电缆的闪络故障

电缆的闪络故障
电缆的闪络故障

https://www.360docs.net/doc/c318502069.html, 电缆的闪络故障,华天电力是电缆故障测试仪的生产厂家,15年致立研发标准、稳定、安全的电力测试设备,专业电测,产品选型丰富,找缆故障测试仪,就选华天电力。

闪络故障,在进行交接或预防性试验时,随着电压的升高,泄露电流呈现出由低值平稳到突然增高的闪络性摆动状态,此时也可能造成电缆闪络击穿;电压稍有下降(小于闪络击穿电压),此现象即消失,但电缆仍有很好的绝缘电阻和电气性能,这就是电缆有闪络故障的表现。闪络性故障就是像这样故障点没有形成电阻通道,只有放电间隙或闪络表面故障。闪络性故障,多发于预防性试验中,它也是高阻故障的极端形式。

根据闪络原理,我们研制的电缆故障测试仪,就叫电缆故障闪络测试仪,简称闪测仪,其特点为在高压直流电压下,球间隙形成闪络放电,同时故障点也击穿放电。利用放电时产生的高压脉冲信号,根据脉冲反射原理,就可以测试出故障距离。

高压闪络测试法适用于测试电缆的高阻故障(高阻泄漏故障和高阻闪络性故障)。电力电缆的绝大部分故障属于高阻故障,我们知道,凡是电缆故障点的直流电阻大于该电缆的特性阻抗的故障均称为高阻故障。高阻故障又分为高阻泄漏性故障和高阻闪络性故障,而高压闪络法又分为直流高压闪络法(简称直闪法)和冲击高压闪络法(简称冲闪法)。用低脉冲法是无法对高阻故障进行测试的,因为故障点等效阻抗几乎等于电缆特性阻抗,所以其反射系数几乎为零,因得不到反射波而无法测试。

冲击高压闪络图

https://www.360docs.net/doc/c318502069.html, 冲击高压闪络法(冲闪法)适用于测试大部分闪络故障。冲击高压闪络法试验电路与直闪法基本相同,只是在充电电容器与电缆之间增加了一个球型放电间隙。对充电电容充电,电压到达一定数值后,球型放电间隙就会击穿放电,电缆线路得到一个瞬时高压,当该高电压高于故障点临界击穿电压时,就使故障点击穿放电,产生的电流电压信号向两端传播。捕捉到该信号就可以实现故障测距。与直闪法相比而言,冲闪法波形比较复杂,辨别难度较大,准确度较低,但是适用范围更广一些。

动车组车顶高压电气设备闪络故障分析及改进

动车组车顶高压电气设备闪络故障分析及改进 据统计动车组在运营过程中发生故障多数是由于车顶的高压电气设备顶绝缘子放电、烧损等设备闪络所引起的。加强动车组列车的安全性和减少故障率,具有极其重要的促进社会经济发展的现实意义。基于此,结合笔者工作经验。笔者将对车顶高压电气设备配置外绝缘性性能及结构优化进行研究,探讨引起闪络的内外界因素,如:高速气流、运行时长、高海拔和风沙等对绝缘子容易产生影响的因素,加以分析并提出关于预防闪络的具体可实行措施,同时对于日常保养也提出了建议。希望能为有关部门人员在工作上提供经验和参考。 标签:动车组;电气设备;车顶;高压;闪络故障;改进 随着我国的铁路建设发展势头越来越强,作为重要交通运输工具之一的铁路运输,动车组又是铁路运输的重要组成部分,而动车组车顶的高压电气设备就是动车组的心脏。然而动车组车顶高压电气设备闪络会造成动车高压设备绝缘故障。尤其是在我国的高速动车组列车越发的普及的今天,由于动车组之前运行时间相隔较短,一辆列车组的故障将会引起多趟高速列车组的晚点,产生晚点多米诺效应。所以高铁动车组的车顶电气设备闪络故障不仅会给乘客带来损失,也将给铁路运营公司乃至厂商都带来不可估量的经济影响,以及社会舆论影响。因此高速动车组列车的安全稳定的运营得到足够的重视,要求我们迫切的去研究和分析发生动车组车顶高压电气设备闪络故障的原因从而提出改进的切实可行措施。 一、动车组高压设备外绝缘结构 目前我国高速列车组的车顶高压电气设备普遍安装于主变压器车受电平台上,除了将陶瓷绝缘体用在主断路器上用来与车体绝缘意外。还通过裸铜软线对高压电气设备间进行连线实现电气连接。电力机车上部网侧由绝缘子对25kV电路中的电器进行支撑和绝缘,再加上由于其工作环境的恶劣,变会发生闪络故障。之前郑州铁路局对于此现象进行了探讨和研究,并采用了一系列改造措施,通过喷涂橡胶涂料在绝缘子上的方式大幅度的减少了动车组车顶高压电气设备闪络故障。尽管如此,由于近年来高速列车车组的技术不断进步也对环境等要求越来越严格。在京广线上就发生过多次的动车组车顶高压电气设备闪络故障,严重的对铁路运输安全运输生产造成了影响。 二、动车组车顶高压电气设备闪络故障机理及原因 通过对之前动车组车顶高压电气设备闪络故障的时间和一些环境因素对比发现,在0度至3度之间时,在雾雨天气湿度较大时候以及环境的污染指数过大时,故障多数发生在变电所的附近或者是站内机车时候。经观察分析得出,认为是由于绝缘子的污染较为严重的环境下积污过多,再加雨雾天气的干扰,形成了局部电离面,电流造成一定的泄露。如果泄露的电流发生动态变化,那么表面的电压分布就将变得不再均匀,从而电晕现象会产生,空气被电离。即便在之前采用了硅橡胶涂料对绝缘子的表面进行喷涂改造,短暂的提高绝缘子的耐污能力,

