地震对建筑物的影响

地震对建筑物的影响
地震对建筑物的影响

建筑安全

2009年第1期

充墙;④、砖混结构圈梁、构造柱与墙体交界处;⑤、施工缝;⑥、装饰线条以及屋面女儿墙。

三、影响建筑物抗震的原因及施工中应注意的重要事项

此次“汶川”大地震给建筑物带来了极大的损害。建筑物造成的损害有多方面的原因,主要有:场地条件、设防标准、结构体系、结构设计、施工质量等等!现就施工质量的控制做以下阐述:

1.严格按照施工图施工,以规范和行业标准指导实践。

2.严把材料的质量关,杜绝不合格材料在施工中使用。

3.严把施工质量关,重点控制直接影响工程质量及抗震设防的关键部位的施工质量。

四、针对地震影响建筑物结构破坏的主要部位的施工措施

通过这次对地震灾区受损建筑物的考察,对建筑物在地震中易遭受损害的部位,现就施工单位在以后的施工中如何加强施工措施来保证工程建设质量做如下阐述:

1.梁、柱节点区的施工措施。

这次地震灾区考察发现许多框架结构的房屋,梁、柱节点处都遭受了不同程度的损伤。所以,控制梁、柱节点的施工质量成为框架结构施工的重中之重。我个人认为这类问题应抓好以下几个方面的施工措施来保证施工质量。

①按设计、规范施工。

②抓好原材料的进场质量关。

③根据现场原材,加强现场混凝土实际配合比的调节。

④节点区按规范、设计绑扎好核心箍筋及加密区箍筋,不得少绑、漏绑。

⑤混凝土振捣应密实,做到无漏振、无空鼓等影响砼质量的事故发生。

⑥梁、柱节点区是钢筋稠密、难以施工的部位,使用震动棒时,建议使用小直径震动棒(如50棒)振捣节点部位,这样容易提高砼的密实度,有利于提高梁、柱节点处砼的质量。

⑦加强梁、柱节点处砼后期的养护工作。

2.施工缝留置及处理措施

灾区建筑物受损部位中,绝大多数施工缝出现裂纹、裂缝,施工缝是影响建筑物质量及外观的关键部位。

在砼浇筑过程中,存在诸多因素的影响,不能连续浇筑且中间的停歇时间有可能超过混凝土的初凝,所以在施工过程中不得不在适当位置留设施工缝。由于砼的抗拉强度约为其抗压强度的1/10,因而施工缝是结构中的薄弱环节,宜留在结构剪力较小的部位。柱子宜留在基础顶面、梁或吊车梁牛腿的下面、吊车梁的上面、无梁楼盖柱帽的下面,同时又要照顾到施工的方便,和板连成整体的大断面梁应留在楼底面以下20~30mm处;当板下有梁托时,留置在梁托下部;单向板应留在平行于板短边的任何位置,有主次梁楼板宜顺着次梁方向浇筑。施工缝应留在次梁跨度的中间1/3跨度范围内,楼梯应留在楼梯长度中间1/3长度范围内(一般浇三步),墙可留在门洞口过梁跨中1/3范围内,也可留在纵横墙的交接处。

当从施工缝处开始继续浇筑混凝土时,必须待已浇筑的混凝土抗压强度达到1.2N/mm2后才能进行,而且需对施工缝作一些处理,以增强新旧混凝土的连接,尽量降低施工缝对结构整体性带来的不利影响。

施工缝处理措施:先在已硬化的混凝土表面上,清除水泥薄膜和松动石子以及软弱混凝土层,并加以充分湿润,冲洗干净,且不得留有积水;然后在浇筑混凝土前先在施工缝处铺一层水泥浆或与混凝土内成分相同的水泥砂浆;浇筑混凝土时,需仔细振捣密实,使新旧混凝土结合紧密。

3.框架填充墙与砖混砌体的施工措施

a.这次地震受灾建筑中,框架填充墙多数出现了X裂纹,还有就是连接部分出现直裂纹。对这部分施工问题我认为应该采取一下措施来加强施工质量。

①适当提高砌体砂浆的强度。施工现场要严格计量,根据现场原材料情况,随时调整现场实际配合比;严格控制搅拌时间;确保砂浆强度。

②加强进场原材检验,严把进场材料质量关。按照规范要求对相关进场材料及时送检,严格禁止不合格材料进入施工现场。

55

③加强现场填充墙砌体施工的质量监督,严格控制砌体施工质量。做到填充墙砌体灰缝横平竖直、砂浆饱满、灰缝均匀、上下错缝,砌体砂浆必须密实饱满,实心砖砌体水平灰缝的砂浆饱满度不小于80%。竖缝不得出现透明缝、瞎缝。填充墙砌完后,砌体还将要有一定变形,砂浆有一定的干缩,且填充墙到顶部时,墙顶与梁底不易紧密结合,使用过程中易开裂,故要求砌块墙顶面用实心砖斜砌顶紧,砖倾斜度为60°左右,砂浆应饱满,如图1所示。

④填充墙构造做法参照选用“西南05G701(四)”图集。

构造柱做法:凡设有构造柱的结构工程,在砌砖前,先根据设计图纸或相关规范将构造柱位置进行弹线,并把构造柱插筋处理顺直。砌砖墙时与构造柱联结处砌成马牙槎,每一个马牙槎沿高度方向的尺寸不宜超过30cm(即5匹砖)。砖墙与构造柱之间应沿墙高每50cm设置2准6.5水平拉结钢筋连接,每边伸入墙内不应少于1m。

构造柱砖墙应砌成大马牙槎,设置好拉结筋从柱脚开始应先退后进。构造柱内的落地灰、砖渣等杂物应清理干净防止夹渣。

⑤填充墙与框架柱之间的拉结。传统的方法是在框架柱上预留钢筋,这种施工方法给现场关模带来一定难度,并且影响工期,现在多数填充墙与框架柱之间的拉结采用植筋技术来解决。

植筋就是将钢筋植入混凝土结构,相当于结构体加上了预埋钢构件。植筋要求掌握以下技术要点:

确定钢筋的植筋位置;孔深满足深度要求,或者按设计的要求施工;清除孔内的尘土,采用空压机吹除;注胶时保证孔内干燥;植筋时要将钢筋旋转式植入孔内;初期固化时不能受扰动。

⑥抹灰时,一定要在砌体与梁柱接头处粘贴钢丝网。

b.这次地震灾区倒塌的房屋中,砖混结构的占多数。砖混结构的施工质量尤其显得重要了。倒塌的房屋中,民房多没有设置构造柱和圈梁或者没有按照规范要求设置构造柱和圈梁;还有就是砖砌体砂浆强度不够。

构造柱与圈梁的共同工作,可以把砖砌体分割包围,当砌体开裂时能迫使裂缝在所包围的范围之内,而不至于进一步扩展。砌体虽然出现裂缝,但能限制它的错位,使其维持承载能力并能抵消振动能量而不易较早倒塌。砌体结构作为垂直承载构件,地震时最怕出现四散错落倒地,从而使水平楼板和屋盖坠落,而构造柱则可以阻止或延缓倒塌时间、以减少损失。构造柱与圈梁连接又可以起到类似框架结构的作用,其作用效果非常明显。

现就从施工角度问题,如何做好砖混结构工程做以下交流。

①构造柱施工。

严格按照设计及抗震规范要求施工,不能任意减少构造柱。根据这次考察发现,发现多数未倒塌的房屋窗洞两边都出现了不同程度的裂纹,所以加强洞口周边的施工,根据设计文件和抗震设防要求做好窗户两边等洞口周边的构造柱非常有必要。

②圈梁的施工。

圈梁又称“腰箍”,是在墙身上设置的处于同一水平面的连续封闭梁。其作用是加强整个建筑物的整体性和空间刚度,抵抗房屋的不均匀沉降,提高建筑物的抗震能力。所以,必须加强圈梁模板、钢筋的绑扎、混凝土的施工,确保圈梁施工质量。

③承重墙的施工。

加强现场砂浆的配制,确保砂浆强度!

