碱溶性光敏树脂在光致抗蚀剂中的应用

碱溶性光敏树脂在光致抗蚀剂中的应用
碱溶性光敏树脂在光致抗蚀剂中的应用

丙烯酸树脂胶粘剂配方10例

丙烯酸树脂胶粘剂配方10例 配方一、丙烯酸酯胶粘剂 配方组成配比(质量份)甲基丙烯酸甲酯93 甲基丙烯酸11 聚甲基丙烯酸甲酯模塑粉27 二乙基苯胺0.15 过氧化甲乙酮0.1 环烷酸钴(5.0%—7.0%)0.06 配制工艺: 按照配比依次准确称量各物料,在釜中搅拌均匀,在0.1—0.25MPa压力下,室温条件下,固化20h以上。 应用: 用于铁、铜、铝合金等金属材料的粘接;用于有机玻璃等材料的粘接;用于聚碳酸酯等材料的粘接。 剪切强度:金属材料>20.0MPa,有机玻璃>8.0MPa,聚碳酸酯>12.0MPa

配方二、丙烯酸酯黏合剂 配方组成配比(质量份)甲基丙烯酸甲酯100 甲基丙烯酸 6 聚甲基丙烯酸甲酯模塑粉28 二乙基苯胺0.13 过氧化甲乙酮0.12 环烷酸钴(7%)0.07 丙烯酸 6 配制工艺: 按照配比依次准确称量各物料,在釜中搅拌均匀,在0.1—0.25MPa压力下,室温条件下,固化24h以上。 应用: 用于铁、铜、铝合金等金属材料的粘接;用于有机玻璃等材料的粘接;用于聚碳酸酯等材料的粘接。 剪切强度:金属材料>21.0MPa,有机玻璃>8.5MPa,聚碳酸酯>12.5MPa

配方三、丙烯酸酯胶 配方组成配比(质量份)乙二醇双甲基丙烯酸酯 6.0—8.5 甲基丙烯酸甲酯55 甲基丙烯酸丁酯12 氯丁橡胶 3 乙二醇-顺酐不饱和聚酯树脂 1 聚苯乙烯35 气溶胶0.8 石蜡0.3 双异羟丙基对甲基苯胺0.5 对苯二酚0.007 配制工艺: 该配方反应活性高,在上述组分中加入3%过氧化苯甲酰的DOP溶液(50%),即可在室温固化。 粘接铝合金和碳钢中,抗剪切强度均在30MPa以上。

丙烯酸树脂涂料配方技术专题

[CJ32585-0659-0504] 一种可替代电镀装饰铬层的涂料 [摘要] 本发明公开了一种可替代电镀装饰铬层的涂料,其包括以下重量百分含量的组分:丙烯酸树脂20~30%,三聚氰胺树脂5~10%,二甲苯29%,二丙酮醇3~8%,正丁醇3~8%,乙醇1~5%,醋酸丁酯1~5%,醋酸异丁酯1~5%,乙二醇丁醚1~5%,二氧化硅1~5%,环氧树脂1~5%,其他成分5~10%。本发明的目的是为了克服现有技术中的不足之处,提供一种组分简单,可替代电镀装饰铬层的涂料。本发明涂料的装饰效果和电镀铬的效果非常接近,能替代电镀铬外观效果。本发明涂料涂装应用产品上其附着力、硬度、耐磨性、耐蚀性、抗刮性能都比较好。本发明涂料涂覆在经过抛光处理后的金属表面,与金属本身的光泽混合一起可产生与电镀铬类似的外观。 [CJ32585-0184-0505] 全息涂料用丙烯酸树脂的合成工艺 [摘要] 本发明公开了一种适用于全息图文模压复制涂料的丙烯酸树脂的合成工艺。通过单体配比、合成温度、聚合时间以及引发剂的类型和用量对树脂性能的影响,丙烯酸树脂合成工艺条件是:甲基丙烯酸甲酯∶甲基丙烯酸丁酯∶丙烯酸丁酯∶甲基丙烯酸组成质量比为50~70∶20~40∶5∶5,反应温度为120-126℃,反应时间为0.5~5小时,所述的引发剂的用量为单体质量的0.5~1.75%。所得的树脂固含量为49.9%,粘度为5690cP,涂膜铅笔硬度为1H,光泽度高达90.5Gs,适合制备有良好的透明性、流平性、热塑性、光亮度、耐磨性、抗水性、抗酸碱性纸全息图文模压复制涂料。 [CJ32585-0177-0506] 一种UV涂料 [摘要] 本发明揭示了一种UV涂料,其主要包括以下组分,其含量以重量份数表示为:三丙二醇二丙烯酸酯10-25;二季戊四醇六丙烯酸酯0-15;丙烯酸酯磷酸酯3-7;丙烯酸树脂10-20;丙烯酸金属盐5-15;光引发剂2.0-3.0;消泡剂0-0.3;流平剂2.0-4.0;本发明采用丙烯酸酯磷酸酯单体和金属性丙烯酸酯(丙烯酸金属盐)作为附着力促进剂,在镁合金氧化层及钝化层上有很好的附着力和耐腐蚀性。 [CJ32585-0406-0507] 光固化水性丙烯酸环氧树脂乳液及由其制备的涂料 [摘要] 本发明涉及水性环氧树脂涂料领域,尤其涉及一种水性丙烯酸环氧树脂乳液及由其制备的涂料。光固化水性丙烯酸环氧树脂乳液包括自乳化丙烯酸环氧乳化剂,苯乙烯改性丙烯酸环氧酯,稀释剂,光引发剂,其余量为水。本发明的乳液生产成本低,产品性能好,采用光固化即可。本发明另外还提供了由该乳液制备得到的涂料,涂料得到的漆膜性能如下:附着力(划格法)1级;耐50%乙醇>8小时;耐水>72小时;耐硫酸10%>72小时;耐磨性1000克/1000 转<0.03克。 [CJ32585-0447-0508] 一种钢铁用重防腐涂料及其制备方法 [摘要] 本发明属于表面处理技术领域,公开一种钢铁用重防腐涂料及其制备方法。一种钢铁用重防腐涂料,其特征在于包括如下质量百分含量的组分:经硅烷偶联剂包膜的锌粉90~95%,氟碳改性丙烯酸树脂2~5%和/或环氧树脂0.5~3%,防沉浆0.5~2%,纳米磷酸盐0.5~1.5%,助剂0.2~0.6%,其余为溶剂。本发明的重防腐涂料可以用在钢铁表面经至少一遍刷涂或喷涂,既可作为底漆又可作为面漆使用,底面合一;可以在钢铁基面带微锈情况下进行涂装;漆膜附着力优异,耐盐雾,环保自洁,使用寿命长。 [CJ32585-0476-0509] 一种氯醚树脂涂料及其制备方法

光致抗蚀剂[应用]