电力电缆故障原因及常用的检测方法(超全讲解)

https://www.360docs.net/doc/c318502069.html, 电力电缆故障原因及常用的检测方法(超全讲解)盲目的进行电缆故障查找工作往往费时费力而且无法准确的进行故障定点判断,这不是因为电缆故障种类的复杂造成,而是因为电缆周边环境所造成的。 1、电力电缆基础理论 我们目前采用的电缆故障查找方法离不开:故障诊断、粗测定点与精确定点三个步骤。但是往往在实际测试中能够确定故障类型,做到粗测定点,但是却无法真正精确定点进行开挖。这种原因的形成是因为客观存在的我们听得到的因素(公路或施工处振动噪声过大等原因)和看不到的因素(电缆走向、电缆埋设深度过深、故障点在积水中、电缆施工时余留不规范等原因)所造成的。因此在电缆故障查找前通过电缆施工、运行管理人员明确电缆长度、电缆走向、周边特殊情况、中间头位置、周边是否存在施工等要因是电缆故障查找前不可或缺的准备工作。 2、电缆故障原因及测量仪器 了解电缆故障的原因,对于减少电缆的损坏,快速地判定出故障点是十分重要的。

https://www.360docs.net/doc/c318502069.html, 注:(HZ-TC电缆故障测试仪) 电缆故障测试仪是我公司根据用户要求,从现场使用考虑,精心设计和制造的全新一代便携式电缆故障测试仪器。它秉承我们一贯高科技、高精度、高质量的宗旨,将电缆测试水平提高到一个新境界。 电缆故障测试仪(闪测仪)可用于检测各种电缆的低阻、高阻、短路、开路、泄漏性故障以及闪络性故障,可准确的检测地下电缆的故障点位置、电缆长度和电缆的埋设路径。具有测试准确、智能化程度高、适应面广、性能稳定以及轻巧便携等特点。仪器采用汉字系统,高清晰度显示,界面友好。

https://www.360docs.net/doc/c318502069.html, 电缆寻迹及故障定点是由路径仪、定点仪、T型探头、A字架、听筒等组成。本仪器是电缆故障定位测试的专用仪表,适用测试对象为具有金属导体(线对、护层、屏蔽层)的各种电缆。其主要功能为对地绝缘不良点的定位测试,线缆路径的探测以及线缆埋深的测试。 注:(HZ-TCD全智能多次脉冲电缆故障测试仪) 全智能多次脉冲电缆故障测试仪是我公司为了迎合电力工业电力时代的到来,在集成了电缆故障测试行业的诸多精品方案,以IT时代的快速发展为契机,将单片机及笔记本式的电缆故障测试仪彻底摒弃,在嵌入式计算机平台的基础上打造出适合电缆故障测试行业自身特点的网络化电缆故障测试服务平台,并且系统化得集成了USB通信技术,触摸屏技术,3G 通信技术,极大提高了仪器的使用功能和利用价值以及便捷的现场环境操作。考虑到现在地

电缆故障的查找与处理

电缆故障的查找与处理 电缆常见故障有漏电接地、短路(俗称电缆“放炮“)、断线等。主要原因是电缆老化或受到外力碰、砸、挤压、接线工艺不合格以及保护失灵等。电缆故障的查找与处理程序是:先判断故障性质,后找故障点,再根据情况按规定进行处理。 (一)电缆故障性质的判断 1、漏电故障 ①电缆的绝缘水平低,出现漏电现象。 ②芯线相间或对地绝缘电阻达不到要求。 ③芯线之间或对地泄露电流过大。 2、接地故障 ①完全接地(也称“死接地”),即电缆某相芯线接地,如用摇表(或万用表)测量两者之间绝缘电阻为零。 ②低电阻接地,即电缆一相或几相芯线对地的绝缘电阻值低于500K?。 ③高电阻接地,即电缆一相或几相芯线对地的绝缘电阻值在500 K?以上,甚至1M ?以上。 3、短路故障 有完全短路、低电阻或高电阻短路;有两相同时接地短路或两相直接短路;有三相短路或接地。 4、断线故障 电缆一相或几相芯线断开,或者一相导电芯线断一部分。 5、闪络性故障 当电缆的电压达到某一定值时,芯线间或芯线对地发生闪络性击穿;当电压降低后,击穿停止。在某些情况下,即使再次提高电压时,击穿亦不出现,经过若干时间后又会发生。这种故障有自动封闭故障点的特点。

6、电缆着火 电缆着火事故,其原因是发生相间短路故障后,熔断器、过电流继电器等保护失灵,强大的短路电流产生的高温点燃了橡套电缆的胶皮,引起火灾。 7、橡套电缆龟裂 这种故障在煤矿井下低压橡套电缆中较为常见,其主要原因是由于长期过负荷运行,造成绝缘老化,芯线绝缘与芯线粘连,就容易出现相间短路事故。产生的故障原因,除电缆的型号和截面选择不当、施工工艺质量不好、电缆质量有问题外,许多故障都和电缆的管理、运行和维护有关。因此,对电缆的选用、敷设、吊挂等都要按《煤矿安全规程》有关规定进行。 (二)电缆故障点的查找 1、直接判断 首先应确定哪条电缆出了故障。当维修人员无法查明是过负荷跳闸还是故障跳闸时,可以进行一次试送电来判断跳闸停电原因。 如果属于电缆事故跳闸,应首先用摇表测定电缆芯线之间和对地的绝缘电阻,初步判断故障的性质。凡属电缆漏电故障,往往是通过检测绝缘电阻和做泄露实验时发现,或者从检漏继电器指针数值判断。凡接地事故,可通过检漏继电器跳闸发现;如果属于短路故障,常常是因接地短路或短路后接地,也有少数只短路不接地。 对于在空气中敷设的电缆,包括井下沿巷道敷设的电缆,如果因短路故障造成外皮烧伤,一般通过沿电缆线路查找外观就可找到故障点。电缆接线盒出现短路事故时,如果检查得及时,接线盒表面可以摸到有温度。电缆某处短路,有时可以看到烧穿的伤痕或穿孔,在短路点还可以嗅到绝缘烧焦的特殊气味。 2、用万用表查找 首先将电缆两端的芯线全部开路,如果电缆故障是相间短路,将发生短路的两根芯线的端头与万用表相连接;如果是接地故障,就将发生接地的芯线和接地芯线接到万用表上。将万用表的选择开关打到欧姆档,然后由检修人员对电缆逐段进行弯曲或翻动。当弯曲到某一点,万用表指针有较大的摆动时,说明这就是故障点;也可用干燥的木棒敲打电缆护套,当敲打到某处,万用表针有较大的摆动时,也就找到了故障点。