砌体施工做到:横平竖直、砂浆饱满、灰缝均匀、上下错缝、内外搭砌、接搓牢固。

设有构造柱的墙体砌筑时,与构造柱联结处砌成马牙槎,每一个马牙槎沿高度方向的尺寸不宜超过30cm(即5匹砖)。砖墙与构造柱之间应沿墙高每50cm设置2准6.5水平拉结钢筋连接,每边伸入墙内不应少于1m。

图1框架填充墙实心砖斜砌示意图56

4.装饰线条以及屋面女儿墙的施工措施

这次地震中,灾区未倒塌受损建筑中多数装饰线条及女儿墙出现脱落或者根部出现通长缝;就是离震中比较远的成都,有的房屋女儿墙根部都出现了不同程度的裂缝。我认为这部分问题可以通过以下问题解决。

①严格按照设计文件和抗震规范要求设置构

造柱和女儿墙压顶。由于女儿墙属于建筑物结构独立的一部分,处于房屋建筑的高点,地震时便端效应就显得尤其明显,增加构造柱和女儿墙压顶,加强水平约束,使其连成一个整体,增加抗震效果。

②装饰线条或者独立于主体结构外悬挑部分,

这部分由于约束少,受水平力影响严重;地震时,这部分结构很容易脱落,造成建筑物破坏并对人员造成伤害,所以这部分结构应该加强与主体结构之间的连接。如果是与砌体连接,就应该搭砌,并且沿墙高每50cm 设置2准6.5水平拉结钢筋连接;如果是与砼连接,就应预留钢筋或者植筋。

通过这次现场考察,我们有信心、也有决心在实际施工中加强施工管理、质量管理和安全管理,为国家和人民群众建造更多、更好、更紧固的房子,靠企业的实力、靠企业的管理,赢得更大的市场,为企业赢得更好的经济效益和社会效益。

(本文收稿:2008-07-10)

前言

概念设计堪称桥梁设计之魂,组合结构桥梁结构形式与施工方法多样,结合具体的建设条件,每一座桥梁都有其创新发挥的空间,尽管如此,仍然有其内在规律和体系特征,把握这些规律和特征是做好设计的前提。

1总体布置

1.1跨径布置

在确定桥梁跨径时要结合实际情况,要考虑满足跨越要求、施工难度以及工程风险等,要兼顾上下部结构的技术经济合理性。连续组合箱梁桥所能适应的跨数与一联长度的变化范围较大,一联之中的跨径搭配关系较为自由;其施工常用钢梁先顶推到位再施工桥面板的方法,相邻孔跨不需要考虑类似预应力梁那种对称匹配关系,其边中跨比例也更具灵活性,但常用范围为0.6~0.8。

1.2梁高

梁高关系到结构的力学性能、施工性能等重要环节。由于施工方法与过程的多样性,组合结构桥

的高跨比波动范围较大。比如,施工时有无临时墩或吊索塔架,都将对梁高产生影响。根据对有关资料的统计,公路桥梁的高跨比,等高梁的范围为1/

16~1/25,变高梁的范围为支点1/15~1/23、跨中1/32~1/47。施工时若无临时墩等措施,则高跨比较

大;有辅助措施时,则高跨比减小。总之,连续组合箱梁梁高的选取,除了考虑成桥力学性能外,必须充分考虑施工方法的影响。

1.3截面形式

组合箱梁具有抗扭能力强、整体性好、适合曲线线路以及更能适应大跨与特殊要求等特点。早期常采用多箱截面,随着向大跨发展,逐步发展完善了单箱单室截面形式,并成为常用形式之一。为适应更大的桥面宽度,发展了大悬臂截面形式,成为宽桥新的选择。

组合箱梁桥的钢梁截面,通常可以分成槽形截面以及闭合截面。槽形截面结构简洁、受力明确,是常用的形式。闭合截面钢梁抗扭性能好,但需保证混凝土板完全无渗透。从实际应用看,除非遇到特

【摘要】简述了组合结构桥梁中的总体布置设计及应用原理。【关键词】组合结构

桥梁

设计

组合结构桥梁的设计理念探讨

○刘自雄(广州市市政工程设计研究院)57

地震对建筑的影响

第九组 组员:陈耀铭、黄伟鹏、江信贤 地震与民用建筑 一、民用建筑在地震中的震害特点 (一)砌体结构房屋的震害及分析 1)震害现象 (1)墙角的破坏:房屋的四角墙面上开裂以至于局部倒塌的现象。 (2)楼梯间的破坏:楼梯间两侧承重墙出现严重的斜裂缝。 (3)内外墙连接的破坏:内外墙连接处出现竖向裂缝,严重时纵横墙拉脱。造成纵墙外闪倒塌,

房屋丧失整体性。 (4)突出屋面的屋顶间等附属结构的破坏:地震时,平面突出部位出现局部破坏现象。相邻部位的刚度差异较大时尤为严重。突出屋面的屋顶间、烟囱、女儿墙等附属结构,由于地震“鞭鞘效应”的影响,一般较下部主体结构破坏严重,而且突出部分面积和房屋面积相差越大, 震害越严重,如图所示。 (5)墙体的破坏:墙体出现水平裂缝、斜裂缝、X形裂缝,严重的则出现歪斜以致倒塌现象,图所示。方向平行的墙体,在水平地震作用下,墙体首先出现斜裂缝,如果墙体高宽比接近1,则墙体出现X形交叉裂缝;如果墙体的高宽比较小,则在墙体中间部位出现水平裂缝。

(6)其他部位常见破坏:由于楼盖缺乏足够的拉结或施工中楼板搁置长度过小,会造成楼板坠落;由于伸缩缝过窄,不能起到防震缝的作用,地震时缝两侧墙体放生碰撞而造成破坏。 2)分析:历次大地震,如1963年前南斯拉夫地震,1972年美国费尔南多斯地震,1976年罗马利亚地震,1975年营口海城地震,1976年唐山地震以及2008年汶川地震中,都证明底部框架砌体结构房屋震害是相当严重的。 在地震作用下,底部框架—抗震墙结构房屋的底层承受着上不砖房倾覆力矩的作用,其外侧柱会出现受拉的状况;底层为内框架时,外侧的砖壁柱则会因砖柱受拉承载力低而开裂,甚至严重破坏;底层为半框架时会出现底层横墙开裂,而后由于内力重分布,加重了层半框架的破坏;底层商店住宅,由于需要大空间,横墙较少,因底层的抗震能力弱形成特别的薄弱楼层,造成破坏特别严重。 (二)钢结构房屋的震害及分析 1)钢结构的震害主要有节点连接的破坏、构件的破坏以及结构的整体倒塌三种形式。 2)分析:历次地震表明,在同等场地、地震烈度(seismic intensity)条件下,钢结构房屋的震害要较钢筋混凝土结构房屋的震害小得多。以1985年9月墨西哥城大地震(里氏8.1级)的震害为例,其中倒塌和严重破坏的钢结构房屋为12栋,而钢筋混凝土房屋却有127栋。 1、节点连接的破坏 (1)框架梁柱节点区的破坏 由于节点集中力、构造复杂、施工难度较大,极易造成应力集中,因此节点破 坏时发生最多的一种破坏形式。1994年美国诺斯里奇(Northridge)地震和1995 年日本阪神地震均造成了很多梁柱刚性节点的破坏。2008年汶川地震也造成钢结 构网架节点破坏。 诺斯里奇地震时,H形截面的梁柱节点的典型破坏形式。由图中可见,大多数 节点破坏发生在梁端下翼缘处的柱中,这可能是由于混凝土楼板与钢梁共同作用,