光致抗蚀剂[应用] 光致抗蚀剂 一. 光致抗蚀剂分类及其机理 光致抗蚀剂(简称光刻胶或抗蚀剂)是一种用于光加工工艺中对加工材料表面起临时选择 [1]则性保护的涂料,是现代加工工业的重要功能材料之一。光致抗蚀剂分为两大类:?正性光致抗蚀剂:受光照部分发生降解反应而能为显影液所溶解,留下的非曝光部分的图形与掩模版一致。正性抗蚀剂具有分辨率高、对驻波效应不敏感、曝光容限大、针孔密度低和无毒性等优点,适合于高集成度器件的生产。它主要包括:聚乙烯醇肉桂酸酯、聚乙烯氧肉桂酸乙酯、环氧树脂、环化橡胶等等。 ?负性光致抗蚀剂:受光照部分产生交链反应而成为不溶物,非曝光部分被显影液溶解,获得的图形与掩模版图形互补。负性抗蚀剂的附着力强、灵敏度高、显影条件要求不严,适于低集成度的器件的生产。它主要包括:线性酚醛树脂、聚甲基丙烯酸甲酯等等。 二(光致抗蚀剂的起源 光致抗蚀剂的历史可追溯至照相的起源,1826年人类第一张照片诞生就是采用了光致抗蚀剂材料--感光沥青。在19世纪中期,又发现将重铭酸盐与明胶混合,经曝光、显影后能得到非常好的图形,并使当时的印刷业得到飞速的发展。二次大战以后,East—man--Kodak公司的Minsk等人研究成功的聚乙烯醇肉桂酸酯(KPR)为代表的新型感光高分子用于照相制版,从而开创了微电于工业用的光刻胶历史。1944年德国Kalle公司发表了重氮萘醌的光重排反应,在此基础上,1949年开发了重氮萘醌——线性酚醛树脂系感光材料,即紫外正性光刻胶,成为二十世纪八十年代超大规模集成电路用光致抗蚀剂的主流。1958年East(man--Kodak的Mu9plot

和J(J(Sagura等开发了环化橡胶一双叠氮系负性光刻胶取代了。1954年该公司开发的聚乙烯醇肉桂酸酯负性光刻胶,现在它仍为负性光致抗蚀剂的主流。1980年IBM首先发现使用光致产酸剂可使聚合物分子上的特丁氧基脱落,脱悬挂基团反应使憎水聚合物变成亲水性聚合物,这种极性的变化使这种光刻胶可以成正型和负型的两型图像,且光致产酸的量 [2]并不随反应的进行而减少,对反应具有加速的作用,故称之为化学增幅型光刻胶。 三. 光致抗蚀剂的国内外发展状况 1.国外发展情况 随着电子器件不断向高集成化和高速化方向发展,对微细图形加工技术的要求越来越高,为了适应亚微米微细图形加工的要求,国外先后开发了g线(436nm)、i 线(365nm)、深紫外、准分子激光、化学增幅、电子束、X射线、离子束抗蚀剂等一系列新型光刻胶。这些品种较有代表性的负性胶如美国柯达(Kodak)公司的KPR、KMER、KLER、KMR、KMPR等;联合碳化学(UCC)公司的KTI系列;日本东京应化(Tok)公司的TPR、SVR、OSR、OMR;合 成橡胶(JSR)公司的CIR、CBR系列;瑞翁(Zeon)公司的ZPN系列;德国依默克(E.Merk)公司的Solect等。正性胶如:美国西帕来(Shipely)公司的AZ系列、DuPont公司的Waycot系列、日本合成橡胶公司的PFR等等。 目前,国际上主流的光刻胶产品是分辨率在0。25μm,0。18μm的深紫外正型光刻胶,主要的厂商包括美国Shipley、日本东京应化和瑞士的克莱恩等公司。中国专利CN1272637A2000年公开了国际商业机器公司发明的193nm光刻胶组合物,在无需相传递掩膜的情况下能够分辨尺寸小于150nm,更优选尺寸小于约115nm。2003年美国专利US2003/0082480又公开了Christian Eschbaumer等发明的157nm 光刻胶。预计2004年全

改性丙烯酸酯胶粘剂

机械汽摩维修5分钟修复 改性丙稀酸酯AB胶,具有极优异的粘接性能,它是室温下固化而且定位速度很快,性能优良.本胶粘剂粘接材料广泛,可粘接钢,铁,铝,蟓胶,不锈钢ABS,PVC,玻璃,缺氧木,陶瓷,水泥,电木,木材料等同种或异种材料的粘接和互粘,适用于汽车,拖拉机和各种机器零部件的修复,各种产品的胶接组装,薄形材料的结构和加强,铭牌,招牌,标识,装潢饰物的粘贴各种应急抢修和日常用品的修理. 可对金属,塑料,木材,混疑土等材料迅速粘接.广泛应用于汽车,摩托车,机械,化工管路和贮罐,木工家具,灯具铭牌,玩具,日用杂品等粘接,勿需除油,使用方便. KUNSHENG上海坤盛粘合剂有限公司 环氧树脂AB胶 【产品特点】 1.本品为快速固化系列、透明粘稠状环氧树脂粘接剂; 2. 可低温或常温固化,固化速度快; 3. 固化后粘接强度高、硬度较好,有一定韧性; 4.固化物耐酸碱性能好,防潮防水、防油防尘性能佳,耐湿热和大气老化;5.固化物具有良好的绝缘、抗压、粘接强度高等电气及物理特性。 【适用范围】 1.凡需要快速粘接固定的电子类或其它类产品均可使用; 2. 广泛应用于电子元器件及工艺品、礼品的粘接固定,对于金属、陶瓷、木材、玻璃及硬质塑胶之间的封装粘接,有优异的粘接强度; 3.不适用于有弹性或软质材料类产品的粘接。

1. 要粘接密封的部位需要保持干燥、清洁; 2.按配比取量, A、B剂混合后需充分搅拌均匀,以避免固化不完全; 3.搅拌均匀后请及时进行注胶,并尽量在可使用时间内使用完已混合的胶液; 4.固化过程中,请及时清洁使用的容器及用具,以免胶水凝固在器具物品上。【固化后特性】 硬度Shore D ≥70 吸水率25℃ %24小时 < 抗压强度 kg/mm2 ≥50 剪切强度(钢/钢) kg/mm2 ≥13 拉伸强度(钢/钢) kg/mm2 ≥22 介电常数 1KHZ ~ 体积电阻 25℃ Ohm-cm ≥ ×1015 表面电阻 25℃Ohm ≥×1014 耐电压 25℃Kv/mm ≥16~18 【注意事项】 1.本品在混合后会开始固化,其粘稠度会很快上升,并会放出热量; 2.注意:该产品固化速度很快,请尽可能减少一次配胶的量!混合在一起的胶量越多,其反应就越快,固化速度也会越快,并可能伴随放出大量的热量,请注意控制一次配胶的量,因为由于反应加快,其可使用的时间也会缩短,混合后的胶液尽量在短时间内使用完; 3.有极少数人长时间接触胶液会产生轻度皮肤过敏,有轻度痒痛,建议使用时戴防护手套,粘到皮肤上请用丙酮或酒精擦去,并使用清洁剂清洗干净; 4.在大量使用前,请先小量试用,掌握产品的使用技巧,以免差错。 【储存与包装】 5.本品需在通风、阴凉、干燥处密封保存,保质期十二个月,过期经试验合格,可继续使用; 6.包装规格为每组2、10或40kg,其中包含主剂1、5或20kg/桶、固化剂1、5 或20kg/桶。