电缆的故障几种类型

电缆的故障几种类型 从今年已查找的低、中、高压电缆故障的结构特点分析,电缆单相接地故障较为普遍,多是因为电缆遭受外力破坏原因造成。也不排除本体质量造成,但这种内部短路从外表看不出痕迹较少见。电缆相间短路故障中较少,这是因为相间短路一般都是在运行中发生,发生故障时会产生强大的短路电流造成速断保护动作而跳闸。强大的电流所造成的高温一般都会把电缆烧断造成开路性故障。电缆内部短路,外表看不出痕迹,此类故障一般是由于电缆质量造成的,比较少见。 从电缆的故障位置看,一条电缆最薄弱的地方是中间接头,一般的电缆都有一个或几个中间接头,在做电缆中间接头时由于环境条件限制,加上电缆敷设后不进行防潮处理,制作时中间接管压接不紧密,都可能造成电缆中间接头受潮、工艺缺陷的出现。当运行中长期在高压电场的作用下产生电晕及游离放电,使绝缘本体形成水树直至绝缘老化并击穿。 从电缆故障的性质区分可分为开路、低阻、高阻和闪络性 故障四种:开路故障就是工作电压不能传输到终端,或虽然终端有电压,但带负载能力差。 低阻故障就是电缆相间或对地的绝缘受损,其绝缘电阻减小到100KΩ以下。 高阻故障就是电缆相间或对地的绝缘电阻大于100kΩ。 闪络性故障就是在高压保压过程中,突然击穿,在此电压下又能保压的故障。有别于高阻故障,在高压达到一定的电压肯定能击穿的故障。 故障性质Rf 间隙的击穿情况 开路∞ 在直流或高压脉冲作用下击穿 低阻小于100Z0 Rf不是太低时,可用高压脉冲击穿 高阻大于100Z0 高压脉冲击穿 闪络∞ 直流或高压脉冲击穿 说明:表中Z0为电缆的波阻抗值,电力电缆波阻抗一般在10-40Ω之间。) 以上分类的目的也是为了选择测试方法的方便,根据目前流行的故障测距技术,开路与低阻故障可用低压脉冲反射法,高阻故障要用冲击闪络法,而闪络性故障可用直流闪络法测试。以上几种故障都可以用二次脉冲法测试,这是目前世界上最先进的故障测试技术,国外以德国、奥地利为代表。现场人员有Rf<100KΩ的故障称为低阻故障的习惯,主要是因为传统的电桥法可以测量这类故障。 综合以上分析掌握以下几点是我们查找电缆故障的关键: 1、确定电缆故障到底属于开路故障、低阻故障还是高阻故障;

变电站常见故障分析及处理方法

变电站常见故障分析及处理方法 变电所常见故障的分析及处理方法一、仪用互感器的故障处理当互感器及其二次回路存在故障时,表针指示将不准确,值班员容易发生误判断甚至误操作,因而要及时处理。 1、电压互感器的故障处理。电压互感器常见的故障现象如下:(1)一次侧或二次侧的保险连续熔断两次。(2)冒烟、发出焦臭味。(3)内部有放电声,引线与外壳之间有火花放电。(4)外壳严重漏油。发现以上现象时,应立即停用,并进行检查处理。 1、电压互感器一次侧或二次侧保险熔断的现象与处理。(1)当一次侧或二次侧保险熔断一相时,熔断相的接地指示灯熄灭,其他两相的指示灯略暗。此时,熔断相的接地电压为零,其他两相正常略低;电压回路断线信号动作;功率表、电度表读数不准确;用电压切换开关切换时,三相电压不平衡;拉地信号动作(电压互感器的开口三角形线圈有电压33v)。当电压互感器一交侧保险熔断时,一般作如下处理:拉开电压互感器的隔离开关,详细检查其外部有元故障现象,同时检查二次保险。若无故障征象,则换好保险后再投入。如合上隔离开关后保险又熔断,则应拉开隔离开关进行详细检查,并报告上级机关。若切除故障的电压互感器后,影响电压速断电流闭锁及过流,方向低电压等保护装置的运行时,应汇报高度,并根据继电保护运行规程的要求,将该保护装置退出运行,待电压互感器检修好后再投入运行。当电压互感器一次侧保险熔断两相时,需经过内部测量检查,确定设备正常后,方可换好保险将其投入。(2)当二次保险熔断一相时,熔断相的接地电压表指示为零,接地指示灯熄灭;其他两相电压表的数值不变,灯泡亮度不变,电压断线信号回路动作;功率表,电度表读数不准确电压切换开关切换时,三相电压不平衡。当发现二次保险熔断时,必须经检查处理好后才可投入。如有击穿保险装置,而B相保险恢复不上,则说明击穿保险已击穿,应进行处理。 2、电流互感器的故障处理。电流互感器常见的故障现象有:(1)有过热现象(2)内部发出臭味或冒烟(3)内部有放电现象,声音异常或引线与外壳间有火花放电现象(4)主绝缘发生击穿,并造成单相接地故障(5)一次或二次线圈的匝间或层间发生短路(6)充油式电流互感器漏油(7)二次回路发生断线故障当发现上述故障时,应汇报上级,并切断电源进行处理。当发现电流互感器的二次回路接头发热或断开,应设法拧紧或用安全工具在电流互感器附近的端子上将其短路;如不能处理,则应汇报上级将电流互感器停用后进行处理。二、直流系统接地故障处理直流回路发生接地时,首先要检查是哪一极接地,并分析接地的性质,判断其发生原因,一般可按下列步骤进行处理:首先停止直流回路上的工作,并对其进行检查,检查时,应避开用电高峰时间,并根据气候、现场工作的实际情况进行回路的分、合试验,一般分、合顺如下:事故照明、信号回路、充电回路、户外合闸回路、户内合闸回路、载波备用电源6-10KV的控制回路,35KV以上的主要控制回路、直流母线、蓄电池以上顺应根据具体情况灵活掌握,凡分、合时涉及到调度管辖范围内的设备时,应先取得调度的同意。确定了接地回路应在这一路再分别分、合保险或拆线,逐步缩小范围。有条件时,凡能将直流系统分割成两部分运行的应尽量分开。在寻找直流接地时,应尽量不要使设备脱离保护。为保证个人身和设备的安全,在寻找直流接地时,必须由两人进行,一人寻找,另一人监护和看信号。如果是220V直流电源,则用试电笔最易判断接地是否消除。否认是哪极接地,在拔下运行设备的直流保险时,应先正极、后负极,恢复时应相反,以免由于寄生回路的影响而造成误动作。三、避雷器的故障处理发现避雷器有下列征象时,

