TEG大功率半导体器件主要参数介绍

TEG大功率半导体器件主要参数介绍
TEG大功率半导体器件主要参数介绍

邮编:412001

TEL : ( 0733) 8498396 URL : TEG 大功率半导体器件主要参数介绍

正向平均电流I F(AV)( 整流管) 通态平均电流I T(AV)( 晶闸管)

是指在规定的管壳温度 T C 时,流过正弦半波电流的平均值。如无其它说明,TEG 提供的是整流管T C = 100

o

C 、晶闸管T C = 70 o C 时的平均电流值。TEG 备有各种

器件平均电流与壳温关系的活页资料,欢迎索取。 图2-1表示晶闸管、整流管的工作区。

正向方均根电流I F (RMS )( 整流管) 通态方均根电流I T (RMS )( 晶闸管)

是指在规定的管壳温度 T C 时,流过电流的有效值。这是考虑到器件内部可能出现的电气和机械应力时规定的有效电流最大值,即使安装最有效的散热器,亦不应使I F(RMS)/I T(RMS)超过规定值。

浪涌电流I FSM (整流管)和I TSM (晶闸管)

样本中给出正弦半波10ms 不重复浪涌电流值。在确定极限值时,要将许多器件测试到损坏,然后选出一个

浪涌电流值,使器件在承受该浪涌试验时还有足够的裕

度。 试验时采用样本规定的最高允许结温为初始温度,在正向浪涌电流后,紧接着在后半周施加80% V RRM 。如果保护措施能确保浪涌电流后无反压,则允许浪涌电流超过15%

图2-2是表示浪涌电流、过载电流和重复峰值电流关系的示意图。

图2-1伏安特性

V R

I R

I (Bo) I H

I F I D

V D

V (BO) 反向

断态

通态

图2-2 浪涌电流、过载电流 和重复峰值电流关系的示意图

I T

I TSM /I FSM

I R

I FRM /I TRM

I T(OV)/I F(OV)

0 t

邮编:412001

TEL : ( 0733) 8498396 URL : 熔断器配合I 2t

样本中给出熔断时间为10ms 时的I 2t 数据。TEG 与国内许多熔断器制造厂家保持有密切的联系,能推荐用于保护半导体器件所需的熔断器或熔断器组件。

反向重复峰值电压V RRM

断态重复峰值电压V DRM (晶闸管 )

是指反向(整流管或晶闸管)和断态(晶闸管)所能承受的最大重复电压。试验时分别在常温和最高允许结温下进行,增加电压使反向或断态(晶闸管) 峰值电流达到样本规定的最大值为止,确定出反向或断态(晶闸管)重复峰值电压。

图2-3是按断态和反向峰值电流进行电压分等的示意图。

反向不重复峰值电压V RSM 断态不重复峰值电压(晶闸管)V DSM

这是指用单脉冲t = 5ms 测出的参数,TEG 晶闸管及整流管不重复峰值电压与重复峰值电压之间的差值为100V

图2-4是表示不重复峰值电压、重复峰值电压及工作电压之间关系的示意图。

正向峰值电压V FM (整流管) 通态峰值电压V TM (晶闸管)

是指通过规定正向峰值电流I FM (整流管)或通态峰值电流I TM (晶闸管)时的峰值电压。所有整流管的正向峰值电压或晶闸管的通态峰值电压都是通过试验得出的。如果用户提出要求,我们也可提供门槛电压V T0和斜率电阻r T ,通过门槛电压V T0和斜率电阻r T 可以推算出任何电流时的峰值电压降。 对一种器件而言, 正向或通态峰值

I FM /TM

r T

图5正向(整)和通态(晶)伏安特性

V FM /V TM V o

图2-3按断态和反向峰值电流进行电压分等的示意

断态和反向 电流限制

试验电压

+T JMAX

+25℃

V DM /V RM I DM /I RM

图2-4阳-阴电压特性

V DSM V D t

V R V DWM

V DRM V RSM

V RWM V RRM

邮编:412001

TEL : ( 0733) 8498396 URL : 电压是进行器件电流分等级的重要依据。

图2-5是正向(整流管)和通态(晶闸管)伏-安特性。

结壳热阻R jc

样本中给出双面冷却直流热阻值。试验时通主电流100 秒后,在主电流断开后几毫秒内通以一个幅值较小的热敏电流,测得热敏电压,并记下管壳台面温度。然后,在恒温的加热夹具上校出该热敏电压所对应的结温。从结温、壳温和加热功率可以计算出结壳热阻R jc 。 图2-6是表明双面冷却热阻分布的示意图。