醇溶性EMI导电涂料配方的设计

醇溶性EMI导电涂料配方的设计 伴随着科技的发展和廉价的高性能的塑胶材料面世,电子科技产品开始大量采用轻便的塑料壳体作为外壳,塑料壳体容易产生静电和滞电现象,造成射电频率干扰或电磁场干扰、无线电噪声干扰,因此要求这些壳体表面导电或接地,针对这一问题,屏蔽用导电涂料应用逐渐广泛起来。导电涂料实际上是防静电涂料的一种特例,导电涂料通常含有大量的铜粉或炭黑,或是镍、铝、钼、银等金属粉。 从1996年开发的镍、铜第一代溶剂型导电涂料至今,导电涂料经过了银、银铜第二代溶剂型导电涂料的发展并过渡到了第三代醇溶性导电涂料。醇溶性EMI 导电涂料配方的成熟为导电涂料由溶剂型体系向水性体系发展的过渡做好了准备。这里结合相原理对醇溶性EMI导电涂料的生产、储存以及成膜进行讨论。 1 实验部分 1.1 导电涂料的制备 1.1.1 导电涂料的配方 醇溶性丙烯酸(美国):15%;辅助树脂(美国):3%;导电填料(美国)*: 31%;异丙醇(中国):40%;H2O(中国):10%;改性蜡(美国):1%。(以上数 据为质量百分含量) *本配方中的导电填料选用平均粒径为12-18micron的银包铜粉。 1.1.2 导电涂料的生产工艺 (1)先将异丙醇和H2O按配方比例混合均匀;(2)将配方中的醇溶性丙烯 酸和辅助树脂缓慢加入到(1)中;(3)将(2)中的混合液体置于50℃的条件下充 分搅拌30-40min,使(2)中添加的树脂完全溶解成无色透明的有机载体;(4) 将改性蜡按配方添加量加入(3)的有记载体中,置于50℃的条件下充分搅拌

5min左右使其完全溶解;(5)将导电填料按配方比例在中速搅拌下加入(4)所述的载体中,使粉体与载体充分混合形成相对稳定的化学体系。 1.2 导电涂料的施工 1.2.1 导电涂料的涂装 用异丙醇或乙醇清洗素材表面,然后以1份涂料:0.7份稀释剂开油,喷涂于素材上,并在50℃条件下烘烤15-20min。在喷涂的过程中,经常性地搅拌涂料,将沉底的导电填料搅起。 1.2.2 涂膜的物理性能 涂膜的物理性能列于表1。 表1 涂膜的物理性能 2 结果与讨论 2.1 配方的设计原理 将涂料视为一个系统。由相原理可知:只要在生产和储存过程中我们所建立的系统处在单一均匀的液相(相平衡状态)之中即保证体系具有良好的混溶 性,就能避免出现因混溶性不佳而引起的涂料弊病。当漆膜干燥成膜时,系统原有的相平衡被打破,涂料系统由液相转变为固相与气相。由相原理及反应动力学

紫外正型光刻胶及配套试剂

紫外正型光刻胶及配套试剂 一.紫外正型光刻胶开发及应用 微细加工技术实际上就是实现图形转移整个过程中的处理技术,也就是将掩膜母版上的几何图形先转移到基片表面的光刻胶胶膜上,然后再通过从曝光到蚀刻等一系列处理技术把光刻胶膜上的图像复制到衬底基片表面并形成永久性图形的工艺处理过程。在此过程中光刻工艺是IC生产的关键工艺,光刻胶涂覆在半导体、导体和绝缘体上,经曝光、显影后留下的部分对底层起保护作用,然后采用超净高纯试剂进行蚀刻并最终获得永久性的图形。在图形转移中需要10多次光刻才能完成。蚀刻的方式有多种,其中湿法蚀刻是应用最广、最简便的方法。而且超净高纯试剂、紫外光刻胶在电子工业的实际生产中应用最广。而光刻胶及蚀刻技术是实现微电子微细加工技术的关键。 所谓光刻胶,又称光致抗蚀剂(Photoresist),是指通过紫外光、电子束、离子束、X—射线等的照射或辐射,其溶解度发生变化的耐蚀刻薄膜材料,经曝光和显影而使溶解度增加的是正型光刻胶,溶解度减小的是负型光刻胶。按曝光光源和辐射源的不同,又分为紫外光刻胶(包括紫外正型光刻胶、紫外负型光刻胶)、深紫外光刻胶、电子束胶、X—射线胶、离子束胶等。光刻胶与IC发展的关系见下表:

试剂所自70年代末80年代初开始从事紫外正、负型光刻胶及配套试剂的研究与开发工作,自“六五”以来,一直是国家重点科技攻关项目── 紫外光刻胶研究项目的组长承担单位。到目前为止,已经研制成功适用于5μm、2~3μm、0.8~1.2μm工艺技术用的系列紫外正、负型光刻胶及配套试剂。其中的BN-302、BN-303、BN-308、BN-310系列紫外负型光刻胶均获得了化工部的科技进步二等奖,北京市科技进步二等奖,BN-303被评为国家级新产品;BP-212、BP-213紫外正型光刻胶获得了化工部科技进步二

酚醛树脂合成及应用

高分子科学概论课程论文 论文题目:酚醛树脂的合成及应用 学院:化学与材料科学学院 专业:应用化学 班级: 1 班 姓名:涵 学号:20100635 指导老师:董静

