跃迁发生红移,使n→π*跃迁发生蓝移。
(√)7、当分子中的助色团与生色团直接连接时,将使n→π*跃迁发生红移。
()8、在紫外-可见光度分析中极性溶剂会使被测物吸收峰精细结构更明显。
()9、在紫外吸收光谱测定中,应尽量选择弱溶剂或非极性的溶剂。
(√)二、选择题1、光量子的能量正比于幅射的(A)A、频率B、波长C、波数D、传播速度2、在一些含有>C=O、—N=N等基团的分子中,由n→π*跃迁产生的吸收带称为(D)A、K吸收带B、E吸收带C、B吸收带D、R吸收带3、苯胺的紫外光谱中,λmax=230nm,εmax=8600的吸收带是(C)A、K带B、R带C、E2带D、B带4、丙酮在已烷中的紫外吸收λmax=279nm,ε=14.8,该吸收带是由哪种跃迁引起的?(C)A、σ→σ*B、n→σ*C、n→π*D、π→π*5、紫外吸收光谱曲线中,能用来定性的参数是( D )A、最大吸收峰的吸光度B、最大吸收峰处的摩尔吸收系数C、最大吸收峰的波长D、最大吸收峰的波长和其摩尔吸收系数6、在下面四种溶剂中测定化合物CH3COCH=C(CH3)2的n→π*跃迁,吸收带波长最短的是( D )A、环己烷B、氯仿C、甲醇D、水7、区别n→π*和π→π*跃迁类型,可以用吸收峰的( C )A、最大波长B、形状C、摩尔吸光系数D、吸光度8、在光学分析法中, 采用钨灯作光源的是( C )A、原子光谱B、紫外光谱C、可见光谱D、红外光谱9、摩尔吸光系数与下列哪个因素无关( A )A、溶液的浓度B、溶液的性质C、溶液的温度D、入射光波长10、某化合物在紫外光谱的220~280nm范围内没有吸收,该化合物可能属于以下化合物中的哪一类? ( D )A、芳香族化合物B、含共轭双键化合物C、醛类D、醇类11、某化合物分子式为C5H8O,在紫外光谱上有两个吸收带:λmax=224 nm 时,εmax =9750;λmax=314 nm时,εmax =38;以下可能的结构是(A)A、CH3COCH=CHCOCH3 B、CH3CH=CHCH2CHOC、CH2=CHCH2CH2CHOD、CH≡CCH2CH2CH2OH12、在300nm波长进行分光光度测定时,应选用何种比色皿( C)A、硬质玻璃B、软质玻璃C、石英D、透明有机玻璃13、伍德沃德提出了计算共轭二烯、多烯烃及共轭烯酮类化合物哪类跃迁最大吸收波长的经验规则( D )A、σ→σ*B、n→σ*C、n→π*D、π→π*14、在可见-紫外分光光度计中,用于紫外波段的光源是:(B)A、钨灯B、氘灯C、卤钨灯D、能斯特光源15、按一般光度法用空白溶液作参比溶液,测得某试液的透射比为10%,如果更改参比溶液,用一般分光光度法测得透射比为20% 的标准溶液作参比溶液,则试液的透光率等于( C)A、8%B、40%C、50%D、80%16、如果显色剂或其他试剂在测定波长有吸收,参比溶液应采用(B )A、溶剂参比;B、试剂参比;C、试液参比;D、褪色参比。
第七章原子发射光谱分析法
光学分析概论:
光学分析法主要根据物质发射、吸收电磁辐射以及物 质与电磁辐射的相互作用来进行分析的。
光学分析法分类: 光学分析法可分为光谱法和非光谱法两大类。
1854年,阿尔特提出光谱定性分析的概念。
焰色反应及离子的鉴定: Cu2+Ba2+ Sr2+ 猩红
辐射跃迁:
X * X E(h ) : 光谱的记录
E=E2 E1 h h c 或= hc
E
h 为普朗克常数(6.626×10-34 J.s) c 为光速(2.997925×1010cm/s)
① 量子化———— 线光谱 ② 光谱选律———— 元素的特征性
第七章原子发射光谱分析法
二、发射光谱分析的过程
方法:(1)看谱分析法 (2) 摄谱分析法 (3)光电直读光谱法
第七章原子发射光谱分析法
4、仪器装置
光谱分析仪组成:激发光源、(分光系统)摄谱仪、检测系 统。
第七章原子发射光谱分析法
一、光源
1、光源的作用:提供能量,使试样蒸发、解离、原子化和 激发跃迁而产生电磁辐射。
2、对光源的要求:光源常常对光谱分析的检出限、灵敏度 及准确度有很大影响,因此,光源必须满足如下要求: A、有足够的激发温度,适合不同含量的元素分析。高灵敏 度的保证; B、有良好的稳定性和重现性。准确度的保证; C、光谱背景浅,构造简单、操作方便,安全耐用,适应性 强。
第七章原子发射光谱分析法
二、 分析过程
1、 样品的蒸发(原子化)与激发 2、 光谱的获得和记录 (1)分光: 将激发态原子所产生的光辐射经过色散,得到
按波长排列的光谱。 (2) 摄谱: 将获得的光谱记录在相谱上。 3、 光谱的检测
第七章 原子发射光谱分析 (Atomic Emission Spectrometry知识分享
Ei—激发电位(J或eV)。
Iij
gi g0
AijhijN0ekEiT
原子发射光谱 法定量的依据
基态原子密度(N0):Iij正比于N0,N0正比于浓度。
激发电位(Excitation potential)
谱线强度与激发电位成负指数关系。在温度一定时,激发 电位越高,处于该能量状态的原子数越少,谱线强度越小。 激发电位最低的共振线通常是强度最大的线。
目前常用的光源有直流电弧(DC arc)、交流电 弧(AC arc)、高压火花(electric spark)及电感耦合等离 子体(ICP)。