电缆故障点的四种实用检测方法

电缆故障点的四种实用检测方法 1 电缆故障的种类与判断 无论是高压电缆或低压电缆,在施工安装、运行过程中经常因短路、过负荷运行、绝缘老化或外力作用等原因造成故障。电缆故障可概括为接地、短路、断线三类,其故障类型主要有以下几方面: ①三芯电缆一芯或两芯接地。 ②二相芯线间短路。 ③三相芯线完全短路。 ④一相芯线断线或多相断线。 对于直接短路或断线故障用万用表可直接测量判断,对于非直接短路和接地故障,用兆欧表摇测芯线间绝缘电阻或芯线对地绝缘电阻,根据其阻值可判定故障类型。 故障类型确定后,查找故障点并不是一件容易的事情,下面根据笔者的经验,介绍几种查找故障点的方法,供参考。 2 电缆故障点的查找方法 (1) 测声法: 所谓测声法就是根据故障电缆放电的声音进行查找,该方法对于高压电缆芯线对绝缘层闪络放电较为有效。此方法所用设备为直流耐压试验机。电路接线如图1所示,其中SYB为高压试验变压器,C为高压电容器,ZL为高压整流硅堆,R为限流电阻,Q为放电球间隙,L为电缆芯线。

当电容器C充电到一定电压值时,球间隙对电缆故障芯线放电,在故障处电缆芯线对绝缘层放电产生“滋、滋”的火花放电声,对于明敷设电缆凭听觉可直接查找,若为地埋电缆,则首先要确定并标明电缆走向,再在杂噪声音最小的时候,借助耳聋助听器或医用听诊器等音频放大设备进行查找。查找时,将拾音器贴近地面,沿电缆走向慢慢移动,当听到“滋、滋”放电声最大时,该处即为故障点。使用该方法一定要注意安全,在试验设备端和电缆末端应设专人监视。 (2) 电桥法: 电桥法就是用双臂电桥测出电缆芯线的直流电阻值,再准确测量电缆实际长度,按照电缆长度与电阻的正比例关系,计算出故障点。该方法对于电缆芯线间直接短路或短路点接触电阻小于1Ω的故障,判断误差一般不大于3m,对于故障点接触电阻大于1Ω的故障,可采用加高电压烧穿的方法使电阻降至1Ω以下,再按此方法测量。

电力电缆故障点分析及查找

电力电缆故障点分析及查找 自从电被人类发现并使用之后,给工业的发展和社会的进步带来了翻天覆地的变化,现代社会的正常运转已离不开电能的供给,城市化进程的加速促使电力电缆被运用到电力系统和生活中的各个领域,所以谨防电缆故障,保证供电的稳定性十分重要,本文通过阐述电力电缆对于社会发展的作用,对常见的电力电缆故障点进行了分析总结,并提出了一些查找办法,从而进一步提升电力系统的供电可靠性。 标签:电力电缆;故障点分析;查找办法 1 电力电缆对于社会发展的作用 电力行业作为我国的经济支柱产业之一,始终在国民经济中占有重要位置,回顾电力电缆的发展历程,起源于新中国成立之后,随着社会主义经济的发展,各项体制制度的完善,以及科学水平的提升,与生产、生活密切相关的电缆工业终于从无到有,由小变大,不仅规模和数量日益扩大,而且所生产的产品技术与工艺水平都得到突飞猛进,在国家大力支持基础公共设施建设的同时,其对国民经济状况的影响也越来越大,例如:据有关调查统计,我国的电缆工业从发展以来,生产技术水平已经达到或者接近世界的先进水平,电力电缆年产值达到了惊人的900亿元,占国民经济总产值的2%,由此不难看出,电力电缆的运行程度好坏直接影响着国家的经济发展,而由于电力行业中很多电气火灾事故都源于电缆的故障,所以完善电缆的施工质量,加强维护措施,将有利于排除电力电缆的安全隐患,发挥出其对于维护社会秩序安全、稳定发展的重要作用,因此,针对电力电缆的故障点进行及时、细致、深入的分析与查找,进而一并解决显得尤为必要。 2 常见的电力电缆故障点分析与总结 2.1 短路或接地电力电缆故障 短路故障是电力电缆中最常见的故障之一,一般其有高电阻短路和低电阻短路之分,常伴随电缆的两芯或三芯短路,而当电缆发生短路故障之后,常会发生短路保护装置当中的熔丝被烧断,形成跳闸现象,而且会散发出一种绝缘烧焦的气味,这时的故障点就产生于短路,而接地故障同样分为低阻接地与高阻接地,二者无论从判断工具方面,还是自身性质的划分都有差异,通常来说,可以利用低壓电桥测得并且接地电阻小于20-100Ω的成为低阻故障,而接地电阻高于100Ω,且需要使用高压电桥才能测得的则为高阻故障,一旦发生此类事故,接地所用的监视装置会发出信号,漏电继电保护装置馈电开关产生跳闸。 2.2 断线电力电缆故障 断线故障的发生常会产生两种状况,一种属于高阻断线故障,那么另一种必