酚醛树脂的合成及应用 摘要:酚醛树脂是一种最经典的人工合成树脂,有近百年的使用史。由于酚醛树脂原料易得,价格低廉,生产工艺和设备简单,而且制品具有优异的机械性能,耐热性、耐寒性、电绝性、尺寸稳定性、成型加工型、阻燃性及低烟雾性。成为工业部门不可缺少的材料,被广泛应用于固结磨具、涂附磨具、摩擦材料、耐火材料以及电木粉、烟花爆竹、铸造等各个领域。本文主要介绍了酚醛树脂的合成及研究,并简单的阐述了酚醛树脂的应用和未来发展趋势。 关键词:酚醛树脂;合成;应用。 1872年德国化学家拜尔(A. Baeyer)首先合成了酚醛树脂,1907年比利时裔美国人贝克兰提出酚醛树脂加热固化法,使酚醛树脂实现工业化生产,1910年德国柏林建成世界第一家合成酚醛树脂的工厂,开创了人类合成高分子化合物的纪元。由于采用酚、醛的种类、催化剂类别、酚与醛的摩尔比的不同可生产出多种多样的酚醛树脂,它包括:线型酚醛树脂、热固性酚醛树脂和油溶性酚醛树脂、水溶性酚醛树脂。主要用于生产压塑粉、层压塑料;制造清漆或绝缘、耐腐蚀涂料;制造日用品、装饰品;制造隔音、隔热材料、人造板、铸造、耐火材料等。 酚醛树脂是世界最早人工合成和工业化生产的一类合成树脂,其原料易得,生产工艺简单,综合性能优良,应用非常广泛,因此研究酚醛树脂的制备方法,具有很高的社会意义和经济价值。 近年来科研人员对酚醛树脂本身的脆性和力学性能进行改进,在下游产品应用新工艺,使酚醛树脂基复合材料有了更大的发展。随着电子产业的迅速成长,高纯度及改性酚醛树脂也在半导体封装材料、印制电路基板材料和光刻胶领域发挥着越来越重要的作用。现代酚醛泡沫反应机理和生产工艺的不断创新,使酚醛泡沫材料应用于民用建筑、采矿等新领域。各种改性酚醛树脂作为增粘、增硬、补强材料,也不断地应用于橡胶工艺的改进中。 酚醛树脂的特点 酚醛树脂是一种以酚类化合物与醛类化合物经缩聚而制得的一大类合成树脂。所用酚类化合物主要是苯酚、其他还可以用甲酚、混合酚、壬基酚、辛基酚、二甲酚、腰果酚、芳烷基酚、双酚A或几种酚的混合物的;所用醛类化合物主要

常用光引发剂种类以及特性介绍

常用光引发剂种类以及特性介绍 常用光引发剂-TPO光引发剂 化学名称:2,4,6(三甲基苯甲酰基)二苯基氧化膦 CA索引名称:2,4,6-Trimethylbenzoyldi-Phenylphosphinoxid(https://www.360docs.net/doc/c22736480.html,) CASNO.:[75980-60-8] 分子式:C22H21P02 分子量:348.4 外观:淡黄色粉末 熔点:91.0-94℃ 吸收波长:299,366nm 产品应用:固化速度非常快的光引发剂;TPO是一种高效的自由基(I)型光引发剂,特别适用于有色体系和膜层厚固化领域;TPO由于其具有很宽的吸收范围,可广泛用于各种涂层,因其优秀的吸收性能,使得它特别适用于丝印油墨、平版印刷、柔印油墨、木材涂层,与184一同使用在胶粘剂产品,本品的使用应根据实际实验的结果,建议添加量为0.5-4%w/w. 常用光引发剂-TPO-L光引发剂 化学名称:2,4,6一三甲基苯甲酰基膦酸乙酯 CA索引名称:2,4,6-Trimethylbenzoyldi-Phenylphosphinate CASNO.:[84434-11-7] 分子式:C22H21P02 分子量:316.3 外观:淡黄色液体 吸收波长:273,370nm 产品应用:TPO-L是一种高效的自由基(I)型液体光引发剂,主要用于对相应的树脂,如不饱和丙烯酸酯的UV固化。特别使用于白色体系和膜层厚的UV固化;固化速度非常快的光引发剂;TPO-L是一种液体的光引发剂,适宜用于低黄变性、低气味的配方体系。因为TPO-L具有较为广泛的吸收范围也可用于含有白色涂料的固化。为提高表面的固化效果,TPO-L经常与其它光引发剂共同使用,例如:184,1173以及二苯甲酮等。TPO-L的建议使用浓度0.3一5%。 常用光引发剂-907光引发剂 化学名称:2-甲基-1-[4-甲硫基苯基]-2-吗琳基-1-丙酮 CA索引名称:2-Methyl-1-[4-(methylthio)phenyl]-2-Morpholino-Propane-l-one CASNO.:[71868-10-5] 分子式:C15H17SO2N 分子量:279.4 外观:白色至微黄色结晶粉末

氰基丙烯酸酯类伤口快速胶粘剂研究进展

氰基丙烯酸酯类伤口快速胶粘剂研究进展[1657] 前言 伤口快速胶粘剂,是一种医用胶粘剂,而医用胶粘剂又可为两大类:一是适于粘连骨骼等 的硬组织胶粘剂,如甲基丙烯酸甲酯骨水泥;另一类是适于粘接皮肤、脏器、神经、肌肉、血管、粘膜等的软组织胶粘剂。一般采用α-氰基丙烯酸酯类为医用化学合成型胶(α-cyanoacrylate)或纤维蛋白生物型胶(fibringlue),如WBA生物胶粘剂。纤维蛋白生物型胶是从异体或自体血液中产生的,它富含纤维蛋白原和因子Ⅷ,对脆弱拟杆菌、大肠杆菌和金葡杆菌等有杀菌作用。耳鼻喉科专家们把这种蛋白胶用于各种动物和人的伤口上,结果令人满意。但是使用异体血制的蛋白胶有传染肝炎和爱滋病的可能性。自体血产品较安全,但不适合急症医治需要,因为要临时从伤员自己身上抽血制取纤维蛋白生物 胶再来粘合自己的伤口,这是很难做到的[2]。并且纤维蛋白生物胶粘合速度慢、强度不高,不适合紧急治疗,因而人们把注意力放在氰基丙烯酸酯类胶粘剂的研究上。 1 氰基丙烯酸酯类胶粘剂的历史发展 1959年美国发明了Eastman910粘接剂(α-氰基丙烯酸甲酯)[3],它具有对玻璃、五金、橡胶、塑料等材料的快速粘连作用。Coover等人[4]发现它能粘结生物组织、被作为一类新型医用胶粘剂使用。20世纪60年代初生物粘接剂风靡一时,在动物实验和临床应用中取得了丰硕成果]。但到70年代中期,世界各国对它的兴趣有所减弱,主要原因唯恐引起癌症。但20多年来,数以千万计的病例还没有发现产生肿瘤的后果。因此,目前国内外对医用胶粘剂的研究又活跃起来。在临床应用方面,氰基丙烯酸酯类胶粘剂用于闭合创口、皮肤移植、管腔器官连接以及肝、肾、肺、脾、胰、胃肠道等损伤的止血。此外,眼科、骨科、口腔科都广泛地使用了氰基丙烯酸酯类胶粘剂。氰基丙烯酸酯类胶粘剂主要成分是长链酯单体,用于组织后,在室温下就能形成一层薄膜覆盖伤口。早期产品有引起局部炎症和骨