1. 直流电弧
优点:电极头温度相对比较高(4000至7000K,与 其它光源比),蒸发能力强、绝对灵敏度高、背景小;
缺点:放电不稳定,且弧较厚,自吸现象严重,故 不适宜用于高含量定量分析,但可很好地应用于矿石 等的定性、半定量及痕量元素的定量分析。
微波光谱法
4×10-7~4×10-10 核磁共振波谱法
高能辐射区
γ射线 能量最高,核能级跃迁 X射线 内层电子能级的跃迁
光学光谱区
(10nm-1000 μm)
紫外光 可见光
原子和分子外层电子能级的跃迁
红外光 分子振动能级和转动能级的跃迁
波谱区
微波 分子转动能级及电子自旋能级跃迁 无线电波 原子核自旋能级的跃迁
2.电磁波谱:电磁辐射按波长顺序排列就称光谱。
光谱区域 γ射线 X射线 远紫外光 近紫外光
光 可见光 学 近红外光 区 中红外光
远红外光
微波
无线电波
波长 5~140pm 10-3~10nm 10~200nm 200~380nm 380~780nm 0.78~2.5μm 2.5~50μm
第7章 原子发射光谱分析
光栅的参数
光栅的特性可用色散率和分辨率来表征。
光栅的角色散率可通过对光栅公式求导得到:
d n d d cos
其中dθ/dλ:入射角对波长的变化率,即光栅的角色散率; d:光栅常数; n:光谱级数。
当θ很小且变化不大时,cosθ≈1,光栅的角色散率决定于
光栅常数d和光谱级数n,为常数。因此光栅光谱是均排光
凹面光栅与罗兰圆
多道型光电直读光度仪多采用凹面光栅。凹面光栅既具有
色散作用也起聚焦作用(凹面反射镜将色散后的光聚焦)。
罗兰圆:Rowland发现在曲率半
径为R 的凹面反射光栅上存在着 一个直径为R的圆,不同波长的
光都成像在圆上,即在圆上形成 一个光谱带. 因此,将直读光谱 仪的出射狭缝做在凹面光栅的罗 兰圆上。
达到一定值时,放电盘G1击穿;G1-C1-L1构成振荡回路,产 生高频振荡;
(2) 振荡电压经B2的次级线圈升压到10kV,通过电容器C2 将电极间隙G的空气击穿,产生高频振荡放电;
(3) 当G被击穿时,电源的低压部
分沿着已造成的电离气体通道,通
过G进行电弧放电;
(4) 在放电的短暂瞬间,电压降
低直至电弧熄灭,在下半周高频再
ICP-AES
光电直读是利用光电法直接测定光谱线的强度。 两种类型:多道固定狭缝式和单道扫描式。
单道扫描式是转动光栅进行 扫描,在不同时间检测不同 谱线; 多道固定狭缝式则是安装多 个出射狭缝和光电倍增管, 同时测定多个元素的谱线; 全谱直读光谱仪可同时测定 试样中165-800nm波长范围 内的元素的所有谱线,对其 进行分析。
(3) 光电流∝原子光谱的强度,与基态原子浓度成正比。
7.4 光谱定性分析 定性依据: E = hν = h c /λ
仪器分析-第7章 原子吸收与原子荧光光谱法
原子的能级与跃迁和元素的特征谱线 1. 基态第一激发态, 吸收一定频率的辐射能量。 产生共振吸收线(简称共振线) 吸收光谱 2.第一激发态基态 发射出同样频率的辐射。 产生共振发射线(也简称共振线) 发射光谱 3.各种元素的原子结构和外层电子排布不同: 特征谱线 最易发生,吸收最强,最灵敏线,分析线。 利用待测原子蒸气对同种元素的特征谱线(共振 线)的吸收可以进行定量分析。原子吸收光谱位于光 谱的紫外区和可见区。
(二)原子吸收光谱轮廓与变宽
☺ 1、吸收定律 强度为I0 的单色平行光通过厚度为l的原子蒸气,其 中一部分光被吸收,透过光的强度I服从吸收定律:
I0 原子蒸汽 l I
I I 0 e
( k l )
K是基态原子对频率为的
光的吸收系数。它与入射 光的频率、基态原子密度 及原子化温度等有关。
第一节
一、原子吸收的历史发展
概述
原子吸收光谱法是一种基于待测基态原子蒸 气对特征谱线的吸收而建立的一种分析方法。 发展经历了3个发展阶段: 1、原子吸收现象的发现 –1802年Wollaston发现太阳光谱的暗线;
太阳光
暗 线
–1859年Kirchhoff和Bunson解释了暗线产生的原因: 是由于大气层中的钠原子对太阳光选择性吸收的结果。
若采用一个连续光源(氘 或钨灯),即使是用高质 量的单色器入射可得到光 谱带为(0.2nm)的高纯光。 原子吸收线半宽度(10-3 nm, 即便是全部吸收)。由待测 原子吸收线引起的吸收值, 仅相当于总入射光强度的 0.5% [(0.001/0.2)×100%=0.5%], 原子吸收只占其中很少部 分,使测定灵敏度极差。
原子吸收光谱仪又称原子吸收分光光度计,虽 然种类很多,但基本结构是一样的。 锐线光源 原子化器 主要组成部分
第七章原子吸收光谱分析法
原子吸收光谱法(也称原子吸收分光光法 )与可 见、紫外分光光度法基本原理相同,都是基于物质 对光选择吸收而建立起来的光学分析法。
2010年1月25日1时53分
组成:阳极(吸气金属)、空心圆筒形(使待测原子集中)阴极(W+ 待测元素)、低压惰性气体(谱线简单、背景小)。
工作过程:高压直流电(300V)---阴极电子---撞击隋性原子---电离(二 次电子维持放电)---正离子---轰击阴极---待测原子溅射----聚集空 心阴极内被激发----待测元素特征共振发射线。
? 自然宽度(约在10-5nm数量级)。
?