高层建筑地震逃生方法

高层建筑地震逃生方法 高层建筑地震逃生方法中国国际救援队cisar队员、国家地震灾害紧急救援训练基地教官在救灾过程中分析,发现很多楼房的底层,尤其是一层和二层,受到的横向剪切力非常大,特别是在房屋窗户窗体特别多、门框比较多这种情况下,房屋会沿着窗子和窗子的对角线发生开裂。换言之,如果开发商建的房子质量不够合格,那么建筑物的一层就会被剪切破碎,二层可能会在一层倒塌过程中跌落到地下室,这种情况在灾害现场十分常见。 所以高层避险应以三层为一个界限,三层以上的住户不建议大家逃跑。三层以下,特别是一层和二层,建议大家快速地从楼里撤出。为什么三层以上的居民不建议逃跑?几年前上海发生过楼倒倒事件,当时发生倒塌的原因是地基的地面沉降,即便楼房整体倒塌,我们可以看到楼的内部空间还是有的。一旦楼内存在生存空间,我们就有可能在其中幸存下来。而三层以上的住户在从三层往下跑的过程中,大部分的时间花费在从楼道中往下撤离这一过程中,一旦发生余震,楼梯间是最最不稳定的地点。楼梯间只是一个逃跑的通道,并不是躲避的空间。如果往下撤离的时间过长,当余震来的时候,处在楼梯间的人很容易遇难。三层以上的住户在屋里就近躲避,三层以下的快速撤离,这是针对高层建筑物避震的一个建议。 下面给大家说一个高层逃生的真实案例,911时大部分人是怎

样逃生的?其实他们大多数都是通过电梯逃生的。(后文会讲到)在这里,先给大家说几个火灾中的高层逃生方法: 第一种方法是通过安全通道逃生。安全通道就是楼梯间的安全出口。在房屋设计的时候,安全通道的四周墙壁都是做过防火处理的,换言之,它是一个天然的隔烟通道。但是它的隔烟功能有一个前提,即每一层通往安全通道的门是防火门,并且平时都应该是关闭的。我们平时很少会把防火门关上,因为我们觉得它很碍事、很重,我们通常会拿一些绳子把它打开,或是拿一些木楔子让它保持敞开,这样的情况下,它就变成了一个烟可以到达的区域,换言之,如果我们在楼梯间里发现有烟进来了,那么它就已经不再是一个安全通道,而变成了一个死亡通道,那么我们在楼梯间往下走的过程就会觉得烟越来越大,很多人也是因为这个原因在楼梯间遇难。 第二种方法可以通过高层逃生滑道逃生。现在这种技术在国内普及率并不是很高,在发达国家的普及相对较高,但我相信在过几年之后,在我国这种高层逃生通道也会有的。逃生滑道跟滑梯一样,人可以从窗户里直接出来,从国际上普遍采用这种技术的国家来看,大概一分钟能跑出二十个人左右,所以这种方式非常受用。 第三种方法是通过高空直升机救援。如果是在大城市,高层逃生时一般建议顶层的人往楼顶上跑,因为楼房顶部可能会有直升机停机坪,这也就要求城市里救援系统中必须得有高空直升机救援,但并不是每个城市都能做到,所以这种方法有一定的局限性。

设计基本加速度和水平地震影响系数的关系

今天这篇文章的由头,完全是因为前天晚上的一个疑问:01版抗规中的设计基本地震加速度-----“、。。。”等。既然规范里有数据,为什么又不参与计算?列出以上数据的意义是什么呢?这些东西和水平地震影响系数又是怎么样个关系呢?找遍网络与现有书籍,无此解释,只好自力更生,艰苦奋思。谁知越牵越多,牵出好多东西。先从这个疑问总结吧。 一、关于设计基本地震加速度 关于设计基本地震加速度的意义所在,我翻遍手头的所有资料发现最好还是从89与2001及2010几版抗规的对比中寻找解释,列表如下: 可以看出,89版抗规中并没有设计基本地震加速度这项定义,此定义完全是01版的新生事物。意义到底何在?意义就在于对地震影响的表征。89版采用的是设防烈度对地震影响进行表征。而在01及10版的抗规中,对地震影响的表征,已经舍去了设防烈度,进而采取“设计基本地震加速度、设计特征周期”。 此做法优点何在?第一,设防烈度的划分标准偏于现象,改用设计基本地震加速度后,可以用具体参数来表征地震影响-----更科学、更“规范”,我想这是那些规编们最看重的一点优势;第二,采用设计基本地震加速度后,可以清楚的表征7度半()与8度半()的概念,拓宽了抗震设防烈度的概念-----更“延伸”;第三,设计基本地震加速度还是根据设防烈度进行分类的,原则上用基本地震加速度去表征与用现象去区分地震影响并不矛盾-----更“统一”。

写到这里,想起了本科毕业时去城乡设计院面试的情景。虽然一晃六年过去了,那时的情景还是历历在目。面试我的那老总,坐在宽大的老板桌后面,他问的我那几个都会的问题由于时间久远都记不得了,只是那个没答的问题让我记忆犹新,“咱这儿的设计基本地震加速度是多少?”坏菜,那会儿的我刚出校门,这名词依稀在考试中见过两次而已,当即败下阵来。要是换成今天?可惜世上没有后悔药。 设计基本地震加速度——相应于设防烈度的地震地面运动峰值加速度,即为50年设计基准期超越概率10%的地震加速度的设计取值 二、关于地震影响系数 地震影响系数的由来: 不管是底部剪力法,还是振型分解反应谱法,结构总水平地震作用标准值的根本计算方法,始终是牛顿第二定律的变体:F=αG 以上公式的α即为地震影响系数,其实就是加速度除以了一个小 g(重力加速度);G为质点的重量。 对于初学者来说,上面的公式虽然简单,但一上来还是不容易看透本本质。其实,如果把F=αG中的α乘以一个g,同时G除以一个g,这不就是经典的牛顿第二定律吗,此时的我不禁想起一句话:抗震恒永久,牛二永流传。(牛二:牛顿第二定律——在加速度和质量一定的情况下,物体加速度的大小跟作用力成正比,跟物体的质量成反比,且与物体质量的倒数成正比。加速度的方向跟作用力的方向相同。牛顿第二运动定律可以用比例式来表示,即或;也可以用等式来表示,即F=kma,其中k是比例系数;只有当F以牛顿、m以千克、a以m/s2为单位时,F=ma成立。) 最后总结一句话:地震影响系数来源于牛二。 知道了地震影响系数的由来,下面顺藤摸瓜,就要总结一下α(地震影响系数)的定义公式。 α(T)= K ×β(T), 公式里有三个系数