缓蚀剂

缓蚀剂的协同作用机理研究现状及发展方向 学号:201106820 姓名:吉水苗 摘要两种或多种缓性剂混合,其缓蚀效率得加强 (协同效应)或削弱(负协同效应)。通过列举某些缓蚀剂协同效应实例,介绍了解释缓蚀剂协同效应机理的各种学说,并了解了其发展方向。 关键词缓蚀剂协同效应 一.定义 缓蚀剂anti-corrosive.corrosive inhibitor,是指以适当的浓度和形式存在于环境(介质)中时,可以防止或减缓材料腐蚀的化学物质或复合物,因此缓蚀剂也可以称为腐蚀抑制剂。它的用量很小(0.1%~1%),但效果显著。这种保护金属的方法称缓蚀剂保护。缓蚀剂用于中性介质(锅炉用水、循环冷却水)、酸性介质(除锅垢的盐酸,电镀前镀件除锈用的酸浸溶液)和气体介质(气相缓蚀剂)。 单独一种缓蚀剂的缓蚀效果,比不上两种或多种缓蚀剂混合物的缓蚀效果,而且这种效果并不是简单的加合,而是相互促进的结果。缓蚀作用因两种或多种缓蚀剂混用而得到加强的现象,称为缓蚀剂的协同效应(或协同作用 )。如当几种缓蚀剂混用后,其缓蚀效率反而降低的现象,叫做负协同效应。 二.协同作用实例 缓蚀剂协同作用的例子是很多的,如某些有机胺或有机碱的盐类(如季铵盐),作为缓蚀剂加到硫酸溶液中,对铁的腐蚀速度抑制并不很明显 ,若同时加入卤素离子,则缓蚀作用得到大大地加强。 有机胺也有类似的现象[1,2,3],不论是脂肪胺还是芳香胺对子铁在 H2SO4或HClO4溶液中的缓蚀效果都不很明显,但若加入少量卤化物,则表现出很好的缓蚀效果。 某些吡啶衍生物在有卤素离子存在的酸性介质中,也表现出良好的协同效应。例如溴化n -癸基吡啶,在相同浓度下对阿姆可铁在NHCl和H2SO4中的缓蚀率分别为87.6%和70%。显然 ,这是由于吡啶化合物与盐酸中的氯离子发挥了协同效应的结果。 吡啶类化合物是常用的酸性介质缓蚀剂,它们除了与卤素离子有协同效应外,与别的缓蚀剂混用,也常表现出明显的协同效应。 一些有机缓蚀剂不仅在卤素离子存在时可产生协同效应,其他阴离子如Hs-、CNS-、有机阴离子与之相配合 ,有时也表现出协同效应。例如磺基水杨酸,对铁在 H2SO4中单独使用时,因它能减小氢的超电压 ,是腐蚀的激发剂,但如果加入一些四丁基铵 ,则能显著地增加氢超电压 ,使得电极反应减慢达几个数量级。 三.研究现状

丙烯酸树脂

第五章丙烯酸树脂 第一节概述 以丙烯酸酯、甲基丙烯酸酯及苯乙烯等乙烯基类单体为主要原料合成的共聚物称为丙烯酸树脂,以其为成膜基料的涂料称作丙烯酸树脂涂料。该类涂料具有色浅、保色、保光、耐候、耐腐蚀和耐污染等优点,已广泛应用于汽车、飞机、机械、电子、家具、建筑、皮革涂饰、造纸、印染、木材加工、工业塑料及日用品的涂饰。近年来,国内外丙烯酸烯树脂涂料的发展很快,目前已占涂料的1/3以上,因此,丙烯酸树脂在涂料成膜树脂中居于重要地位。 从组成上分,丙烯酸烯树脂包括纯丙树脂、苯丙树脂、硅丙树脂、醋丙树脂、氟丙树脂、叔丙(叔碳酸酯-丙烯酸酯)树脂等。从涂料剂型上分,主要有溶剂型涂料、水性涂料、高固体组份涂料和粉末涂料。其中水性丙烯酸烯树脂涂料的研制和应用始于50年代,70年代初得到了迅速发展,与传统的溶剂型涂料相比,水性涂料具有价格低、使用安全,节省资源和能源,减少环境污染和公害等优点,因而已成为当前涂料工业发展的主要方向之一。 涂料用丙烯酸树脂也经常按其成膜特性分为热塑性丙烯酸树脂和热固性丙烯酸树脂。热塑性丙烯酸树脂其成膜主要靠溶剂或分散介质(常为水)挥发使大分子或大分子颗粒聚集融合成膜,成膜过程中没有化学反应发生,为单组分体系,施工方便,但涂膜的耐溶剂性较差;热固性丙烯酸树脂也称为反应交联型树脂,其成膜过程中伴有几个组分可反应基团的交联反应,因此涂膜具有网状结构,因此其耐溶剂性、耐化学品性好,适合于制备防腐涂料。 我国于20世纪60年代开始开发丙烯酸烯树脂涂料,在80年代和90年代,北京、吉林和上海分别引进三套丙烯酸及其酯类生产装置,极大促进了丙烯酸树脂的合成和丙烯酸烯树脂涂料工业的发展。 第二节丙烯酸(酯)及甲基丙烯酸(酯)单体 丙烯酸类及甲基丙烯酸类单体是合成丙烯酸树脂的重要单体。该类单体品种多,用途广,活性适中,可均聚也可与其它许多单体共聚。此外,常用的非丙烯酸单体有:苯乙烯、丙烯睛、醋酸乙烯酯、氯乙烯、二乙烯基苯、乙(丁)二醇二丙烯酸酯等;近年来,随着科学、技术的进步,新的单体尤其是功能单体曾出不穷,而且价格不断下降,推动了丙烯酸树脂的性能提高和价格降低。比较重要的功能单体有:有机硅单体,叔碳酸酯类单体(Veova 10,V eova 9, Veova11),氟单体(包括烯类氟单体:三氟氯乙烯、偏二