?2.多普勒变宽(热变宽):
? 由于多普勒效应而导致的谱线 变宽。由于原子热运动引起的。 其宽度约为 10-3nm数量级。
?3.压力变宽:由于同类原子或 与其它粒子(分子、原子、离子、 电子等)相互碰撞而造成的吸收 谱线变宽。其宽度也约为 10-3nm 数量级。
区别:在可见、紫外分光光度法中,吸光物质 是溶液中被测物质的分子或离子对光的选择吸收, 原子吸收光谱法吸光物质是待测元素的基态原子对 光的选择吸收,这种光是由待测元素制成的空心阴 极灯(称元素灯)作光源。
原子吸收光谱分析的过程:
A元素含量测定----- A元素的空心阴极灯发射特征辐射 --------试样在原子化器中变为气态的基态原子-------吸收空心 阴极灯发射特征辐射---------空心阴极灯发射特征辐射减弱-----产生吸光度------元素定量分析
钨丝灯光源和氘灯,经分光后,光谱通带0.2nm。而原子吸收线
仪器分析 第7章 原子发射光谱分析
摄谱法原理 ⑴ 摄谱步骤
安装感光板在摄谱仪的焦面上
激发试样,产生光谱而感光
显影,定影,制成谱板 特征波长—定性分析 特征波长下的谱线强度—定量分析
⑵ 感光板 玻璃板为支持体,涂抹感光乳剂(AgBr+明胶+增感剂) 感光:
2AgX+2hυ→ Ag(形成潜影中心)+X2
OH
O
显影: 对苯二酚
乳剂特性曲线:
感光板的反衬度
以黑度S与曝光量的对数lgH作图 在正常曝光部分:
γ
S lg H lg H i lg H i
α
乳 剂 特 性 曲 线
S lg( It ) i
Hi为感光板的惰延量
谱线黑度与辐射强度的关系:
S lg( It ) i
定量分析中,更主要是采用 内标法,测量分析线对的相 对强度
磁辐射,通过测定其波长或强度进行分析的方法
不涉及能级跃迁,物质与辐射作用,使其传播方 向等物理性质发生变化,利用这些改变进行分析 的方法
光分析法
非光谱分析法
光谱分析法
圆 折 二 射 色 法 性 法
X 射 干 线 涉 衍 法 射 法
原子光谱分析法 旋 光 法
X 射 线 荧 光 光 谱
分子光谱分析法
分 子 荧 光 光 谱 法 分 子 磷 光 光 谱 法 核 磁 共 振 波 谱 法
e. 波长尽可能靠近
(3) 摄谱法中的内标法基本关系式
• 摄谱法中谱线黑度S与辐射强度、浓度、曝光时间 、感光板的乳剂性质及显影条件有关,固定其他 条件不变,则感光板上谱线的黑度仅与照射在感 光板上的辐射强度有关
i0 S lg i
i0 未曝光部分的透光强度 i 曝光部分的透光强度
有机化学第七章光谱
一些常见化学键的力常数如下表所示:
键型 O H N H
-1
C H C O C C C O C C 4.8 17.7 15.6 12.1 9.6 5.4 4.5
k /N.cm
7.7 6.4
折合质量μ :两振动原子只要有一个的质量↓, μ ↓,(v)↑
C H 2800-3000cm
3.其他:
N-H弯曲振动在1600-1650cm-1 四个或四个以上CH2 相连,其CH2 的面内摇摆 振动在 720cm-1
7.1.4 红外谱图解析
红外谱图解析的基本步骤是:
1.观察特征频率区:判断官能团,以确定所属化 合物的类型。
2.观察指纹区:进一步确定基团的结合方式。 3.对照标准谱图验证。
E:光量子能量,J h: Planck常数, 6.626×10-34 J.S
分子吸收光谱 分子吸收电磁幅射,就获得能量,从而引起分子 某些能级的变化,如增加原子间键的振动,或激发 电子到较高的能级,或引起原子核的自旋跃迁等。 但它们是量子化的,因此只有光子的能量恰等于两 个能级之间的能量差时(即ΔE)才能被吸收。所以 对于某一分子来说,只能吸收某一特定频率的辐射, 从而引起分子转动或振动能级的变化,或使电子激 发到较高的能级。光谱便是记录分子对不同波长 (频率)的电磁波吸收或透过情况的图谱。
叔醇:1150~1120cm-1
4. 醛与酮
二者的异同点:
1. 在1700cm-1处均有一个强而尖的吸收峰,为 C= O(羰基)的特征吸收峰。 C=O(羰基)吸收峰的位置与其邻近基团有关, 若羰基与双键共轭,吸收峰将向低波数区位移。
2.醛基在2715cm-1处有一个强度中等的尖峰,这是 鉴别分子中是否存在— CHO的特征基团。
仪器分析 第七章 原子吸收光谱法
第七章原子吸收光谱法1.原子吸收光谱的历史2.原子吸收光谱的特点3.原子吸收光谱与紫外可见吸收光谱的区别4.原子吸收光谱分析过程第一节概述1. 原子吸收光谱的历史◆1802年,沃拉斯顿(Wollaston)在研究太阳连续光谱时,首次发现太阳连续光谱中出现暗线。