地震带来的危害

地震常常造成严重人员伤亡,能引起火灾、水灾、有毒气体泄漏、细菌及放射性物质扩散,还可能造成海啸、滑坡、崩塌、地裂缝等次生灾害。 地震所造成的直接灾害有: 建筑物与构筑物的破坏,如房屋倒塌、桥梁断落、水坝开裂、铁轨变形等等。地面破坏,如地面裂缝、塌陷,喷水冒砂等。山体等自然物的破坏,如山崩、滑坡等。海啸、海底地震引起的巨大海浪冲上海岸,造成沿海地区的破坏。此外,在有些大地震中,还有地光烧伤人畜的现象。地震的直接灾害发生后,会引发出次生灾害。 地震引起的次生灾害主要有; 火灾,由震后火源失控引起;水灾,由水坝决口或山崩壅塞河道等引起;毒气泄漏,由建筑物或装置破坏等引起;瘟疫,由震后生存环境的严重破坏所引起。 泥石流是指在山区或者其他沟谷深壑,地形险峻的地区,因为暴雨、暴雪或其他自然灾害引发的山体滑坡并携带有大量泥沙以及石块的特殊洪流。泥石流具有突然性以及流速快,流量大,物质容量大和破坏力强等特点。发生泥石流常常会冲毁公路铁路等交通设施甚至村镇等,造成巨大损失 滑坡是指斜坡上的土体或者岩体,受河流冲刷、地下水活动、雨水浸泡、地震及人工切坡等因素影响,在重力作用下,沿着一定的软弱面或者软弱带,整体地或者分散地顺坡向下滑动的自然现象。俗称“走山”、“垮山”、“地滑”、“土溜”等。 海啸就是由海底地震、火山爆发、海底滑坡或气象变化产生的破坏性海浪,海啸的波速高达每小时700~800千米,在几小时内就能横过大洋;波长可达数百公里,可以传播几千公里而能量损失很小;在茫茫的大洋里波高不足一米,但当到达海岸浅水地带时,波长减短而波高急剧增高,可达数十米,形成含有巨大能量的“水墙”。海啸主要受海底地形、海岸线几何形状及波浪特性的控制,呼啸的海浪冰墙每隔数分钟或数十分钟就重复一次,摧毁堤岸,淹没陆地,夺走生命财产,破坏力极大。全球的海啸发生区大致与地震带一致。全球有记载的破坏性海啸大约有260次左右,平均大约六、七年发生一次。发生在环太平洋地区的地震海啸就占了约80%。而日本列岛及附近海域的地震又占太平洋地震海啸的60%左右,日本是全球发生地震海啸并且受害最深的国家。

建筑结构抗震设计试卷及答案1

1、影响土层液化的主要因素是什么? 影响土层液化的主要因素有:地质年代,土层中土的粘性颗粒含量,上方覆盖的非液化土层的厚度,地下水位深度,土的密实度,地震震级和烈度。土层液化的三要素是:粉砂土,饱和水,振动强度。因此,土层中粘粒度愈细、愈深,地下水位愈高,地震烈度愈高,土层越容易液化。 2、什么是地震反应谱?什么是设计反应谱?它们有何关系? 单自由度弹性体系的地震最大加速度反应与其自振周期的关系曲线叫地震(加速度)反应谱,以S a (T )表示。设计反应谱:考虑了不同结构阻尼、各类场地等因素对地震反应谱的影响,而专门研究可供结构抗震设计的反应谱,常以a (T ),两者的关系为a (T )= S a (T )/g 3、什么是时程分析?时程分析怎么选用地震波? 选用地震加速度记录曲线,直接输入到设计的结构,然后对结构的运动平衡方程进行数值积分,求得结构在整个时程范围内的地震反应。应选择与计算结构场地相一致、地震烈度相一致的地震动记录或人工波,至少2条实际强震记录和一条人工模拟的加速度时程曲线 5、抗震设计为什么要尽量满足“强柱弱梁”、“强剪弱弯”、“强节点弱构件”的原则?如何满足这些原则? “强柱弱梁”可有效的防止柱铰破坏机制的出现,保证结构在强震作用下不会整体倒塌;“强剪弱弯”可有效防止脆性破坏的发生,使结构具有良好的耗能能力;“强节点弱构件”,节点是梁与柱构成整体结构的基础,在任何情况下都应使节点的刚度和强度大于构件的刚度和强度。 6、什么是震级?什么是地震烈度?如何评定震级和烈度的大小? 震级是表示地震本身大小的等级,它以地震释放的能量为尺度,根据地震仪记录到的地震波来确定 地震烈度是指某地区地面和各类建筑物遭受一次地震影响的强弱程度,它是按地震造成的后果分类的。 震级的大小一般用里氏震级表达 地震烈度是根据地震烈度表,即地震时人的感觉、器物的反应、建筑物破坏和地表现象划分的。 7、简述底部剪力法的适用范围,计算中如何鞭稍效应。 适用范围:高度不超过40米,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法计算。 为考虑鞭稍效应,抗震规范规定:采用底部剪力法计算时,对突出屋面的屋顶间、女儿墙、烟囱等的地震作用效应,宜乘以增大系数3,此增大部分不应往下传递,但与该突出部分相连的构件应予以计入。 9、什么是动力系数、地震系数和水平地震影响系数?三者之间有何关系? 动力系数是单质点弹性体系的最大绝对加速度反应与地震地面运动最大加速度的比值 地震系数是地震地面运动最大加速度与重力加速度的比值 水平地震影响系数是单质点弹性体系的最大绝对加速度反应与重力加速度的比值 水平地震影响系数是地震系数与动力系数的乘积 10、多层砌体房屋中,为什么楼梯间不宜设置在房屋的尽端和转角处? 楼梯间横墙间距较小,水平方向刚度相对较大,承担的地震作用亦较大,而楼梯间墙体的横向支承少,受到地震作用时墙体最易破坏2)房屋端部和转角处,由于刚度较大以及在地震时的扭转作用,地震反应明显增大,受力复杂,应力比较集中;另外房屋端部和转角处所受房屋的整体约束作用相对较弱,楼梯间布置于此,约束更差,抗震能力降低,墙体的破坏更为严重 11、试述纵波和横波的传播特点及对地面运动的影响? 纵波在传播过程中,其介质质点的振动方向与波的传播方向一致,是压缩波,传播速度快,周期较短,振幅较小;将使建筑物产生上下颠簸;(横波在传播过程中,其介质质点的振动方向与波的传播方向垂直,是剪切波,传播速度比纵波要慢一些,周期较长,振幅较大;将使建筑物产生水平摇晃 14为什么要限制多层砌体房屋抗震横墙间距? (1)横墙间距过大,会使横墙抗震能力减弱,横墙间距应能满足抗震承载力的要求。)2)横墙间距过大,会使纵墙侧向支撑减少,房屋整体性降低(3)横墙间距过大,会使楼盖水平刚度不足而发生过大的平面内变形,从而不能有效地将水平地震作用均匀传递给各抗侧力构件,这将使纵墙先发生出平面的过大弯曲变形而导致破坏,即横墙间距应能保证楼盖传递水平地震作用所需的刚度要求。 16.地震作用和一般静荷载有何不同?计算地震作用的方法可分为哪几类? 不同:地震作用不确定性,不可预知,短时间的动力作用,具有选择性,累积性,重复性。方法:拟静力法,时程分析法,反应谱法,振型分解法。 17.什么是鞭端效应,设计时如何考虑这种效应? 答:地震作用下突出建筑物屋面的附属小建筑物,由于质量和刚度的突然变小,受高振型影响较大,震害较为严重,这种现象称为鞭端效应;设计时对突出屋面的小建筑物的地震作用效应乘以放大系数3,但此放大系数不往下传。 18.强柱弱梁、强剪弱弯的实质是什么?如何通过截面抗震验算来实现? 答:(1)使梁端先于柱端产生塑性铰,控制构件破坏的先后顺序,形成合理的破坏机制 (2)防止梁、柱端先发生脆性的剪切破坏,以保证塑性铰有足够的变形能力 在截面抗震验算中,为保证强柱弱梁,《建筑抗震设计规范》规定: 对一、二、三级框架的梁柱节点处,(除框架顶层和柱轴压比小于0.15及框支梁与框支柱的节点外),柱端组合的弯矩设计值应符合: ∑∑ =b c c M M η