架空输电线路 110kV复合绝缘子闪络故障原因分析

架空输电线路 110kV复合绝缘子闪络故障原因分析 发表时间:2019-12-02T10:26:45.550Z 来源:《中国电业》2019年16期作者:高宝 [导读] 通过分析故障跳闸发生的起源和过程,提出针对性预防措施及处理建议,防止类似故障再次发生。摘要:随着挂网时间的增加,在恶劣自然环境以及电化学共同作用下,复合绝缘子憎水性、电气性能、机械性能均会不同程度的下降,在鸟害、冰雪、高湿、温差等环境因素的影响下,复合绝缘子常常会发生故障闪络。很多复合绝缘子闪络故障具有极大的隐蔽性,闪络原因不易确定且故障点较难查找。本文通过对地理环境、复合绝缘子电气性能等方面分析了发生在西北某地区110kV架空输电线路复合绝 缘子闪络故障跳闸事件。通过分析故障跳闸发生的起源和过程,提出针对性预防措施及处理建议,防止类似故障再次发生。 关键词:110kV架空输电线路;复合绝缘子闪络故障;原因;对策 引言 因为复合绝缘子的物理特性是机械强度高、重量轻、防污效果好、绝缘性好,在工作时安装简单、维护方便等好处,在当前的电路架空输电线路上得到了相当多的使用。但是伴随着复合绝缘子使用年限增加,复合绝缘子电路也会随之产生很多问题,比如:线路老化问题,在冬天还会出现伞套会丧失憎水性的情况。除此之外,雷电等自然环境也会对复合绝缘子产生不好的影响,在雷电产生的过程中,受雷电影响空气中的氮气会发生化学反应变成硝酸,硝酸有腐蚀性,会对复合绝缘子产生腐蚀作用,造成电化学腐蚀等损害,这就导致复合绝缘子发生闪络故障的情况越来越突出。 1故障情况分析 1.1保护动作情况 2011年9月12日06时11分,西北地区某110kV线路距离II段保护动作,B相跳闸,重合成功。保护测距:两侧变电站测距分别10km和2.3km。故障线路全长12.925km,杆塔总数56基,线路导线型号:LGJ-240/30、LGJ-150/20,直线杆绝缘子型号:FXBW-110/100,耐张杆绝缘子型号:XP-7、XWP-7。故障地区有雾气、微风,最高温度26℃,最低温度13℃,相对空气湿度80%。 1.2故障点现场情况 巡视人员发现#42杆B相绝缘子有上下均压环、碗头刮板、球头挂环螺栓被电弧灼伤,复合绝缘子表面无放电痕迹。高低压侧均压环上有短路接地电流烧蚀的圆孔,可以初步判断为本次故障的放电点。 2复合绝缘子闪络后试验 试品详细情况见表1。 表1故障复合绝缘子铭牌参数简介 2.1复合绝缘子尺寸检查 试品尺寸检查结果见表2。 表2故障复合绝缘子尺寸检查结果 由表2可以看出发生闪络的复合绝缘子各项尺寸均满足相关规程规定的要求,说明复合绝缘子本身尺寸选择较为合理,并且外绝缘配置也满足杆塔所处污秽等级的需要,伞间距、爬电系数满足要求说明复合绝缘子发生电弧桥接的概率不大。 2.2憎水性检查及外观检查 故障复合绝缘子憎水性及外观检查情况如表3所示。 由表3可以看出故障绝缘子有良好的憎水性,可以满足复合绝缘子正常运行,不会出现因憎水性丧失而导致的湿闪络电压下降情况。上下均压环有明显的闪络烧伤痕迹。 2.3正常条件下的工频干、湿闪络电压对比试验及耐受试验 本次交流工频干、湿耐受电压计算如公式(1)所示: (1) 式中:Un为耐受电压,Us为闪络电压,n为闪络次数。 试验结果如表4、表5所示。 表4故障绝缘子工频干、湿闪络试验结果 表5故障绝缘子工频交流干、湿耐压试验结果 由表4可以看出工频干闪络电压平均值为389.8kV,湿闪络电压平均值为340.4kV。试品湿闪络电压相比干闪络电压仅下降了12.67%,综合表5可以看出试品电气性能基本没有下降。 2.4冲击耐受电压试验 为进一步验证故障绝缘子的芯棒与伞套界面绝缘性能,对其进行雷电冲击耐受电压和陡波冲击耐受试验。本次试验雷电冲击耐受电压不小于550kV,正负极性各冲击15次,如故障绝缘子无击穿现象,则进行陡波冲击耐受试验。陡波冲击耐受试验时将陡度不小于1000kV/μs,且不大于1500kV/μs的冲击电压施加到两个相邻的电极间或将电压施加到金属附件与相邻的电极上,本次相邻电极间的距离取400mm,每个区段应分别承受25次正极性冲击和25次负极性冲击。每次的冲击应引起电极间的外部闪络,而不应产生击穿。 2.4.1雷电冲击耐受试验 雷电冲击耐受试验波形如图1、图2所示,故障绝缘子在正负极性下各冲击15次,无击穿现象。

电缆故障检测方法

电缆故障检测方法 在机电设备安装工程的施工及维护过程中,将会面对各种原因造成的电缆故障。所以必须具有适用的理论及方法来解决各类故障,本文就传统的检测方法进行了阐述,对于电缆的故障点检测一般都要经过故障类型的诊断、故障点测距、精确定点三个主要步骤。故障类型诊断主要是确定电缆故障点的故障相别,属于高阻接地或者低阻接地,以便于测试人员选择适当的检测方法。故障点测距也叫预定位,故障电缆芯线上施加测试信号或者在线测量、分析故障信息,初步确定故障的距离,尽量缩小故障范围,以方便精确定点的进行。 预定位方法一般可归纳为两大类,即经典法,如电桥法等;现代法,如低压脉冲法、高压闪络法等。精确定点是预定位距离的基础上,精确地确定故障点所在实际位置。精确定点方法主要有声测定点法、感应定点法、时差定点法以及同步定点法等。 电缆故障的传统检测方法电缆敷设为机电安装施工中经济价值最大的分项施工,同时也是保证设备正常运行重要设施,在实际施工及维护运行过程中,往往因敷设方式设计不合理、施工人员操作不当、虫鼠等小动物的破坏等各种因数的影响,造成电缆的损坏而引起故障。在大量的工程实践中我们发现电缆故障为高阻电流泄露故障(电阻值大于等于1),其原因往往为因绝缘层破坏而造成的。低电阻故障一般为相间或对地短路经常出现在电缆分歧头位置,是由于施工时绝缘手段未充分引起的,但出现的几率很小,主要是预防为主,在施工阶段就严把质量关减少事故的出现。 电缆故障可能出现在配电线路施工、调试、维护等任何阶段,施工、除了少量的电缆故障出现在施工、调试阶段外,更多的电缆故障出现在维护运行期间,这类故障一般随着整个配线系统的老化而逐渐显现,造成设备频频跳闸给用户带来困扰。因此使用单位必须熟练的掌握电缆检测方法。 在电缆故障检测过程中因采用高压或低压手段分为高压检测或低压检测两类,其中高压检测使用于低阻、断路、高阻等各种情况的电缆故障,低压检测方式只适用于低阻、断路情况,因此实际检测中多采用高压检测方法。