◆1817年,夫琅和费(Fraunhofer)研究太阳连续光谱时再次发现这些暗线,但无法解释暗线产生的原因。
2/1363/1361825年,法国著名哲学家孔德在哲学讲义中说“恒星的化学组成是人类绝对不能得到的知识”◆1859年,本生、基尔霍夫研究碱金属和碱土金属火焰光谱时,发现钠蒸气发出的光通过温度较低的钠蒸气时,会引起钠光的吸收,并且钠在光谱中位置相同。
发射线与暗线D◆太阳光谱暗线:太阳外围大气圈中钠原子对太阳光谱中钠辐射特征波长光进行吸收的结果。
4/1365/136太阳中含有94种稳定和放射性元素:氢(71%)、氮(27%)、氧、碳、氖、硅、铁等。
◆1955年,澳大利亚物理学家Walsh(沃尔什)发表了著名论文《原子吸收光谱法在分析化学中的应用》,奠定了原子吸收光谱法的基础。
◆1960年以后,原子吸收光谱法得到迅速发展,成为微量、痕量金属元素的可靠分析方法。
6/1362. 原子吸收光谱法的特点✓检出限低:10-10~10-14g。
✓准确度高:1%~5%。
✓选择性好:一般情况下共存元素无干扰。
✓应用范围广:可测定70多种元素。
✗缺点:难熔元素、非金属元素测定困难,不能实现多元素同时分析。
7/1363. 原子吸收与紫外可见吸收的区别✓相同点:利用物质对辐射的吸收进行分析。
✗不同点:◆吸收机理不同:紫外可见为溶液中分子或离子宽带吸收,带宽为几纳米至几十纳米;原子吸收为气态基态原子的窄带吸收,带宽仅为10-3nm。
◆光源不同。
◆试样处理、实验方法及对仪器的要求不同。
8/1364. 原子吸收光谱分析过程◆确定待测元素。
◆选择该元素相应锐线光源,发射出特征谱线。
高中化学: 第七章 有机化合物结构的光谱分析
分子离子峰的应用: 分子离子峰的质荷比就是化合物的相对分子质量, 所以,用质谱法可测分子量。
Company Logo
2、 同位素离子和同位素离子峰
含有同位素的离子称为同位素离子。 在质谱图上,与同位素离子相对应的峰称为同位素离子峰。
同位素离子峰的特点: 1 同位素一般比常见元素重,其峰都出现在相应一般峰 的右侧附近。一定是奇电子离子。 2 同位素峰的强度与同位素的丰度是相当的。 3 分子离子峰与相应的同位素离子峰的强度可用二项式 (A+B)n的展开式来推算.
*2 对于没有自由基的偶电子离子(EE+),只可能发生 i-碎裂。
Company Logo
(4) -过程
当键形成阳离子自由基时发生的碎裂过程称为-过程。
+ +H
-e
+
+ + CH3 m/z 15
+
+ CH3CH2 m/z 29
+
+ CH3CH2CH2 m/z 43
1 由于-过程 ,烷烃的质谱会显示出m /z 15,29,43,57, 71……一系 列偶电子离子碎片。
CH3 CH2 X - e- CH3 CH2 X+
CH3 +CH2=X+
Company Logo
(3) i-碎裂
由正电荷(阳离子)引发的碎裂的过 程称为i-碎裂,它涉及两个电子的转移。
卤代烷、醚、硫醚、胺等可通过i-裂解生成碳正离子
+
O
i-碎裂 CH3CH2+ + OCH2CH3
*1 i-碎裂一般都产生一个碳正离子。
第七章 原子发射光谱分析
2、电磁辐射的性质:具有波、粒二象性
(1)波动性
(2)粒子性
c
E h h
c
c:光速;:波长;ν:频率;E :能量; h:普朗克常数 (6.6262×10-34 J ·s) 3、电磁波谱:电磁辐射按波长的顺序排列
3.光谱法与非光谱法的区别:
光谱法:内部能级发生变化 原子吸收/发射光谱法:原子外层电子能级跃迁 分子吸收/发射光谱法:分子外层电子能级跃迁 非光谱法:内部能级不发生变化 仅测定电磁辐射性质改变
6
仪器分析-原子发射光谱分析
§ 7-2 原子发射光谱分析的基本原理
一、定义 根据待测物质的气态原子或离子受激发后所发射的
31
仪器分析-原子发射光谱分析
三、摄谱法的观测设备
1、光谱投影仪(映谱仪)——放大投影谱片 光谱定性分析,一般放大倍数为20倍 2、测微光度计(黑度计)——测量感光板上所记录的谱线的 黑度,用于光谱定量分析
(1)感光板
玻璃板为支持体,涂抹感光乳剂 (AgBr+明胶+增感剂)。
激发态
基态
光
(3)散射:丁铎尔散射、拉曼散射 (4)折射和反射 (5)干涉和衍射 根据特征光谱的波长可进行定 性分析;根据光谱峰的强弱与 物质含量的关系进行定量分析。
4
仪器分析-原子发射光谱分析
三、光学分析法分类
1、光谱法:
光谱法与非光谱法