地震对建筑物破坏的原理分析与监舍防震设计

地震对建筑物破坏的原理分析与监舍防震设计 论文通过地震破坏建筑物的原理和监舍特点分析,提出了监舍的防震设计目标和特点。 标签:地震监舍防震设计 0 引言 云南省是我国地震灾害的高发地区。1976年唐山大地震以来,我国共发生6级以上强破坏性地震56次,其中有15次發生在云南,占全国总数的五分之一以上。为保证在押犯人的生命安全,在监舍设计时必须对予以考虑。 1 建筑物破坏原理 地震对建筑物的破坏作用主要有三种因素:振动破坏、地基失效破坏、次生效应破坏。 1.1 振动破坏 地震波引起的地面振动通过基础传递到建筑物上,引起建筑物本身的振动。建筑物一般是按静力设计和建造的,耐受振动的强度有一定的限度,其破坏程度取决于地震力的大小;但地震波对建筑物的破坏作用很复杂,破坏程度常由许多因素综合决定,包括地震波频谱组成和延续时间,建筑物的材料性质,动力特性,以及地基条件和地形等环境因素。 1.2 地基失效破坏 当地基强度较小或加速度很大时,地表层或下垫层可能达到屈服极限;此时岩石或土层不再具有完全弹性,将产生永久变形,进而导致地基承载力下降甚至丧失,地基产生变位、移动。虽然地基破坏消耗了地震波的能量,减小了震动对建筑物的破坏;但地基失效同时又造成另一种灾害,如建筑物下沉、地基不均匀沉降和水平变位,进而导致建筑物结构破坏。 1.3 次生效应破坏 在特定的地质、环境条件下,地震可能引起崩塌、滑坡或泥石流等次生灾害。在陡峭的山区或丘陵地带,破碎的岩石和松散的表土可能由于地震所产生的振动与下卧的岩土层脱离,从而发生次生灾害;如果地震前发生大量、长时间降水,更易发生该类灾害。规模巨大的崩塌和滑坡灾害可能摧毁地面的建筑物,掩埋坡下的居民点,造成大规模的破坏和伤亡;如果滑坡或崩塌造成河道阻塞,还有可能引发水灾;而大型水体下及附近发生的大规模崩滑,也会对坝体及周边建筑造成毁灭性破坏。

高层建筑抗震设计常见的问题

高层建筑抗震设计常见的问题 在高层建筑的建设中,其中最主要的问题是对它的抗震问题的研究,其中又以中短柱问题为最主要的问题。现在首先介绍一下抗震设计中常见的一些问题。 缺乏岩土工程勘察资料或资料不全。有的在扩初设计阶段还缺建筑场地岩土工程的勘察资料,有的在扩初设计会审之后就直接进入了施工图设计,有的在规划设计或方案设计会审后就直接进入了施工图设计。无岩土工程勘察资料,设计缺少了必要的依据。 结构的平面布置。外形不规则、不对称、凹凸变化尺度大、形心质心偏心大,同一结构单元内,结构平面形状和刚度不均匀不对称,平面长度过长等。 一个结构单元内采用两种不同的结构受力体系。如一半采用砌体承重,而另一半或局部采用全框架承重或排架承重;底框砖房中一半为底框,而另一半为砖墙落地承重,这种情况常发现在平面纵轴与街道轴线相交的住宅,其底层为商店,设计成一半为底框砖房(有的为二层底框),而另一半为砖墙落地自承,造成平面刚度和竖向刚度二者都产生突变,对抗震十分不利。 底框砖房超高超层。如1996年,对在杭设计单位作的一次专题普查,发现有69幢底框砖房超高超层。新项目亦普遍存在此现象,1999年某地块住宅竣工交付使用验收中发现有三幢底框砖房超高超层,甚至有超三层的。

抗震设防标准掌握不当。有一些项目擅自提高了设防标准,按照《建筑抗震设防分类标准(gb50223-95)》划分应属六度设防的,但设计中提高了一度按七度设防,提高了建筑抗震设防标准,将会增加工程投资;有的项目严格应按七度采取抗震措施的,但设计中又按六度设防,减低了抗震设防标准,不利抗震。 结构的竖向布置。在高层建筑中,竖向体型有过大的外挑和内收,立面收进部分的尺寸比值b1/b不满足≥0.75的要求。 抗震构造柱布置不当。如外墙转角处,大厅四角未设构造柱或构造柱不成对设置;以构造柱代替砖墙承重;山墙与纵墙交接处不设抗震构造柱;过多设置抗震构造柱等。 框架结构砌体填充墙抗震构造措施不到位。砌体外围护墙砌筑在框架柱外又没有设置抗震构造柱,框架间砌体填充墙高度长度超过规范规定要求又没有采取相应构造措施。 结构其他问题。有的底层无横向落地抗震墙,全部为框支或落地墙间距超长;有的仅北侧纵墙落地,南侧全为柱子,造成南北刚度不均;有的底层作汽车库,设计时横墙都落地,但纵墙不落地,变成了纵向框支;还有的底框和内框砌体住宅采用大空间灵活隔断设计,其中几乎很少有纵墙。不少地方都采用钢筋混凝土内柱来承重以代替砖墙承重,实际上将砖混结构演变为内框架结构,这比底框砖房还不利,因内框砖房的层数、总高度控制比底框砖房更严,因此存在着严重抗震隐患。更为严重的是这种情况并未引起目前大多数结构工程师的重视。

地震对建筑的影响

第九组 组员:陈耀铭、黄伟鹏、江信贤 地震与民用建筑 一、民用建筑在地震中得震害特点 (一)砌体结构房屋得震害及分析 1)震害现象 (1)墙角得破坏:房屋得四角墙面上开裂以至于局部倒塌得现象。 (2)楼梯间得破坏:楼梯间两侧承重墙出现严重得斜裂缝。 (3)内外墙连接得破坏:内外墙连接处出现竖向裂缝,严重时纵横墙拉脱。造成纵墙外闪倒塌,房屋丧失整

体性。 (4)突出屋面得屋顶间等附属结构得破坏:地震时,平面突出部位出现局部破坏现象。相邻部位得刚度差异较大时尤为严重。突出屋面得屋顶间、烟囱、女儿墙等附属结构,由于地震“鞭鞘效应” 得影响,一般较下部主体结构破坏严重,而且突出部分面积与房屋面积相差越大,震害越严重,如 图所示。 (5)墙体得破坏:墙体出现水平裂缝、斜裂缝、X形裂缝,严重得则出现歪斜以致倒塌现象,图所示。 方向平行得墙体,在水平地震作用下,墙体首先出现斜裂缝,如果墙体高宽比接近1,则墙体出现X 形交叉裂缝;如果墙体得高宽比较小,则在墙体中间部位出现水平裂缝。 (6)其她部位常见破坏:由于楼盖缺乏足够得拉结或施工中楼板搁置长度过小,会造成楼板坠落;由于伸缩缝过窄,不能起到防震缝得作用,地震时缝两侧墙体放生碰撞而造成破坏。 2)分析:历次大地震,如1963年前南斯拉夫地震,1972年美国费尔南多斯地震,1976年罗马利亚地