关断时间t q (晶闸管)

普通晶闸管只给出典型值,快速晶闸管给出严格值。 由于关断时间t q 强烈地依赖于测试条件,因此,给用户提供的数据中,通常也包括测试条件:

l 通态峰值电流; l 通态电流衰减率; l 重加电压上升率; l 反向电压; l 结温等。

图2-7是电路换向关断时间、反向恢复电荷测量波形。

反向恢复电荷Q r

本所的快速整流管附有反向恢复电荷Q r 的数据;普通整流管和普通晶闸管的反向恢复电荷数据仅在订货时事先约定后才提供。与关断时间相似,反向恢复电荷数据也与测试条件有密切的关系,因此,在提供反向恢复电荷数据时,通常也附上测试条件。本所备有各种测试条件对反向恢复电荷Q r 影响关系的活页资料,欢迎索取。 通态电流临界上升率di /dt (晶闸管)

图2-6双面冷却热阻分布示意图

图2-7电路换向关断时间、反向恢复电荷测量波形

邮编:412001

TEL : ( 0733) 8498396 URL : 是指从阻断状态转换到导通状态时,晶闸管所能承受的通态电流上升率最大值。试验时所采用的条件为: l I T = 2 × I T (AV ); l V D = 0.67 V DRM ; l f = 50 H Z ; l t = 5 s ; l I FGM = 1.0 A l t R = 0.5 μs; l t P = 50 μs.

特别强调指出,di /dt 耐量与门极电路条件有密切的关系,使用时请参阅所推荐的门极负载线,并确保门极脉冲前沿的陡度。

图2-8是通态电流临界上升率测量示意图。

断态电压临界上升率dv /dt

样本中所列的dv /dt 值,是重加电压线性上升到V D =0.67V DRM 时的数据。样本所列的数值对大部分用户是足够了。如有更高要求时,应在订货时事先商定。 图2-9是断态电压临界上升率测量波形示意图。

并联运行

并联运行的器件应认真加以挑选,使正向峰值电压(整流管)或通态峰值电压(晶闸管)能 有良好的匹配。如果用户在订购时没有提出特别的匹配要求,则定购作并联运行的器件将在样本规定的试验电流下允差250 mV 范围内提供。

图2-8通态电流临界上升率测量示意图

i I TM

0.5I TM

d i/dt=0.5I TM /t 1

t

t 1

图2-9断态电压临界上升率测量波形

0.9V DM

0.1V DM

t

V DM -阳极峰值电压

V D t 2

t 1

邮编:412001

TEL : ( 0733) 8498396 URL : 串联运行

串联运行的器件也应认真加以挑选。使反向恢复电荷有良好的匹配。如果用户在订购时没有提出特别的匹配要求,则订购作串联运行的器件将在样本规定的试验条件下允差200 μC 范围内提供。

串并联运行

串并联运行时的选配是既重要又繁琐的工作,我们将与每一位用户商定切实可行的选配方案。

特性曲线

为了将硅机组设计得更加合理、更为经济,建议设计工程师能充分利用本所提供的特性曲线。这些特性曲线已成活页资料,欢迎选用。

下面以KP A 1400-28晶闸管为例介绍一组特性曲线。

正向伏-安曲线(整流管) 通态伏-安曲线(晶闸管)

伏-安曲线给出不同峰值电流时的正向峰值电压(整流管)或通态峰值电压(晶闸管)的上限值。利用伏-安曲线可以进行不同电流,包括不同电流工况下的功耗计算。当然,获得功耗数据更方便的途径是直接从功耗曲线中查出。

正向最大平均功耗(整流管) 通态最大平均功耗(晶闸管)

功耗曲线给出了不同平均电流时的正向(整流管)平均功耗和通态(晶闸管)平均功耗的上限值。 考虑到实际应用中,晶闸管常用作开关,因此功耗

邮编:412001

TEL : ( 0733) 8498396 URL : 曲线的参变量取导通角;而整流管常用于单相、三相、六相整流,功耗曲线的参变量取单相、三相、六相。

瞬态热阻抗曲线

给出双面冷却直流瞬态热阻抗曲线。如果是用于单面冷却,则可近似地将相应数值×2.0 。

最大许用壳温与平均电流的关系曲线

从最大许用结温、功耗、热阻可以计算出最大许用壳温:

T cmax = T jmax - PR thJC

其中 T cmax —最大许用结温(o C ); T jmax —最大许用壳温(o

C )

; P — 该电流下最大平均功耗(o

C ); R thjc — 结壳热阻(o C/W )

; 实际应用时,总是带散热的,也可以通过与上述一样的计算作出最大环境温度与平均电流的关系,只要将上式中的R thjc 用R thja 代替: R thj-a = R thj-c + R thc-s + R ths-a 式中 R thj-a — 结到环境的热阻(o C );

R thj-c — 结壳热阻(o C );

R thc-s — 壳到散热器热阻(o

C/W ); R ths-a — 散热器到环境热阻(o C/W )。

浪涌电流与周波数的关系

不同周波数n 所对应的浪涌电流数是不一样的,在器件使用过程中必须根据一定的应用条件来确定器件所能承受的浪涌电流数和周波数。

邮编:412001

TEL : ( 0733) 8498396 URL : 浪涌电流与脉冲时间的关系

不同脉冲时间t 所对应的浪涌电流也是不一样的,浪涌脉冲越宽,器件所能承受的浪涌电流越小上式中I TSM (t )为脉冲时间t 所对应的浪涌电流值, I TSM (10)为10ms 的波浪涌电流值, t 为脉冲时间。

I 2t 曲线

不同时间 t 所对应的I 2t 也可通过下式计算得出: I 2

t (t ) = I 2

t (10)× t /10

上式式中I 2t (10)为10ms 正弦半波I 2t 值,t 为正弦宽度。

由于浪涌电流与周波数的关系、浪涌电流与脉冲时间的关系、I 2t 曲线等都有很清楚的函数关系,因此,有时我们不一定提供这三条曲线。

门极触发特性曲线

从所提供的门极触发特性曲线中,装置设计工程师对门极回路的设计要求已一目了然。这里要强调指出: 门极串联回路的阻抗应保证:

● I G ≥ 2 × I GT (I GT 为样本提供的上限值) ● 门极电流上升率≤1μs;

● 门极脉冲宽度≥10μs; ● 门极源电压≥20V 。

当门极电流值低于2 × I GT 时,会引起晶闸管开通延迟时间的增长,会影响到电路同步触发;但是,过分大的门极电流值(例如>5A )对器件的运行也是不利的,过分大的门极电流所产生的附加热量会损害放大门极结构。

门极电流上升率超过1μs 时,也会增加延迟时间,效果就等于降低了门极触发电流。

门极电流的脉冲时间应长到足以使晶闸管擎住,如

邮编:412001

TEL : ( 0733) 8498396 URL : 果脉冲时间过短,则晶闸管又会试图回到阻断状态。在许多应用中,这种运行状态将导致在门极附近的阴极区由于转折电压开通而损坏。

门极触发电源电压低于20V 时,可能会导致器件高di /dt 损坏特别是当晶闸管的阻断电压很高时,在开通过程中门-阴间横向电阻所产生的电压可能会超过门极电压,严重时,甚至会使门极电流倒流。这种负的门极电流会引起开通损耗增加或器件因di /dt 损坏。

电流互感器的基本参数(精)