利用物质与电磁辐射作用时,物质内部发生量子化能级跃迁而 产生的吸收、发射或散射辐射等电磁辐射的强度随波长变化的 定性、定量分析方法。
第七章原子吸收光谱法习题解答
5.原子吸收分析中,若采用火焰原子化法,是否火焰温度愈高,测定灵 敏度就愈高?为什么? 解:不是.因为随着火焰温度升高,激发态原子增加,电离度增大,基态原子 减少.所以如果太高,反而可能会导致测定灵敏度降低.尤其是对于易挥发 和电离电位较低的元素,应使用低温火焰. 6.石墨炉原子化法的工作原理是什么?与火焰原子化法相比较,有什么 优缺点?为什么? 解:石墨炉原子化器是将一个石墨管固定在两个电极之间而制成的,在惰性 气体保护下以大电流通过石墨管,将石墨管加热至高温而使样品原子化. 与火焰原子化相比,在石墨炉原子化器中,试样几乎可以全部原子化,因而测 定灵敏度高.对于易形成难熔氧化物的元素,以及试样含量很低或试样量很 少时非常适用. 缺点:共存化合物的干扰大,由于取样量少,所以进样量及注入管内位置的变 动会引起误差,因而重现性较差.
- 1
0 . 0 - 4 - 2 0 2 4 6 8
C
15.用原子吸收法测锑,用铅作内标.取5.00mL未知锑溶液,加入 2.00mL4.13mg.mL-1的铅溶液并稀释至10.0mL,测得ASb/APb= 0.808. 另取相同浓度的锑和铅溶液,ASb/APb= 1.31, 计算未知液 中锑的质量浓度. 解:设试液中锑浓度为Cx, 为了方便,将混合溶液吸光度比计为[Asb/Apb]1, 而将分别 测定的吸光度比计为[Asb/Apb]2 由于:ASb = KSbCSb APb =KPbCPb 故: KSb/KPb =[Asb/Apb]2 =1.31 [Asb/Apb]1=(KSb×5 × Cx/10)/(KPb × 2 × 4.13/10)=0.808
化学与化学工程学院分析化学精品课程组制
第七章 原子吸收光谱法
习题解答
二00八年五月
第七章原子吸收光谱法习题解答
大连理工分析化学课件-第7章 原子吸收光谱法
火焰原子化法:
3
cDL A
石墨炉原子化法:
V 3
mDL
A
第六节
原子吸收光谱法的应用
元素的原子吸收法测定
碱金属
碱土金属
有色金属
贵金属
如:人发中钴的测定。浓硝酸消解,萃取分离。 灯电流为6 mA,光谱通带为0.2 nm。测定Co 240.7 nm的吸光度。检出限为0.02 mg/L, RSD<6%,回收率 94.0% ~ 102.0%。
化学干扰的抑制(了解)
通过在标准溶液和试液中加入某种光谱化学缓 冲剂来抑制或减少化学干扰:
释放剂:与干扰元素生成更稳定化合物使待测 元素释放出来。
例:锶和镧可有效消除磷酸根对钙的干扰,因 为锶和镧与磷酸根形成更稳定的化合物。
保护剂:与待测元素形成稳定的络合物,防止 干扰物质与其作用。
例:测定钙时,加入EDTA生成EDTA-Ca2+,避 免磷酸根与钙作用。
洛伦兹变宽(碰撞变宽):由于原子相互 碰撞使能量发生稍微变化。
定量基础
钨丝灯光源和氘灯,经分光后,光谱通带0.2 nm 。而原子吸收线的半宽度:10-3 nm。
若用一般光源照射时,吸收光的强度变化仅为 0.5%,灵敏度极差。
若将原子蒸气吸收的全部
能量,即谱线下所围面积
测量出(积分吸收),则
是一种绝对测量方法,现
在的分光装置无法实现。
定量基础(续)
峰值吸收:峰值吸收系数K0与火焰中待测元素的 基态原子数N0成正比。
前提是:采用温度不太高的稳定的火焰原子化器 和使用锐线光源辐射。
(1)光源的发射线与吸收线的v0一致。 (2)发射线的Δv<吸收线的 Δv。 空心阴极灯可发射锐线光源。
原子吸收光谱法
第七章 原子吸收光谱法1、解释下列名词 (1)原子吸收线是基态原子吸收一定辐射能后被激发跃迁到不同的较高能态产生的光谱线。
(2)宽带吸收和窄带吸收分子或离子吸收为宽带吸收;气态基态原子吸收为窄带吸收 (3)积分吸收和峰值吸收积分吸收是吸收线轮廓内的总面积即吸收系数对频率的积分∫K v dr ;峰值吸收是在中心频率v 0两旁很窄范围(dr ≈0)内的积分吸收,可通过测量发射线强度和变化获得vI I A 0lg。
(4)谱线的自然宽度和变宽在无外界条件影响时,谱线的固有宽度称为自然宽度; 由各种因素引起的谱线宽度增加称为变宽。
(5)谱线的热变宽和压力变宽谱线的热变宽是指原子在空间作相对热运动引起的谱线变宽;压力变宽是由同种辐射原子间或辐射原子与其它粒子间相互碰撞产生的谱线变宽,与气体压力有关,称压力变宽。
(6)石墨炉原子化法和氢化物原子化法以石墨管作为电阻发热体使试样中待测元素原子化的方法称石墨炉原子化法; 反应生成的挥发性氢化物在电热或火焰原子化器中原子化称为氢化物原子化法。