震,1975年营口海城地震,1976年唐山地震以及2008年汶川地震中,都证明底部框架砌体结构房屋震害就是相当严重得。 在地震作用下,底部框架—抗震墙结构房屋得底层承受着上不砖房倾覆力矩得作用,其外侧柱会出现受拉得状况;底层为内框架时,外侧得砖壁柱则会因砖柱受拉承载力低而开裂,甚至严重破坏;底层为半框架时会出现底层横墙开裂,而后由于内力重分布,加重了层半框架得破坏;底层商店住宅,由于需要大空间,横墙较少,因底层得抗震能力弱形成特别得薄弱楼层,造成破坏特别严重。 (二)钢结构房屋得震害及分析 1) 钢结构得震害主要有节点连接得破坏、构件得破坏以及结构得整体倒塌三种形式。 2)分析:历次地震表明,在同等场地、地震烈度(seismic intensity)条件下,钢结构房屋得 震害要较钢筋混凝土结构房屋得震害小得多。以1985年9月墨西哥城大地震(里氏8、1级)得震害为例,其中倒塌与严重破坏得钢结构房屋为12栋,而钢筋混凝土房屋却有127栋。 1、节点连接得破坏 (1)框架梁柱节点区得破坏 由于节点集中力、构造复杂、施工难度较大,极易造成应力集中,因此节点破 坏时发生最多得一种破坏形式。1994年美国诺斯里奇(Northridge)地震与1995 年日本阪神地震均造成了很多梁柱刚性节点得破坏。2008年汶川地震也造成钢结 构网架节点破坏。 诺斯里奇地震时,H形截面得梁柱节点得典型破坏形式。由图中可见,大多数节 点破坏发生在梁端下翼缘处得柱中,这可能就是由于混凝土楼板与钢梁共同作用,

浅析地震对建筑物的破坏及建筑减震防震措施

浅析地震对建筑物的破坏及建筑减震防震措施 姓名:王涛 班级:土木 通过对土木工程概论这门课程的学习,我对土木工程这个专业有了大概的了解。我对建筑防震减震方面的问题有着浓厚的兴趣,通过陈老师的介绍以及我查阅的相关资料,浅析一下本人对地震对建筑物的破坏以及建筑物减震防震方面的认识。 破坏性地震会给国家经济建设和人民生命财产安全造成直接和间接的危害和损失,尤其是强烈的地震会给人类带来巨大的灾难。目前,每年全世界由地震灾害造成的平均死亡人数达8000一10000人/次,平均经济损失每次达几十亿美元。据联合国统计,本世纪以来,全世界因地震死亡人数达260万,占全球自然灾害所造成的死亡总和的58%。从某种意义上说,地震是群灾之首。 大地震如果发生在渺无人烟的地方是不会造成伤害的,如果发生在城市或农村的活,就会造成房倒屋塌,甚至建筑物与重要工程也会遭至"破坏并危及人员的生命安全,给人们造成严重灾害。 我国由于地处板块交界处地震灾害频度高,强度大,成灾率高,这是造成地震灾害特别严重的原因。同时,我国民众防灾意识不高,同一震级的地震,造成伤亡的人数可多达数倍。另外,我国大部分城市的基础设施,抗震性能较差。建国头20年中,多数建筑物和工程未考虑抗震设防,加之城市生命线管线纵横交错,埋设不合理,有的材料强度不够,有的年久失修,使我国多数城镇防震抗震的能力脆弱,潜在着很大的隐患。广大农村多属土、石结构建筑,抗震能力更差。据估计,地震若发生在我国工业城市及人口稠密的地区,8级左右或7级左右以及5、6级左右的地震所造成的经济损失分别为百亿元、数十亿元和数亿元人民币。譬如1976年唐山大地震,在几十秒钟的时间内,将一座百万人口的工业城市变成了废墟,伤亡侧万人,直接经济损失100亿元以上,救灾花了6亿多元,重建用了50亿元,而

浅谈高层建筑抗震

浅谈高层建筑抗震 2008年的汶川地震和2010年的玉树地震对中国来说无不是沉重的打击,不但造成巨大的经济损失,更心痛的是有那么的生命离开了我们,这不得不让人们反思我们建筑的抗震设防能力。在地震中,几乎所有的建筑都倒塌了,相对于低层建筑而言,高层建筑破坏和倒塌的后果就更加严重。近年来国内国外高层、超高层建筑的高度不断攀升,就在2010年正式开放的哈利法塔的高度达到了惊人的828米,而且建筑的体型越来越复杂,不规则结构越来越多,这对于结构的抗震都是十分不利的。为保证高层结构的抗震安全,达到安全和经济的统一,有必要对高层结构的抗震设计、抗震结构和抗震技术进行探讨。 1.地震导致建筑破坏的原因 根据地震经验,地震期间导致高层建筑破坏的直接原因可分为以下三种情况: (1)地震引起的山崩、滑坡、地陷、地面裂缝或错位等地面变形,对其上部建筑的直接危害; (2)地震引起的砂土液化、软土震陷等地基失效,对上面建筑物所造成的破坏; (3)建筑物在地面运动激发下产生剧烈震动过程中,因结构强度不足、过大变形、连接破坏、构件失稳或整体倾覆而破坏; 2.建筑的抗震概念设计 所谓“建筑抗震概念设计”是指根据地震灾害和工程经验等所形成的基本设计原则和设计思想,依此进行建筑和结构总体布置并确定细部构造的过程。科技论文。 3.建筑抗震设计方法的发展过程 3.1、静力理论阶段 水平静力抗震理论始创于意大利,发展于日本,1900年日本学者大森房吉提出“震度法”的概念。该理论认为:结构物所收到的地震作用,可以简化为作用于结构的等效水平静力,其大小等于结构重力荷载乘以一个系数。 3.2、反应谱理论阶段 我国及国际上多数国家抗震设计规范本质上都采用了反应谱理论及结构能力设计原则。其主要特点如下: (1) 用规范规定的设计反应谱进行结构线弹性分析。 (2) 结构构件的承载力是根据设计反应谱所作的结构线弹性计算通过荷载和地震作用效应组合后内力进行设计。 (3) 在早期方案设计阶段,结构体系、结构体型的规则性及结构的整体性满足规范的规定,以使结构能可靠地发挥非弹性延性变形能力。 3.3、动力理论阶段

地震对建筑的影响

地震对建筑的影响 Corporation standardization office #QS8QHH-HHGX8Q8-GNHHJ8

第九组 组员:陈耀铭、黄伟鹏、江信贤 地震与民用建筑 一、民用建筑在地震中的震害特点 (一)砌体结构房屋的震害及分析 1)震害现象 (1)墙角的破坏:房屋的四角墙面上开裂以至于局部倒塌的现象。 (2)楼梯间的破坏:楼梯间两侧承重墙出现严重的斜裂缝。

(3)内外墙连接的破坏:内外墙连接处出现竖向裂缝,严重时纵横墙拉脱。造成纵墙外闪倒 房屋丧失整体性。 (4)突出屋面的屋顶间等附属结构的破坏:地震时,平面突出部位出现局部破坏现象。相邻的刚度差异较大时尤为严重。突出屋面的屋顶间、烟囱、女儿墙等附属结构,由于地震鞘效应”的影响,一般较下部主体结构破坏严重,而且突出部分面积和房屋面积相差越 震害越严重,如图所示。 (5)墙体的破坏:墙体出现水平裂缝、斜裂缝、X形裂缝,严重的则出现歪斜以致倒塌现象,所示。方向平行的墙体,在水平地震作用下,墙体首先出现斜裂缝,如果墙体高宽比接1,则墙体出现X形交叉裂缝;如果墙体的高宽比较小,则在墙体中间部位出现水平裂缝