一起220kVGIS闪络故障分析及建议

第38卷第3期电力系统保护与控制Vol.38 No.3 2010年2月1日Power System Protection and Control Feb.1, 2010 一起220 kV GIS 闪络故障分析及建议 杜晓平1,李 涛1,陈瑞林2 (1.山东临沂供电公司,山东 临沂276003; 2.山东临清供电公司, 山东 临清252000) 摘要:针对临沂供电公司的一起GIS组合电器事故,运用常规与非常规化学、电气试验手段,对GIS SF6 CT气室中闪络故障前后气体成份及CT气室内的材料进行排查试验,分析了事故原因,指出事故是由内置式CT气室内的丁腈橡胶板中的腐蚀性硫与气室内触头等镀银件反应形成硫化银,最终形成导电通道,引起CT气室闪络击穿。对此类典型故障进行了详细的分析总结,具有典型的指导意义。 关键词: 组合电器; 六氟化硫; 组分分析; 闪络击穿 Analysis and suggestions for flashover fault of 220 kV gas insulated switchgear DU Xiao-ping 1,LI Tao 1,CHEN Rui-lin 2 (1. Linyi Power Supply Company, Linyi 276003, China; 2. Linqing Power Supply Company, Linqing 252000, China)Abstract: Recently,the gas insulated swithgear(GIS) flashover faults happened in Linqing Power Supply Company.By chemical and electrical experiments, thorough inspections are carried out on the gas components and chemical materials in the GIS SF6 CT air chamber before and after flashover faults.It is testified that butyronitrile rubber plate existed in CT air chamber with frequent flashover faults,the caustic sulphur in the plate reacted with silver-gilt items and produced silver sulphide,which was the cause of flashover in CT chamber.This paper makes particular description and detailed summary to this kind of faults.It has important instruction meaning to make an accurate judgement rapidly and handle faults in time when we meet this kind of GIS faults. Key words: GIS; SF6; proximate analysis; flashover 中图分类号: TM56 文献标识码:B 文章编号: 1674-3415(2010)03-0128-02 0 引言 GIS组合电器以其结构紧凑、绝缘性能良好、维护量小等优点,在近年城市电网建设中被广泛采用。但GIS组合电器发生事故时处理难度较大,恢复供电慢[1],事故处理费用高,为GIS组合电器的使用带来了隐患。临沂电网2007年间投产的平顶山高压开关厂生产的LW105—252W型GIS设备,于2008年7月间1个间隔的CT气室出现闪络击穿故障,母差保护动作。事故的过程、现场调查结果、事故原因分析值得重视和借鉴。 1 设备试验及投运情况 1.1故障前试验情况 2007年,220 kV甲变电站(简称甲站)由电建公司完成了全部电压等级GIS组合电器的安装工作,电建试验所对组合电器的SF6气体压力、微水量、泄漏量、密度控制器检测合格,电气单元设备试验合格,老练试验、耐压试验执行220 kV的电器设备标准,其中耐压试验使用电压为395 kV,时间为1 min,各项试验全部通过。甲站2007年3月投运。 2008年3月11日(春检),故障间隔所有气室微水试验数据合格且压力无异常变化。 1.2故障后试验情况 故障后,经检查各气室SF6气体压力正常,录波仪记录事故前运行电流80~140 A,故障电流10~13 kA,对检出SO2、H2S气体的CT气室解体后发现CT气室内有大量白色粉末物,靠断路器侧绝缘盆子上附着大量黑色粉末物,电连接变黑,电连接基座有少量金属灼伤痕迹。 (1)SF6微水测试 故障气室微水严重超标,达800 ppm 。 (2)SF6气体SO2、H2S检测 故障后对故障间隔用SO2、H2S进行定量检测,结果两次故障均在检出SO2、H2S的SF6 CT气室中,解体后找到故障闪络部位。 (3)CT气室气体成分组份分析

低压电缆故障检测方法

低压电缆故障检测方法 This manuscript was revised by the office on December 10, 2020.

低压电缆故障检测方法 高压电缆一般辐射路径较易确定,但高压电缆需要填砂加砖深埋,其故障点查找较低压电缆难度大;低压电缆辐射长度较短,但辐射随意性较大,路径不十分清楚。华意电力对低压电缆故障点测定方法进行了研究总结。 低压电缆故障检测方法: 为解决低压电缆故障问题,华意电力科研人员研发生产出了以“冲闪法”为原理的电缆故障测试仪。 第一步先用测距仪测距离。其实,先要判断电缆故障是高阻还是低阻或者是接地,根据这个条件采用不同的测试方法。如果是接地故障,就直接用测距仪的低压脉冲法来测量距离;如果是高阻故障就要采用高压冲击放电的方法来测距离,用高压冲击放电的方法测距离时又要许多的辅助设备:如高压脉冲电容、放电球、限流电阻、电感线圈以及信号取样器等等,操作起来既麻烦又不安全,具有一定的危险性,更为烦琐的是还要分析采样波形,对测试者的知识要求比较高。 第二步是查找路径(如果路径清楚这一步可以省掉)。在查找路径时,要给电缆加一信号(路径信号发生器),再用接收机接收这个信号,沿着有信号的路径走一遍,就确定了电缆的路径。但是,这个路径的范围大致要在1-2米之间,不是特别准确。 第三步是根据测出的距离来精确定位。其依据是打火放电产生的声音,当从定点仪的耳机听到声音最大的地方时,也就是找到了故障点的位置。但是,由于是听声音,所以,受环境噪音的影响,找起来相当费时间,有时要等到晚上才可以。当遇到交联电缆时,就更费时间了,因为,交联电缆一般都是内部放电,声音非常小,几乎听不到,最后只有丈量了。 因此上说,用这种方法可以解决大部分的以油侵纸作绝缘材料的电力电缆故障,对于近几年出现的以交联材料和聚乙烯材料作绝缘材料的电缆故障,测试效果不是太理想,原因是打火放电所产生的声音往往很小(电缆外皮没有损伤,只是电缆内部放电),遇到这种情况时,就只有用其它方法来解决了。

电力电缆故障分析

电力电缆故障分析 随着我国经济建设的飞速发展,在各行各业中大量使用电力能源,而电力电缆又是电力输送的主要工具之一。作为电力企业电缆故障会直接威胁到发、变电及电网系统的安全运行,造成巨大的经济损失、严重威胁人民的生命安全。当电缆发生故障后,如何准确快速地查找故障点,修复故障,尽快恢复供电,是长期困扰我们的一项难题。本人根据多年的工作经验,罗列了一些主要的故障类型,浅析了故障原因,介绍常用的故障点的查找方法并在此基础上提出一些故障的防范措施。 了解电缆故障的原因,对于减少电缆的损坏,快速地判定出故障点是十分重要的。电缆故障的原因大致可归纳为以下几类:了解电缆故障原因,有利于尽快地找到故障点。 要注意电缆敷设、维护资料的整理与保存。 主要故障原因: 机械损伤(外力破坏):占58% 附件制造质量的原因:占27%。 敷设施工质量的原因:占12%。 电缆本体的原因:占3%。 一、电缆故障的类型 无论是高压电缆还是低压电缆,在施工安装、运行过程中经常因短路、过负荷运行、绝缘老化或外力作用等原因造成故障。电缆故障可概括为接地、短路、断线三类,其故障类型主要有以下几方面:

1.电缆相芯接地; 2.芯线间短路; 3.芯线或多相断线。 对于直接短路或断线故障用万用表可直接测量判断,对于非直接短 路和接地故障,用兆欧表摇测芯线间绝缘电阻或芯线对地绝缘电阻,根据其阻值可判定故障类型。 二、电缆故障的原因 1.机械损伤 机械损伤是引起电缆故障最重要的原因。虽然有些机械损伤很轻微,当时并没有造成故障,但是在一段时间内就有可能随着损伤的加重而发展成故障。造成电缆机械损伤的主要原因有: (1)电缆与外部物体造成的擦伤;如:与地面、电缆管口、桥架的磨插。 (2)机械敷设时由于牵引力过大而引起的绝缘拉伤; (3)电缆过度弯曲而导致的损伤。 2.绝缘受潮 造成电缆受潮的主要原因有:

电力电缆故障诊断

https://www.360docs.net/doc/c318502069.html, 电力电缆故障诊断 背景及意义 电力电线可以分为电缆线路和架空线路。一般来说,电缆线路比架空线路成本要高。但是,电缆具有传送同等功率损耗少、受外界环境影响小、安全可靠、占地少、优化 线路、改造及美化环境等优点,因此被广泛使用于城镇市区、发电厂、变电站及地下、海底、隧道等复杂环境。特别在城市配电网中,电缆正在逐步取代架空线⑷,成为城 市电网的主力军。 随着电缆广泛使用,面临的电力电统故障诊断的难题也愈加严峻。首先,电缆主要 敷设于隧道、地底甚至海底等环境,敷设的环境复杂隐蔽,导致电缆故障点的查找、 修复较架空线更为困难。其次,我国首批城市电缆大致在九十年代开始使用,逾多年,不少的电缆线路开始进入老年期。部分电缆线路由于投入时间较早,巳经出现绝缘老 化故障。参照故障发展的一般规律,电缆故障出现的概率应该符合洛盆曲线,即在整 个使用寿命的初期和晚期的故障率较高,在中期的故障率较低。可以预见随着电缆使 用年限的进一步增加,我国的电缆线路故障会迈入频发期。众所周知,电缆故障造成 的突发性停电事件会给用户的生命、财产安全带来严重的威胁,甚至会造成恶劣的社 会影响。避免电缆故障带来的损失是众望所归。因此,做好电力电缆故障预警及故障 快速、准确定位时科技界必须担当的职责,客观形式给我国电力科技人员提出了更高 的要求。第二届全国电气设备状态盟测与故障诊断研讨会指出电缆故障诊断的发展趋 势是从电缆现有的“预防性维修转为“预知性维修”,从”到期必修’’和故障维修”转为该修则修,即通过对电缆绝缘在线监控,在提前预知电缆故障隐患的前提下,实 现对故障的及时、准确定位。综上所述,研究基于电缆绝缘在线监控的预警方法,提 前发现电缆故障隐患可以减少停电事故,降低因停电而产生的经济损失,甚至是政治 影响、生命代价。 研究并探寻提高电缆故障定位的精度的方法有着重要的学术意义和实际应用价值。 这一难题的研究攻克在微电子技术,传感器技术、计算机及控制技术高度发展的今天 已经有好的物质基础,一旦突破将有着良好的应用前景。 电缆故障原因及类型 电缆故障的原因众多,电缆故障的形式也千差万别。为了方便进行电缆故障诊断的 研究,需要对电缆故障原因与类型进行合理的分类。按照故障原因的分类,可将故障 分为如下几类如地层变动挤压、人为等外力因素引起的机械损伤,绝缘老化,绝缘受湖,过电压,过热,设计不良和产品质量缺陷。其中,绝大部分故障初期并不会对电

电缆故障排除原理

摘要:本文主要针对电力电缆的常见故障,从结构设计,人为因素,运行环境等方面进行分析,总结了电力电缆故障原因。并介绍了常用的电力电缆故障查找方法的原理、优缺点及适用范围,针对不同的电力电缆故障采用不同的方法以便快速、准确、方便查找故障,本文结合工作实际,以实际的电力电缆故障来说明各个各个电缆故障查找方法的适用性,具有一定的参考价值。 0 引言 电力电缆作为电力系统的重要组成部份,它的安全运行具有重要意义。一旦发生故障后,如何在最短时间内快速找出故障点一直电缆行业十分注重的研究课题。本文总结了多年来从事电缆运行维护的经验,对电缆故障原因进行了分析,重点介绍几种常用探测方法,并对各方法的优缺点和适用范围进行比较,以实际的例子进行分析,具有一定的参考意义。 1 电缆故障分类 电缆故障可概括为接地、短路、断线三类;如以故障点绝缘特征分类又可分 :1) 开路故障:电缆线芯连续性受到破坏,形成断线。 2 ) 低阻故障:绝缘电阻一般在几百欧姆以下。 3) 高阻故障:用兆欧表测量电缆绝缘电阻低于正常值但高于几百欧姆的故障。 2 形成电缆故障的原因分析 致使电缆发生故障的原因是多方面的,包括电缆运行环境,人为因素,施工质量等,现将常见的几种主要原因归纳如下。 2 .1 外力破坏 09年厦门电力电缆运行情况分析:10 kV电缆故障56次,其中外破28起,占50%。近几年来由于城市建设工程项目遍及各个角落,因施工单位在不明地下管线情况下进行地下管线施工或有些素质不高施工队的野蛮施工,是造成电缆受外力破坏的主要原因。