(7)光谱通带单色器出射光束波长区间的宽度。
(8)基体改进剂能改变基体的热稳定性以避免化学干扰的化学试剂。
(9)特征浓度和特征质量把能产生1%吸收或产生0.0044吸光度时所对应的被测元素的质量浓度或质量。
2、在原子吸收光谱法中,为什么要使用锐线光源?空心阴极灯为什么可以发射出强度大的锐线光源?答:因为原子吸收线的半宽度约为10-2~10-3nm ,为解决其测量难题需用锐线光源。
由于空心阴极灯的工作电流一般在1~20mA ,放电温度较低,被溅射出的阴极自由电子密度也较低,同时又是在低压气氛中放电,故发射线的热变宽ΔλD 、压力变宽ΔλL 和自吸变宽都很小,故可发射特征谱线是半宽度很窄的锐线(10-4~10-3nm ),加上空心阴极灯的特殊结构,气态基态原子停留时间长(10-1s ),激发效率高,故可发射强度大的锐线。
第七章 第八章原子发射和吸收光谱
原子发射光谱分析的特点
(4) 检出限低。一般光源可达10~0.1μg﹒g-1(或μg﹒cm-3),绝
对值可达1~0.01μg。电感耦合高频等离子体(ICP)检出限可
达ng﹒g-1级。 (5) 准确度较高。一般光源相对误差约为5%~10%,ICP相对误 差可达1%以下。 (6) 试样消耗少。
(7) ICP光源校准曲线线性范围宽可达4~6个数量级。这样可测
特征谱线
{ 强度I:
波长λ:定性分析 定量分析
影响谱线强度:
(1)激发电位---谱线强度与激发电位是负指数关系, 激发电位愈高,谱线强度愈小,因为激发电位愈高, 处在相应激发态的原子数目愈少。
(2)跃迁概率---电子从高能级向低能级跃迁时,在 符合选择定则的情况下,可向不同的低能级跃迁而 发射出不同频率的谱线;两能级之间的跃迁概率愈 大,该频率谱线强度愈大。所以,谱线强度与跃迁 概率成正比。
扰的最后线与灵敏线。
元素激发电位低、强度较大的谱线,多是共振 线----灵敏线 样品中某元素的含量逐渐减少时,最后仍能观 察到的几条谱线(也是该元素的最灵敏线)----最后线
谱线的自吸和自蚀
自吸:原子在高温发射某一波长的辐射,被处在边 缘低温状态的同种原子所吸收的现象。
元素浓度高自吸严重时将谱线中心完全吸收--自蚀。
8-2 原子吸收光谱分析基本原理
• 原子吸收光谱的产生
样品转化为原子蒸气后,绝大部分处于基 态,光源发射的共振发射线通过原子蒸气,其 入射光强度为I0,产生共振吸收,透射光的 强度I与电磁辐射通过原子蒸气的宽度(即火 焰的宽度)L的关系(同有色溶液吸收电磁辐射 的情况完全类似)服从吸收定律。
共振线与吸收线
定元素各种不同含量(高、中、微含量)。一个试样同时进行 多元素分析,又可测定各种不同含量。
第七章 红外光谱分析法2
有机化合物分子中常见基团吸收峰
(3)C=O (1850 1600 cm-1 ) 碳氧双键的特征峰,强度大,峰尖锐。
有机化合物分子中常见基团吸收峰
3.叁键(C C)伸缩振动区:2500 1900 cm-1
酯类化合物红外谱图
D 羧酸(P182)
在羧酸中,羧基(-COOH)中的>c=o的伸缩振动,O-H 伸缩振动及O-H面外弯曲振动是红外光谱中识别羧酸的三个 重要特征频率。羧酸具有强的缔合作用,使>c=o的伸缩振动 频率比游离态低。未取代的饱和脂肪酸的Vc=o 在1760cm-1附 近,而缔合态则降到1720cm-1附近。同时,缔合作用使O-H 的伸缩振动频率降低,一般在3300~2600cm-1区可见到宽而 强的吸收峰。在指纹区955~915cm-1 区的O-H弯曲振动的强 吸收峰也是比较特征的。
(3)当分子含有四个以上—CH2—所组成 的长链时,在720cm-1附近出现较稳定的弱 吸收峰。 •n=1 770~785 cm-1 (中 ) • n=2 740 ~ 750 cm-1 (中 ) •n=3 730 ~740 cm-1 (中 ) • n≥ 722 cm-1 (中强 )
烷烃的红外谱图总结
1 单一组分的纯物质( > 98%):多组分要经过分离提纯, 否则各组分光谱相互重叠,难以解析
2 不含游离水:水有红外吸收,且侵蚀吸收池的盐 窗
3 浓度和测试厚度适当
制样方法
1)气体 ——气体池 (不同长度光程规格 10 cm; 10 m、 20 m、50 m ) ①液膜法: 将液体夹于两块晶面之间,适用于难 挥发液体. ②吸收池(石英比色皿):用注射器将样品注入 液体密封吸收池中,适用于易挥发液体。 溶剂: CCl4 ,CS2常用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