新型PCB用油墨 液态光致抗蚀油墨

新型PCB用油墨 液态光致抗蚀油墨2009/7/16/09:18 来源:中国油墨网 随着电子工业的飞速发展,对印制电路板(PCB)的焊接工艺和焊接质量要求越来越高。以往热固化和紫外光固化抗蚀剂都是用丝网图形版印刷的。但从线条的完全覆盖性、尺寸精度等方面考虑,采用丝印图形的方法已经不相适应,因而研究人员开发了干膜抗蚀剂。但是干膜抗蚀剂由于其本身固有的局限性,已经不能完全满足PCB的性能要求,其分辨能力在技术上虽能达到近25μm,但规模生产实际只能做到75~100μm。而电子技术的发展,已要求高密度PCB对分辨能力的前沿为≤75μm,而且将发展到50μm,甚至更细的线条。因此,迫切需要有新型的光致抗蚀剂,把分辨能力提高到更高的水平,尤其是多板的内层板制造。此外,PCB价格方面的竞争,也日趋激烈,迫使PCB制造商在确保PCB质量和性能的前提下,千方百计降低PCB的制造成本。根据干膜抗蚀剂本身的结构特点,其成本很难降低。另外,高密度PCB要求尽量减小焊盘面积,甚至采用“无”焊盘,干膜抗蚀剂很难适应这种要求。因此,许多PCB制造者把目光转移到液态光致抗蚀剂[1~5]。 目前新一代液态光致抗蚀剂的杰出代表是液态感光成像型油墨(又称湿膜抗蚀剂)和电沉积液态光致抗蚀剂(ED抗蚀剂)。采用这些新型抗蚀剂,容易得到高的分辨率。例如,用通常的非准直光源和标准显影装置,显影后可得到50μm的分辨率。若采用准直光源,只要保证相应的清洁环境及底图条件,其分辨能力可以达到25μm。在随后的外层或内层的蚀刻过程中,同干膜相比,液态光致抗蚀剂可给出优异的蚀刻效果。这种高分辨率使得细线条PCB制造者可以生产出缺陷密度很低的产品,且成品率高。 液态感光型抗蚀油墨是解决精细导线图形制作而研制的一种油墨,俗称湿膜。它克服了热固型抗蚀油墨和干膜生产工艺中的一些难题,适合细导线和超细导线的生产。最细线宽可达在2。54mm为中心的两焊盘之间形成三根导线(0。125mm)或四根导线(0。075mm),也可用于高精度的工艺品、镂空模板、移印凹版制作之用,还可用于多层板内层精细导线的制作。它由感光树脂、感光剂、填料、助剂、颜料和溶剂组成。油墨的解像度达50~100μm,和覆铜箔板的附着力良好,不存在干膜生产中出现界面性气泡而引发边缘渗镀从而造成的导线毛刺、缺口、短路等疵病。油墨通常在安全黄色光区域范围内操作,贮存期约为一年。液态感光抗电镀油墨的简要工艺操作流程如下: 涂布→预烘→冷却→曝光→显像→固化→电镀→去除油墨→蚀刻→后处理 液态感光抗蚀剂可采用丝网漏印,喷涂或幕帘式涂布等方式对印制板作整版涂覆,无需定位,经预加热,表面干燥后,应用照相底版定位紫外曝光、显影而获得精确的抗蚀图形。与传统的热固、光固及抗蚀干膜相比,首先图形精度高,可很容易地制得40~50μm 的焊点图形;另外与基板和铜导线的结合良好,耐热性高,在导线间隙内充填性好,次品率低;还有,因其使用环氧树脂作热固成分,故耐化学品性、耐镀金、耐湿、耐热及电气绝缘性均很优良。鉴于以上优点,国内外在生产高精密电路板及多层电路板上都已使用液态感光抗蚀剂。 1 液态感光抗蚀剂组份 1.1 感光性树脂 1.1.1 碱溶性光固树脂种类[6~8]为了大幅度提高布线的密度,就要缩小焊盘,这就要求有高解像能力的高敏感度感光性树脂。目前,较常用的碱溶性光固树脂有以下数种: (1)酚醛缩合型丙烯酸环氧树脂与酸酐的反应生成物。此类树脂的主要特点是制作方便,价格低廉,热膨胀系数小,尺寸稳定。目前使用最普遍。 (2)丙烯酸环氧树脂与酸酐、不饱和异氰酸酯反应的混合生成物。与1相比,可以看出它的不饱和烯烃官能团个数较多,因而它具有光固化速度快的特点。 (3)丙烯酸环氧树脂与酸酐、烷基双烯酮反应的混合生成物。此类树脂因羧基数量较少,酸价低,显影速度较慢。但由于COCH2CO基团的存在,此树脂与铜箔的结合强度相当高,适合于对结合强度有特殊要求的场合。

丙烯酸酯液体改性环氧树脂胶粘剂

丙烯酸酯液体改性环氧树脂胶粘剂 3.2 胶粘剂力学性能 采用环氧基含量为1.2 mmol·g-1的丙烯酸酯液体橡胶增韧环氧树脂胶粘剂,其力学性能见表3。由表3可见,环氧树脂胶粘剂对不同材料有不同的粘接性,但加入丙烯酸酯液体橡胶后拉伸剪切强度都有不同程度的提高,铝合金试片的拉剪强度提高了133%,复合材料试片提高了124%,45#钢试片提高了84%。这是因为加入丙烯酸酯液体橡胶,改善了体系的韧性,降低了固化过程中产生的内应力,胶粘剂拉剪强度增大。下面分别讨论液体橡胶添加量和环氧基含量对拉剪强度的影响。 表3 环氧树脂胶粘剂拉剪强度 拉剪强度每百份环氧树脂中液体橡胶的加入份数 /MPa 0 5 10 15 20 铝合金试片 12.1 20.1 28.2 26.1 22.3 玻璃钢试片 7.2 12.0 16.1 14.0(试片破坏) 14.1(试片破坏) 45#钢试片 9.2 11.2 16.8 16.6 13.2 由表3可见,随液体橡胶添加量的增加,胶粘剂的拉剪强度逐渐增大,当添加量为每百份环氧树脂加10份时,拉剪强度提高幅度最大,分别提高了约133%和124%。这是因为加入液体橡胶,体系成两相结构,由于橡胶相变形和撕裂的阻力对基体开裂有阻碍和钉扎作用,消耗大量的能量,提高了韧性。而这种阻碍作用与橡胶相的体积分数成线性关系,故随液体橡胶添加量的增加,基体的韧性增大,拉伸剪切强度逐渐增大。又由于胶结件在受拉剪载荷时,胶粘剂与胶接件表面粘接作用和胶粘剂本身的强度不同,胶接件的破坏形式也不同。但是若橡胶含量过大,胶粘剂内聚强度降低,试件呈内聚破坏,拉剪强度反而降低。 3.2.1 丙烯酸酯液体橡胶环氧基含量的影响 丙烯酸酯液体橡胶含有的反应性官能团为环氧基,不同环氧基含量的液体橡胶对胶粘剂拉剪强度的影响不同。图4(图略)是体系中分别加入不同环氧基含量(每百份环氧树脂加入10份)的液体橡胶后,胶粘剂拉剪强度与液体橡胶环氧基含量的关系曲线。 由图4(图略)可见,在相同工艺条件下,随着液体橡胶环氧基含量的增加,拉剪强度增加,环氧基含量到一定程度后,拉剪强度又有减小的趋势。环氧基含量为1.2 mmol·g-1的液体橡胶增韧效果最好,拉剪强度提高了133%。由橡胶增韧环氧树脂的机理可知,要使丙烯酸酯液体橡胶有良好的增韧效果,橡胶和环氧树脂在反应前应有良好的相容性,在固化过程中,由于反应的进行分子量变大相容性变差产生分相,形成两相复合体系。不同环氧基含量的丙烯酸酯液体橡胶与环氧树脂的相容性也不同。环氧基含量过低,丙烯酸酯液体橡胶不易溶于环氧基体中;环氧基含量过高,橡胶与基体的的相容性太好,在反应的过程中不易分相,Tomio M.的研究也得出了这一结论。由于相容性的不同,直接导致橡胶在反应分相过程中形成颗粒的粒径及分布的差异,而不同粒径的橡胶粒子,对环氧树脂增韧效果也有区别。Riew的理论表明:小的颗粒主要对剪切变形起作用,大的颗粒能阻止裂纹的增长。因此丙烯酸酯液体橡胶要有良好的增韧效果,环氧基含量要适当。