(6)其他部位常见破坏:由于楼盖缺乏足够的拉结或施工中楼板搁置长度过小,会造成楼板落;由于伸缩缝过窄,不能起到防震缝的作用,地震时缝两侧墙体放生碰撞而造成破坏 2)分析:历次大地震,如1963年前南斯拉夫地震,1972年美国费尔南多斯地震,1976年罗亚地震,1975年营口海城地震,1976年唐山地震以及2008年汶川地震中,都证明底部框架砌体结房屋震害是相当严重的。 在地震作用下,底部框架—抗震墙结构房屋的底层承受着上不砖房倾覆力矩的作用,其外侧柱现受拉的状况;底层为内框架时,外侧的砖壁柱则会因砖柱受拉承载力低而开裂,甚至严重破坏; 层为半框架时会出现底层横墙开裂,而后由于内力重分布,加重了层半框架的破坏;底层商店住宅由于需要大空间,横墙较少,因底层的抗震能力弱形成特别的薄弱楼层,造成破坏特别严重。 (二)钢结构房屋的震害及分析 1)钢结构的震害主要有节点连接的破坏、构件的破坏以及结构的整体倒塌三种形式。 2)分析:历次地震表明,在同等场地、地震烈度(seismic intensity)条件下,钢结房屋的震害要较钢筋混凝土结构房屋的震害小得多。以1985年9月墨西哥城大地震(里氏级的震害为例,其中倒塌和严重破坏的钢结构房屋为12栋,而钢筋混凝土房屋却有127栋。 1、节点连接的破坏 (1)框架梁柱节点区的破坏 由于节点集中力、构造复杂、施工难度较大,极易造成应力集中,因此节点破 坏时发生最多的一种破坏形式。1994年美国诺斯里奇(Northridge)地震和 1995年日本阪神地震均造成了很多梁柱刚性节点的破坏。2008年汶川地震也造成 钢结构网架节点破坏。 诺斯里奇地震时,H形截面的梁柱节点的典型破坏形式。由图中可见,大多数 节点破坏发生在梁端下翼缘处的柱中,这可能是由于混凝土楼板与钢梁共同作用,

地震对工程建筑实施的影响

浅谈地震灾害对工程建筑的影响

地震对工程建筑实施的影响 摘要 地震是非常严重的自然灾害之一,它以瞬间的能量瞬息间使成千上万的生命遭到伤害,地震称为地动、地振动,是地壳快速释放能量过程中造成振动,期间会产生地震波的一种自然现象。地震产生的原因随其形式的不同而不同,本文将阐述地震成因的具体知识,能让我们更好的了解地震带给工程实施的影响。地震时会使房屋等建筑物受到严重的震动致使破坏,会使桥梁断裂、路面开裂下陷、铁路扭曲等,从而使城市瘫痪。地震常常还会伴随滑坡、泥石流、地基沉陷等地面破坏现象,其次生灾害也是非常严重的。对此我们应该对其地震带上的城市进行防范,地震灾害的破坏程度与地震震级和震源深度、地震发生的时间、地貌地质条件、建筑物的质量和地震的防御状况。其中后三个因素则是人类可以控制的,通过对采取有效手段完全可以降低地震灾害的程度。在未来的发展过程中,我们还不能有效地预测地震,无法避免地震灾害的发生,但采取一定措施的前提下是可以有效地减少地震造成的破坏的。 关键词:地震地震成因震级地震烈度应对措施 引言 地震灾害这两年对我国造成的灾害较大,本文研究地震对工程实施的影响可为改善这种现象采取一定的防治措施,我国是地质灾害较多的国家,每年因地质灾害造成的经济损失不计其数,也给人类的生命安全财产造成极大的伤害,因此本文研究地震地质灾害及防治具有一定的社会意义,也使人们更加重视面对地震灾害时采取应对措施。 理论基础 2.1 地震现象与成因 地震是由于地球内部应力,引起构造变动而产生的地震,地震是一种地质现象,地球上差不多每天都有地震,地震时,从震源地方的岩石破裂产生的地震波,在地球内部和地球表面传播。 地震一般可分为人工地震和自然地震两大类,下面所说的地震成因为天然地震的成因:①构造地震,因为地壳运动引起的地壳构造突然变化,地壳岩层错动破裂而发生的地壳震动,这就产生了人们平常所说的地震。由于地球不停地运动变化,从而内部产生了巨大的地应力,在其长期缓慢的作用下,造成地壳的岩层

地质灾害对建筑物的影响

地质灾害对建筑物的影响 地质灾害对建筑物的影响 摘要:随着时代的发展,人们对生活水平的需求逐渐提高,建筑物的建设变得尤其重要,建筑物的设计、建造都在一定程度上反映了人们的生活水平。然而,建筑物的建设也影响了自然界的正常发展,大自然也通过各种方式向我们人类发出了警告,也反映在许多地质灾害在各地时有发生,均不同程度的造成人员或经济损失。所以在建造建筑物的同时也应慎重考虑地质灾害对建筑物的影响。地质灾害对建筑物的影响越来越严重,如何进行防、冶,从选址到建设的过程应该注意的环节,已建好的建筑物如何进行监测防冶等等。本文依据广西柳州市帽合地区发生的地质灾害塌陷进行了讨论与总结,讨论了从选址到建设的过程应该注意的环节,如何防冶,已建好的如何进行监测防冶等等。 关键词:地质灾害;对建筑物的影响;检测防治;环节 Abstract: with the development of The Times, people life level requirements gradually improve, building construction becomes especially important, building design, construction in a certain extent reflects people's living level. However, the construction of the building have also affected the normal development of the nature, nature also by various means to our human issued a warning, also reflected in many geological disasters have occurred at all, all different degree of caused the personnel or economic loss. So in the construction of buildings should also be careful consideration of the effect of geological disasters in buildings. The influence of geological hazards on building more and more serious, how to prevent and smelting, from the process of construction site to should pay attention to link, has built good building monitoring the smelting how, and so on. Based on the liuzhou