238 315
237 309
243 305
Company Logo
溶剂的影响
苯 酰 丙 酮 2 1 1:乙醚 2:水
250 → n → π* π → π*
300
: :
λ↓ λ↑
ε↑ ε↓
Company Logo
7.1.4 立体结构和互变结构的影响
H C C H
H c H c
π∗ 跃迁
发色基团, 但 π
H
π*<200nm。 π(K带)发生红移。
-Cl 5(nm) CH3 5(nm)
Company Logo
λmax=162nm H 助色基团取代 π-NR2Βιβλιοθήκη 40(nm) -OR 30(nm)
取代基
-SR
红移距离 45(nm)
π →π*与苯环振动引起; 含取代基时,B带简化,红 移。
苯 甲苯 间二甲苯 1,3,5-三甲苯 六甲苯
λmax(nm) 254 261 263 266 272
ε max 200 300 300 305 300
Company Logo
生色团: 生色团: 最有用的紫外—可见光谱是由π→π*和n→π*跃迁产生的 。这两种跃迁均要求有机物分子中含有不饱和基团。这类含 有π键的不饱和基团称为生色团。简单的生色团由双键或叁键 体系组成,如乙烯基、羰基、亚硝基、偶氮基—N=N—、乙 炔基、腈基—C㆔N等。 —C N 助色团: 助色团: 有一些含有n电子的基团(如—OH、—OR、—NH2、— NHR、—X等),它们本身没有生色功能(不能吸收λ>200nm的 光),但当它们与生色团相连时,就会发生n—π共轭作用,增 强生色团的生色能力(吸收波长向长波方向移动,且吸收强度 增加),这样的基团称为助色团。
Company Logo
7.1.5 无机化合物的吸收光谱 1. 金属离子 金属离子d-d 配位场跃迁和 f – f 配位场跃迁
在配体的作用下过渡金属离子的d轨道和镧系、锕系的f轨 道裂分,吸收辐射后,产生d一d、 f 一f 跃迁; 一 必须在配体的配位场作用下才可能产生也称配位场跃迁 配位场跃迁; 配位场跃迁 摩尔吸收系数ε很小,对定量分析意义不大。
λmax向长波方向移动称为红 红
蓝移 移,向短波方向移动称为蓝移 (或紫移)。吸收强度即摩尔吸光 系数ε增大或减小的现象分别称 为增色效应或减色效应。
Company Logo
7.1.3 溶剂的影响
∆Ε n > ∆Ε p π∗ ∆Ε n π ∆Ε p π
C
∆Εn<∆Εp
λmax(nm) 167 184 173 258 215
εmax 1480 150 200 365 600
Company Logo
3.π→π*跃迁 3.π→π
所需能量较小,吸收波长处于远紫外区的近紫外端或近 紫外区,εmax一般在104L·mol-1·cm-1以上,属于强吸收。 (1) 不饱和烃π→π*跃迁 乙烯π→π*跃迁的λmax为162nm,εmax为: 1×104 L·mol-1·cm-1。 K带——共轭非封闭体系的π C=C
O
C
C
π∗
∆Ε n n C
π∗ ∆Ε p
π∗
O 非极性
C
极性
λmax(氯仿)
C
n → π*跃迁:兰移; λ↓ ;ε↑
λmax(正己烷) π → π* n → π*
非极性 极性 π → π*跃迁:红移; λ↑;ε↓ λ↑;
λmax(甲醇) λmax(水)
230 329
Company Logo
生色基团
7.1.2 有机物吸收光谱与电子跃迁 (一)电子跃迁类型
有机化合物的紫外—可见吸收光谱是三种电子跃迁的结果:
σ电子、π电子、n电子。
σ*
n
σ
H
C H
O
π
∆
E
K E,B
R
π*
n
π
σ
分子轨道理论:成键轨道—反键轨道。 分子轨道理论
Company Logo
n π σ
7.1.1 基本原理
跃迁方式: n-π*和π-π*跃迁:大多有机分子的吸收光谱由此产生,所需 能量大小恰好使吸收峰落在200-700nm,易于实验测定。 要求:分子中存在含π轨道的不饱和基团(生色基团) 常见生色基团的吸收特性 化合物/溶剂 波长,nm 跃迁类型 177 1-辛烯/正庚烷 C=C π-π* 1-已炔/正庚烷 178, 179, C≡C π-π* 225 丙酮/正己烷 O=C n-σ*, n-π* 186, 280 乙酸/乙醇 -COOH n-π* 204 CH3CONH2/水 -CONHn-π* CH3N=NCH3/ 214 -N=Nn-π* 339 乙醇 化合物由几个发色基团互相共轭, 化合物由几个发色基团互相共轭,则各个发色基团的吸收带消 出现新共轭吸收带,其波长↑ 强度↑ 失,出现新共轭吸收带,其波长↑,强度↑。