丙烯酸知识

丙烯酸树脂基础知识 丙烯酸树脂是由丙烯酸酯类和甲基丙烯酸酯类几其它烯属单体共聚制成的树脂,通过选用不同的树脂结构、不同的配方、生产工艺及溶剂组成,可合成不同类型、不同性能和不同应用场合的丙烯酸树脂,丙烯酸树脂根据结构和成膜机理的差异又可分为热塑性丙烯酸树 脂和热固性丙烯酸树脂。 热固性丙烯酸树脂是指在结构中带有一定的官能团,在制漆时通过和加入的氨基树脂、环氧树脂、聚氨酯等中的官能团反应形成网状结构,热固性树脂一般相对分子量较低。热固性丙烯酸涂料有优异的丰满度、光泽、硬度、耐溶剂性、耐侯性、在高温烘烤时不变色、不返黄。最重要的应用是和氨基树脂配合制成氨基-丙烯酸烤漆,目前在汽车、摩托车、自 行车、卷钢等产品上应用十分广泛。 按生产的方式分类可以分为: 1、乳液聚合:是通过单体、引发剂及其反应溶剂一起反应聚合而成,一般所成树脂为固体含量为50%的树脂溶液,其一般反应用的溶为苯类(甲苯或是二甲苯)、酯类(乙酸乙酯、乙酸丁酯),一般是单一或是混合。固乳液型的丙烯酸树脂一般会因溶剂的选择不同而使产品性能不一样。一般玻璃化温度较低,因为是用不带甲基的丙烯酸酯下去反应。该类型的树脂可以有较高的固含量,可达到80%,可做高固体分涂料。 2、悬浮聚合:是一种较为复杂的生产工艺,是做为生产固体树脂而采用的一种方法。固体丙烯酸树脂一般都采用带甲基的丙烯酸酯的反应聚合。不带甲基的丙烯酸酯在反应滏中聚合反应不易控制,容易发粘而至爆锅。工艺流程是将单体、引发剂、助剂投入反应斧中然后放入蒸溜水反应。在一定时间和温度反应后再水洗,然后再烘干过滤等。其产品的生产控制较为严格,如在中间的哪一个环节做得不到位,其出来的产品就会有一定的影响,体 现在颜色上面和分子量的差别。 3、本体聚合:是一种效率较高的生产工艺,一般是将原料放到一种特殊塑料薄膜中,然后反应成结块状,拿出粉碎,再过滤而成,该种方法生产的固体丙烯酸树脂其纯度是所有生产法中可以最高的,产品稳定性也最好,缺点是苯体聚合而成的丙烯酸树脂对溶剂的溶解性不强,有时相同的单体相同的配比比用悬浮聚合要难溶解好几倍,而且颜料的分散性也 不如悬浮聚合的丙烯酸树脂。 4、其它聚合方法:溶剂法反应,反应时与溶剂一起下去做中介物质!经反应好后再脱溶剂。 丙烯酸树脂的分类如下: 油溶性丙烯酸树脂、水溶性丙烯酸树脂、UV光固化丙烯酸树脂、粉末涂料丙烯酸树脂、其 它丙烯酸树脂。

丙烯酸树脂分类详解

丙烯酸树脂分类详解 一、油性丙烯酸树脂(油性固体丙烯酸树脂/油性液状丙烯酸树脂) A油性液状丙烯酸树脂指树脂固含量为30-80%的丙烯酸树脂,这类树脂是经乳液聚合反应而成的含有有机溶剂的丙烯酸树脂,而当因含量在大于60%以上时!就称为:高固体分丙烯酸树脂,这类树脂粘度低!低VOC含量! 当固含量是在50%左右的,有热塑性和热固性丙烯酸树脂,也就是我们涂料行业通常在应用上面说的单组分和双组分。 1、单组分涂料一般也叫自干型的涂料,也就是以热塑性丙烯酸树脂为成膜物的涂料。 2、热固性丙烯酸树脂一般配上氨基树脂时,因两者之间的氨基和羟基反应,按理说应算是双组分涂料用的,也就是通常所说的烤漆,一般应用在金属上面用的烤漆,一般烤的温度在100度以上,这类应用是最为古老,最为早的,生活中常可看到。 3、热固性丙烯酸树脂一般配用固化剂(一般是异氰酸酯),再加入其它料,也就成为涂料行业中所说的双组分涂料了,既有主剂(丙烯酸树脂)、固化剂、稀释剂了,这类性能较热塑性丙烯酸树脂为稳定,且性能也较为优越。 B油性固体丙烯酸树脂:(普通油性热塑性固体丙烯酸树脂/特殊功能油性固体丙烯酸树脂) 固体丙烯酸树脂,现在市面上主要的还是以热塑性固体丙烯酸树脂为主!这类热塑性固体丙烯酸树脂,也叫溶剂型固体丙烯酸树脂。因为他们一般都是溶于溶剂的,如苯类、酯类、酮类、氯化类、醚类、醇类等!根据合成的不同溶解性就有不同! 固体丙烯酸树脂,最通常用到的牌号一般都是由MMA和BMA,也就是甲基丙烯酸甲酯、甲基丙烯酸丁酯等合成。因带甲基的丙烯酸酯单合成的单体玻璃化温度较高!树脂的性能一般都是由生产工艺中单体的配方原料性能而决定的!当所合成单体全用MMA时!它的硬度就会很高!也就我们常说的压克力、有机玻璃了!但此类树脂不易做为涂料上面使用!一般应用于塑料板材上面!普通的固体丙烯酸树脂一般就是由MMA、BMA以不同比例进配方中合成不同指标性能的固体丙烯酸树脂!通常的玻璃化温度在50-100之间!软化点也在150-200度之间!分子量由其它合成助剂取决!这类树脂在应用上面是最普遍的,液体的热塑性丙烯酸树脂有应用到的!它一般也都应用得到!只是有些达不到液体性能的效果。 在用途上可应用很广,比如: 1、普通油性热塑性固体丙烯酸树脂用途: 最早的固体丙烯酸树脂是由英国ICI旗下的公司研发出来并投入市场的!最为通用型牌号为2013、2016,此二种型号为油溶性的丙烯酸树脂,可应用于各种塑料涂料、金属涂料、且应用于印刷油墨等多种涂料,多且应用于高档油墨上面!经调整过的型号欲有其它的功效!比如耐汽油、高光、高硬度等!再经市场投放后又研发了其它的应用于,比如皮革上面用的,再后来的较难附着的铝材、陶瓷、玻璃等底材上面应用!后因ICI旗下的几家公司分家!就有原主体公司(现中国地区名为英国路彩特公司)继承了原ICI的该树脂事业部!另几家也就是很有名的公司捷利康公司!其主要的牌号与ICI的牌号产品指标基本上相同!举此类树脂最常应用的几种地方: 丝网印刷油墨: 各种普通塑料底材涂料及油墨: 金属船舶涂料: 纸张木材涂料: 一般玻璃化温度在50-80度,软化点在160左右,分子量在35000-80000。及原料单体的不同很多都决定了它的应用!比如玻璃化温度,就一般而言,TG越高故它的硬度也就越高,成品也就越容易脆;TG越低它的柔韧性就越好,成品也就更易于应用到底材为软质的材料上面。而软化点一般而言在自干型涂料中是够耐常温度的,但一些要求高耐温度的应用就无法满足了!分子量主要是影响了产品的粘度,但也不是粘度的主要取决原因,但大体上来说影响了粘度的高低,一般而言分子量越高粘度也就越高,当粘度高时,树脂所能溶解的速度也就越慢,可溶解的固含量也就越低,故此粘度在应用中影响了涂料的丰满度高低、光泽度高低、固含量高低了! 2、特殊功能油性固体丙烯酸树脂用途:

光致抗蚀干膜的结构和种类

光致抗蚀干膜的结构和种类: (1)光致抗蚀干膜制造印制电路的优点分辨率高,能制造线宽0.1mm的图形,在干膜厚度范围以内都能获得边缘垂直的线条,保证线条精度;干膜的厚度和组成基本稳定,避免成像时的不连续性,可靠性高;便于掌握。应用干膜可大大简化印制板制造工序,有利于实现机械化和自动化。 (2)光致抗蚀干膜结构干膜由保护膜聚乙烯、光致抗蚀剂膜和载体聚酯薄膜三部分组成,三者厚度分别是25μm几十至100μm和25μm。干膜结构示意如图5-1所示。 (3)光致抗蚀干膜种类依照干膜显影和去膜方法的不同,将干膜分成三类:溶剂型干膜、水溶性干膜和剥离型干膜。 根据干膜的用途,也将干膜分成三类:抗蚀干膜、掩孔干膜和阻焊干膜。 (4)光致抗蚀干膜的主要成分及作用 1 胶黏剂主要是使胶膜具有一定的化学、物理及机械性能,通常是酯化或酰胺化的聚苯丁树脂。胶黏剂不含感光基团,属于光惰性物质,它与组分的混溶性、成膜性、显影性和去膜性良好。 2 光聚合单体是胶膜的主要成分,在光引发剂的存在下,经紫外光照射发生聚合反应,而不溶于显影液,未感光部分被显影掉,形成抗蚀干膜图像。光聚合单体还是增塑剂,直接影响干膜的韧性、抗蚀性及贴膜性。它主要采用高沸点、易混溶的多官能团不饱和酯类,如三乙二醇双丙烯酸酯,季四醇三烯酸酯等。 3 光引发剂在紫外光的照射下分解成游离基,引发聚合和交联反应的物质常用安息醚,叔丁基蒽、醌等。 4 增塑剂用于增加干膜的韧性,降低贴膜温度,常用的是三缩乙二醇二乙酸酯。

5 增黏剂可增强干膜与铜表面之间的结合力,克服干膜固化后与铜表面之间产生应力而黏附不牢引起胶膜起皮翘起、渗镀。常用增黏剂有苯并三氮,苯并咪唑等,是氮杂环化合物,与铜表面形成配价键结构而提高黏附力。 6 热阻聚剂在干膜的制造、运输、贮存和使用过程中,可能发生热聚合,影响干膜的解像力和显影性能。为阻止热能引发的干膜聚合,可在干膜抗蚀剂中加入了对苯二酚,对甲氧基酚等物质。 7色料为使干膜抗蚀剂感光显影后形成良好的视觉反差,在干膜中加入了孔雀石绿、甲基紫、亚甲基蓝等颜料。 8 溶剂干膜中常用溶剂是丙酮和乙醇。

丙烯酸酯

丙烯酸酯 简介 丙烯酸酯橡胶(ACM)是由丙烯酸烷基酯(CH2=CH-COOR)为主要单体,与少量带有可提供交联反应活性基团的单体共聚而成的一类弹性体。 丙烯酸酯橡胶 商品牌号很多,根据其分子结构中所含的不同交联单体,加工时硫化体系也不相同,由此可将丙烯酸酯橡胶划分为含氯多胺交联型、不含氯多胺交联型、自交联型、羧酸铵盐交联型、皂交联型等五类。此外,还有特种丙烯酸酯橡胶,如含氟型及热塑性丙烯酸酯橡胶等。 性能 丙烯酸酯橡胶的性能受其主要单体丙烯酸烷基酯中烷基碳原子数目的影响。以丙烯酸酯为基础的橡胶,耐油、耐热性较好;而以丙烯酸丁酯为基础的橡胶,因烷基碳原子数目的增多,对酯基极性基的屏蔽效应增大,因此使耐水性有所改善,同时由于屏蔽效应,减弱了橡胶分子间力,增大了内部塑性,从而使脆性温度降低,耐寒性较好。若通过上述两种单体并用,则可得到介于两者性能之间的橡胶。 特点 无论哪一种类型的丙烯酸酯橡胶,其分子结构的共同特点有两个:一是高极性;二是完全饱和性。从而使其具有优越的耐矿物油和耐高温氧化性能。其耐油性仅次于氟胶,而与一般中高丙烯晴含量的丁腈橡胶相似。而耐热性介于通用橡胶和硅、氟橡胶之间,比丁腈橡胶使用温度高出 30~60℃,最高使用温度180℃,断续和短时间使用可达200℃,在150℃热空气老化数年性能无明显变化。此外,最重要的是其对含有硫、氯、磷等极压剂的极压型润滑油十分稳定,使用温度可达150℃,间断使用温度可更高些。而带有双键的丁腈橡胶在含有极压剂的油中,当温度超过110℃时,即发生显著硬化与变脆。丙烯酸酯橡胶还具有优良的抗臭氧性、气密性、耐屈挠和耐裂口增长性,以及抗紫外线变色性等。 缺点

相关文档
最新文档