建筑结构设计中减少地震力影响的措施分析

管理观察 CONSTRUCTloN 建筑结构设计中减少地震力影响的措施分析 吕必祥田州 恩施职业技术学院445000 摘要:地震是一种自然现象,如果强烈地震发生在人类聚居区,就可能造成严重的地震灾害,2008年汶川地震再次给我们敲响了警钟,提醒我们在建筑结构设计减少地震力影响力方面应该进一步加强。 关键词:建筑结构设计;地震力影响 一,隔震 使用隔震技术不仅达到了减轻地震对上部结构造成损坏的目的,而且建筑装修及室内设备也得到有效保护。隔震建筑的结构体系一般由下部结构、隔震装置、上部结构组成。根据隔震层设置的位置不同,可分为以下几种: l地基隔震 地基隔震即隔震层设在基础以下的地基中。历史上曾采用糯米垫层或砂垫层隔震,也能取得一定效果。还有的用一层软粘土一层砂土,其间加入一层土工布。使地震波在地基中被多次反射吸收达到衰减的效果。但由于土的性状较难由人工控制,它常随自然条件而变更,因此效果不稳定。杭州市抗震办曾组织研制了一种改性沥青阻尼隔震垫。达到了良好的效果。 2.基础隔震 基础隔震是在基础与上部结构之间设置隔震装置,减小地震动往上部结构传递,降低上部结构的地震反应。该种隔震方法适用于体形规则的低层或多层建筑结构,用于高层建筑结构的效果较差(隔震结构延长了结构的自振周期)。基础隔震包括粘弹性隔震、滚轴(珠)滑移隔震、摩擦摆隔震、摩擦滑移隔震等多种形式,隔震装置有夹层橡胶垫隔震装置、基底滑移隔震装置、混合隔震装置等等,其减震效果可达8%--60%。 3.层间隔震 层间隔震是结构隔震与抗震相结合的一种方法,它是在原结构上安装由质量和隔震支座组成的耗能减震装置,地震时,耗能减震机构吸收并消耗地震能量,减小结构的地震反应。该方法适用于旧房加层、抗震加固。减震效果一般在10%---40%之间。虽然层间隔震的效果不如基础隔震,但它可利用结构的加层或原结构的隔热层,做适当的改建而达到减震的目的,简单易行。隔震装置采用橡胶支座。在上海.几栋高层建筑用此方法控制结构的第二振型反应,收到很好的效果。 4.悬挂隔震 悬挂隔震是将结构的全部或大部分质量悬挂起来,使地面运动传递不到主体质量,产生不了惯性力,从而起到隔震作用。它最具有代表性的是巨型刚框架悬挂体系。其结构分为主框架和子结构:主框架同一般框架结构;子结构采用索或吊杆悬挂.分布有主要质量。此体系可以有效地隔离主框架和子结构,减少地震作用的传递,控制结构的地震反应。因此,目前已经广泛被很多国家采用该方法在桥梁、火电厂锅炉架中应用广泛。著名的香港汇丰银行新大楼(43层)即采用此种方法隔震。 二,消能减震技术 消能减震技术主要通过提高结构的附加阻尼来减少结构的地震反应。其应用十分广泛:不仅可用于新建结构的减震设计,也可用于现结构的抗震加固;适用于钢筋混凝土结构,更适合钢结构、高耸结构;一般应用于上部结构,也町应用于基础隔震建筑中的隔震层。 消能减振技术是用特别设置的机构和元件将地震动的能量加以吸收耗散,以保护主体结构的安全。这比传统的依靠结构本身及其节点的延性耗散地震能量相比显然是前进了一步。但是消能元件往往与主体结构是不能分离的,而且常常是主体结构的一个组成部分,也不能完全避免主体结构出现弹塑性变形,因此它还不能完全脱离延性结构的概念。从另一方面考虑,减振消能也可以看作是增加结构阻尼的方法。 消能减震技术的实际应用效果与所选用的消能装置关系较大.消能装置的种类繁多,主要有摩擦阻尼器、塑性消能器、粘滞阻尼器、磁流变阻尼器、形状记忆合金阻尼器等。从阻尼器的T作原理方面可分为滞回型和粘滞型两类,亦可称为位移相关型和速度相关型。 三、机敏减震支撑体系 无粘结钢支撑体系是一种机敏的减震支撑体系。在内核钢支撑和外包钢管之间不粘结,或者在内核钢支撑和外包钢筋混凝土或钢管混凝土之问涂无粘结漆形成滑移界面。在支撑中段设置外包层,在支撑两端适当部位露出内核钢支撑,再用高强度螺栓与框架结构连接,以保证压力和拉力都只由内核钢支撑承受。滑移界面的材料和几何尺寸需要精心设计和施工,以允许内核钢和外包层之间相对滑动,同时约束内核钢支撑的横向变形,防止内核钢支撑在压力作用下发生整体屈曲和局部屈曲。 四、跷动振动控制减震设计 跷动减震设计有两种方法:一种是整个上部结构与下部基础在竖向不紧固;另一种是结构中地震力较大的柱、竖向连续墙、支撑等部分构件与下部基础不紧固。前一种方法适用于高宽较大的建筑物在强烈地震作用下会产生很大竖向拔力的情形。 五、地震震向与建筑物走向 汶川地震导致的房屋倒塌无数,同时也有不少的房屋屹立不倒。经过专家的现场勘察。房屋倒塌和震向密切相关。所谓的震向,即地震发生以后,导致房屋震动的方向。此次汶川大地震,震向为东北.西南走向,房子如果和它同向。随它一起摇晃,则受损严重,而房屋走向和震向垂直的话,损伤明显小得多。以板式结构为例,板式方向与断裂带走向垂直的话,其抗震能力至少可以提高3度。“我们虽然不能精确预报地震发生的时间和地震的强度.但是,知道了断裂带的走向以后,一旦发生地震,地震波的传递方向所导致房屋晃动的方向,还是有规律的。”同济大学规划设计专家吴志强如是说。“今后,在重建规划中,一定要考虑这个因素。房屋走向和震向交叉,其抗震能力可提高3度。” 总之,通过几十年的发展,现代隔震减震技术已经从早期的系统研究进入到了逐步应用的阶段。经过现实中实际地震的验证,这些方法已经显示出优越的抗震性能,同时也带来了巨大的社会效益。但是仍然要看到这些技术在实际应用中的不足,还需要我们设计和科研人员进行大量的实验和论证。 参考文献: 【11建筑抗震设计规范(GB50011-2001)2008. 【2】武田寿一。纪晓惠,等译.建筑物隔震防振与控振【M】.中国建筑工业出版社,1997. 蕉壹壅塑目圜 万方数据

浅谈高层建筑抗震的现状及发展前景

浅谈高层建筑抗震的现状及发展前景 (中国矿业大学建筑工程学院土木11-5班马绪文) 摘要:对于一个高层结构的设计,遇到的问题可能错综复杂,只能具体问题具体分析。工程实践表明在高层结构的设计过程中,设计人员只有抗震概念清晰,构造措施得当,应用合适的结构分析软件三者有机结合才能取得比较理想的结果,在这个过程中抗震构造重于结构计算。本文对建筑抗震进行必要的理论分析,从而探索高层建筑的设计理念、方法,采取必要的抗震措施并简述其发展前景。 关键词:高层建筑;抗震;结构设计 现阶段,土与结构物共同工作理论的研究与发展使建筑抗震分析在概念上进一步走向完善,如果可以在结构与地基的材料特性,动力响应,计算理论,稳定标准诸方面得到符合实际的发展,自然会在建筑结构抗震领域内起到重要的作用。 1 高层建筑抗震设计特点 第一,控制建筑物的侧移是重要的指标。在地震荷载作用下,建筑结构所产生的水平剪切力占主导地位,所以建筑物会产生明显的侧移,随建筑结构的高度不断曾加,结构的侧向位移迅速增大,但该变形要在一定限度之内,这样才能保证结构安全以及使用功能。 第二,地震荷载中的水平荷载是决定因素。水平荷载会使建筑物产生倾覆力矩,并且在结构的竖向构件中引起很大的轴力,这些都与建筑物高度的两次方成正比,故随建筑结构高度的曾加,水平载荷大相径庭。对高度一定的建筑物而言,竖向荷载基本上是不变的,但是随着建筑物的质量、刚度等动力特性的不同,水平地震荷载和风荷载的变化是比较大的。 第三,要重视建筑结构的延性设计。高层建筑结构随着高度增加,刚度减小,显得更柔,在地震荷载作用下变形较大。这就要求建筑结构要有足够的变形能力,使结构进入塑性变形阶段仍然安全,需要在结构构造上采取有利的措施,使得建筑结构具有足够的延性。 2 建筑抗震的理论分析 2.1 建筑结构抗震规范简介 建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。 2.2 抗震设计的理论 拟静力理论:拟静力理论是20世纪10~40年代发展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于

相关文档
最新文档