第七章 光谱分析法
LOGO
主要内容
7.1 紫外可见光谱法
7.2 红外吸收光谱法
7.3 激光拉曼散射光谱
Company Logo
7.1 紫外可见光谱
紫外可见光谱:分子中电子能级跃迁时产生的吸收光谱。 波长范围:10-800 nm。 (1) 远紫外光区: 10-200nm; (2) 近紫外光区: 200-400nm; (3)可见光区: 400-800nm; 产生:物质在紫外、可见辐射作用下, 产生:物质在紫外、可见辐射作用下,分子外层电子在电子 能级间跃迁而产生 又称电子光谱。 而产生, 能级间跃迁而产生,又称电子光谱。 特征: 特征: 包含分子振动与转动能级跃迁产生的谱线; 包含分子振动与转动能级跃迁产生的谱线; 是由谱线非常接近甚至重叠的吸收带组成的带状光谱。 是由谱线非常接近甚至重叠的吸收带组成的带状光谱。 多条波长相近的、难于 多条波长相近的、 分辨的谱线形成的谱带
顺反异构: 顺反异构 顺式: 顺式:λmax=280nm; ; εmax=10500
H C C H
反式:λmax=295.5 nm;εmax=29000 反式: ;
O
O H 3C C OH H 3C C H C H2 C
互变异构: 互变异构
OEt
C O C
酮式: 酮式:λmax=204 nm
OEt
烯醇式: 烯醇式:λmax=243 nm
♥③吸收曲线可以提供物质的结构信息,并作为物质定性分析 ③吸收曲线可以提供物质的结构信息, 的依据之一。 的依据之一。
Company Logo
讨论: 讨论:
♥④不同浓度的同一种物质,在某一定波长下吸光度 A ④不同浓度的同一种物质, 有差异, max处吸光度 的差异最大。 有差异,在λmax处吸光度A 的差异最大。此特性可作作 为物质定量分析的依据。 为物质定量分析的依据。 ♥⑤ ♥⑤在λmax处吸光度随浓度变化的幅度最大,所以测定 max处吸光度随浓度变化的幅度最大 处吸光度随浓度变化的幅度最大, 最灵敏。 最灵敏。吸收曲线是定量分析中选择入射光波长的重要 依据。 依据。
σ*
R
∆E
K E,B
π*
n
π
σ
Company Logo
2.n→σ* 跃迁
所需能量较大。 吸收波长为150~250nm,大部分在远紫外区,近紫外区 仍不易观察到。 含非键电子的饱和烃衍生物(含N、O、S和卤素等杂原 子)均呈现n→σ* 跃迁。
化合物 H2O CH3OH CH3CL CH3I CH3NH2
当外层电子吸收紫外或可见辐射后,就从基态向激发态(反 四种跃迁所需能量ΔΕ大小顺序 大小顺序为: 键轨道)跃迁。主要有四种跃迁 四种跃迁
n→π* < π→π* < n→σ* < σ→σ*
Company Logo
1.σ→σ*跃迁
所需能量最大;σ电子只有吸收远紫外光的能量才能发 生跃迁; 饱和烷烃的分子吸收光谱出现在远紫外区; 吸收波长λ<200 nm; 例:甲烷的λmax为125nm , 乙烷λmax为135nm。 只能被真空紫外分光光度计检测到; 作为溶剂使用;
∆E ∆ = E2 - E1 = hν ν
量子化 ;选择性吸收 吸收曲线与最大吸收波 长λ max 用不同波长的单色光 照射,测吸光度;
Company Logo
3.吸收曲线的讨论: 吸收曲线的讨论:
♥①同一种物质对不同波长光的吸光度不同。吸光度最大处 ①同一种物质对不同波长光的吸光度不同。 最大吸收波长--对应的波长称为最大吸收波长---λmax 对应的波长称为最大吸收波长---λmax ♥②不同浓度的同一种物质,其吸收曲线形状相似λmax不 ②不同浓度的同一种物质, max不 变。而对于不同物质,它们的吸收曲线形状和λmax则不同。 max则不同 则不同。 而对于不同物质,
2.金属离子影响下的配位体 2.金属离子影响下的配位体 π→π* 跃迁
金属离子的微扰,将引起配位体吸收波长和强度的变化。 变化与成键性质有关,若共价键和配位键结合,则变化非常 明显。
Company Logo
3.电荷转移跃迁 3.电荷转移跃迁
电荷转移跃迁:辐射下,分子中原定域在金属M轨道上 电荷转移跃迁: 的电荷转移到配位体L的轨道,或按相反方向转移,所产生的 吸收光谱称为荷移光谱 荷移光谱。 荷移光谱 Mn+—Lbhν hν M(n-1) +—L(b-1) [Fe2+CNS]2+
(2)共轭烯烃中的 π → π* )
π
(HOMO ∆Ε⇓
π∗ 165nm π
π∗
LUMO)
λmax ⇑
π∗₃ 217nm π₂ π₁ π π∗
Company Logo