2 .2 电缆安装、产品质量不合格 09年厦门10kV电缆附件及电缆施工工艺不良造成电缆故障6起,占11%。由于附件施工人员对中间接头制作安装的操作细节不够重视或现场安装工艺条件较差等原因,导致中间接头的制作出现工艺和操作缺陷,对电缆的正常运行带来安全隐患。还有就是电缆附件产品存在质量问题;因此应加强对附件安装人员工艺培训和对电缆附件产品质量的入网把关显得尤为重要。 2 . 3 机械损伤 施工队伍在电缆敷设过程中未按要求和施工规范进行,用力不当或牵引力过大,使用的敷设工具不当或野蛮施工等原因造成电缆的机械损伤,有些机械损伤很轻微,当时并未造成故障,要在数月甚至数年后故障才会暴露出来。这类故障一般表现在 0.4 k V 电缆居多。 2 .4 电缆本体故障 电缆本体故障主要有电缆制造工艺和绝缘老化两种原因。制造工艺造成的故障现在比较少了,因国内中压电缆的制造已经达到国际先进水平了。而电缆的老化现象问题还是存在的,造成电缆提前老化的原因有: 1 、电缆在长期高温或高电压作用下容易产生局部放电,引起绝缘老化而出现故障; 2 、塑料绝缘电缆因长期浸泡在水中或水分侵入,使绝缘纤维产出水解,在电场集中处形成“ 水树枝” 现象,造成绝缘击穿等现象。 3 电缆故障检测方法及实例分析 电力电缆故障查找一般按故障性质诊断、故障测距、故障定点三个步骤进行。故障性质诊断过程是对故障电缆情况做初步了解及分析,然后用兆欧表及万用表进行故障性质判别,根据不同故障性质选择不同方法进行粗测,然后再依据粗测的结果进行精确定位。电缆故障检测的方法有许多,这些方法的适应对象及检测结果也各有不同,以下将介绍电缆故障测距电桥法、低压脉冲法、冲击高压闪络法的工作原理,并以实际的例子说明方法的适用情况,并对各种方法的优缺点进行比较。

电缆闪络性高阻故障的查找实例

电缆闪络性高阻故障的查找 唐文波 2006年10月,接到电仪部调度命令,为二期总变至码头变电所一条新敷设的6kV电缆线路进行直流高压试验。我们首先详细地了解了电缆的情况,总变至码头电缆全长约2600m,为交联聚乙烯电缆,型号为ZRA-YJV-6/10-3*95。中间有一处接头,在试验前的绝缘测试中,用2500V绝缘摇表检查发现C相绝缘电阻与其他两项差距较大,A相与B为∞,C相为120MΩ,为了进一步确定问题,又采用5kV电压测量C相绝缘,发现出现绝缘电阻值波动现象,根据以上现象可判断此电缆出现闪络性高阻绝缘故障。 为了及时通电,必须立即进行故障点的查找。首先施工单位把电缆中间头打开。经分段测试绝缘电阻,判断故障段为总变馈出柜至1100m处,为了快速准确找出故障点,我们使用了先进的HT-TC2002型电缆故障测试仪。 测试过程如下: 一、用直流高压闪络测试法,进行故障点距离的粗测 测试原理:在直流高压的作用下,使高阻故障点发生闪络放电,形成瞬间短路电弧,从而产生来回反射波。故障点到测试端的距离为L= 1/2 vT (v--电波在电缆中的传波速度)。测试线路如图1所示。首先对电缆C相进行测试: 1.打开笔记本电脑,进入测试系统主界面,选择脉冲法。

2. 打开前端电源、按“复位”(前端与计算机连接同脉冲法)。 3. 选工作方式与参数: 由主界面菜单栏“测试方式”中选“冲闪”出现该方式对话框,选择频率为25MH 、介质选择为“聚氯乙烯电缆” 4.按图1接线,并检查无误后,接通电源,缓慢升压,当电压升至约8kV 时,听到有规律的"嗒、嗒、嗒"的放电声,毫安表指针有规律地摆动。 图1 5.此时按下采集按钮,出现图2的冲闪波形,t 1为故障点闪络放电后 形成的一次反射波,t 2为二次反射波,t 3为三次反射波,依次循环。 则故障点的距离L=v(t 2-t 1)/2=v(t 3-t 2)/2=v(t 4-t 3)/2=…。按"采样/ 保持"键,使仪器处于"保持状态",降压、断开调压器电源、放电。⑤通过波形处理,游标定位起始端点,游标移动设定游标于T2两端, 则计算出故障点为640m 。

电力电缆故障原因及其普通地检测方法(超全讲解)

电力电缆故障原因及常用的检测方法(超全讲解)盲目的进行电缆故障查找工作往往费时费力而且无法准确的进行故障定点判断,这不是因为电缆故障种类的复杂造成,而是因为电缆周边环境所造成的。 1、电力电缆基础理论 我们目前采用的电缆故障查找方法离不开:故障诊断、粗测定点与精确定点三个步骤。但是往往在实际测试中能够确定故障类型,做到粗测定点,但是却无法真正精确定点进行开挖。这种原因的形成是因为客观存在的我们听得到的因素(公路或施工处振动噪声过大等原因)和看不到的因素(电缆走向、电缆埋设深度过深、故障点在积水中、电缆施工时余留不规范等原因)所造成的。因此在电缆故障查找前通过电缆施工、运行管理人员明确电缆长度、电缆走向、周边特殊情况、中间头位置、周边是否存在施工等要因是电缆故障查找前不可或缺的准备工作。 2、电缆故障原因及测量仪器 了解电缆故障的原因,对于减少电缆的损坏,快速地判定出故障点是十分重要的。

注:(HZ-TC电缆故障测试仪) 电缆故障测试仪是我公司根据用户要求,从现场使用考虑,精心设计和制造的全新一代便携式电缆故障测试仪器。它秉承我们一贯高科技、高精度、高质量的宗旨,将电缆测试水平提高到一个新境界。 电缆故障测试仪(闪测仪)可用于检测各种电缆的低阻、高阻、短路、开路、泄漏性故障以及闪络性故障,可准确的检测地下电缆的故障点位置、电缆长度和电缆的埋设路径。具有测试准确、智能化程度高、适应面广、性能稳定以及轻巧便携等特点。仪器采用汉字系统,高清晰度显示,界面友好。 电缆寻迹及故障定点是由路径仪、定点仪、T型探头、A字架、听筒等组成。本仪器是电缆故障定位测试的专用仪表,适用测试对象为具有金属导体(线对、护层、屏蔽层)的各种电缆。其主要功能为对地绝缘不良点的定位测试,线缆路径的探测以及线缆埋深的测试。

相关文档
最新文档