正确地选择和配置电流互感器型号、参数, 将继电保护、自动装置和测量仪表等接入合适地次级,严格按技术规程与保护原理连接电流互感器二次回路,对继电保护等设备的正常运行, 确保电网安全意义重大。 1. 一次参数电流互感器的一次参 数主要有一次额定电压与一次额定电流。一次额定电压的选择主要是满足相应电网电压的要求,其绝缘水平能够承受电网电压长期运行, 并承受可能出现的雷电过 电压、操作过电压及异常运行方式下的电压, 如小接地电流方式下的单相接地(电 压上升倍。一次额定额定电流的考虑较为复杂,一般应满足以下要求:1 应大于所 在回路可能出现的最大负荷电流, 并考虑适当的负荷增长, 当最大负荷无法确定时, 可以取与断路器、隔离开关等设备的额定电流一致。 2 应能满足短时热稳定、动稳定电流的要求。一般情况下,电流互感器的一次额定电流越大,所能承受的短时热稳定和动稳定电流值也越大。 3 由于电流互感器的二次额定电流一般为标准的 5A 与 1A ,电流互感器的变比基本有一次电流额定电流的大小决定,所以在选择一次电流额定电流时要核算正常运行测量仪表要运行在误差最小范围,继电保护用次级又要满足 10%误差要求。 4 考虑到母差保护等使用电流互感器的需要,由同一母线引 出的各回路,电流互感器的变比尽量一致。 5 选取的电流互感器一次额定电流值应与国家标准 GBl208-1997推荐的一次电流标准值相一致。 2. 二次额定电流在 GB1208— 1997 中,规定标准的电流互感器二次电流为 1A 和 5A 。变电所电流互 感器的二次额定电流采用 5A 还是 1A ,主要决定于经济技术比较。在相同一次额定电流、相同额定输出容量的情况下,电流互感器二次电流采用 5A 时,其体积小,价格便宜,但电缆及接入同样阻抗的二次设备时,二次负载将是 1A 额定电流时的 25 倍。所以一般在 220kV 及以下电压等级变电所中, 220kV 回路数不多, 而 10~110kV 回路数较多,电缆长度较短时,电流互感器二次额定电流采用 5A 的。在 330kV 及以上电压等级变电所, 220kV 及以上回路数较多, 电流回路电缆较长时,电流互感器二次额定电流采用 1A 的。为了既满足测量、计量在正常使用的精度 及读数,又能满足故障大电流下继电保护装置的精工电流及电流互感器 10%误 差曲线要求, 二个回路常采用不同次级、不同变比。也可用中间抽头来选择不同变比。电流互感器的变比也是一个重要参数。当一次额定电流与二次额定电流确定后, 其变比即确定。电流互感器的额定变比等于一次额定电流比二次额定电流。 3.

晶闸管的主要参数

晶闸管的主要参数 (1) 断态不重复峰值电压U DSM 门极开路时,施加于晶闸管的阳极电压上升到正向伏安特性曲线急剧转折处所对应的电压值UDSM 。 它是一个不能重复,且每次持续时间不大于10ms的断态最大脉冲电压。 UDSM 值应小于转折电压U b0 。 (2) 断态重复峰值电压U DRM 晶闸管在门极开路而结温为额定值时,允许重复加于晶闸管上的正向断态最大脉冲电压。 每秒50次每次持续时间不大于10ms, 规定U DRM 为U DSM 的90%。 (3) 反向不重复峰值电压U RSM 门极开路,晶闸管承受反向电压时,对应于反向伏安特性曲线急剧转折处的反向 峰值电压值U RSM 。 它是一个不能重复施加且持续时间不大于10ms的反向脉冲电压。反向不重复峰 值电压U RSM 应小于反向击穿电压。 (4) 反向重复峰值电压U RRM 晶闸管在门极开路而结温为额定值时,允许重复加于晶闸管上的反向最大脉冲电压。 每秒50次每次持续时间不大于10ms。 规定U RRM 为U RSM 的90%。 (5) 额定电压UR 断态重复峰值电压UDRM和反向重复峰值电压URRM两者中较小的一个电压值规定为额定电压U R 。 在选用晶闸管时,应该使其额定电压为正常工作电压峰值U M 的2~3倍,以作为安全裕量。 (6)通态峰值电压U TM 规定为额定电流时的管子导通的管压降峰值。 一般为~,且随阳极电流的增加而略为增加。 额定电流时的通态平均电压降一般为1V左右。 (7) 通态平均电流I T (AV) 在环境温度为+40℃和规定的散热冷却条件下,晶闸管在导通角不小于170°电阻性负载的单相、工频正弦半波导电,结温稳定在额定值125°时,所允许通过的最大电流平均值。 ——允许流过的最大工频正弦半波电流的平均值。 选用一个晶闸管时,要根据所通过的具体电流波形来计算出容许使用的电流有效值,该值要小于晶闸管额定电流对应的有效值。晶闸管才不会损坏。 设单相工频正弦半波电流峰值为Im时通态平均电流为: 正弦半波电流有效值为: 有效值与通态平均电流比值为: 则有效值为: 根据有效值相等原则来计算晶闸管的额定电流。 若电路中实际流过晶闸管的电流有效值为I,平均值I d ,

半导体器件的材料品质因子

半导体器件的材料品质因子 XieMeng-xian.(电子科大,成都市) 为了使半导体器件的性能达到较好的水平,除了在器件结构设计和工艺制作技术上加以优化以外,在半导体材料的合理选取上也需要加以考虑。究竟什么样的半导体材料最适合某种器件使用呢?这就需要根据器件的某些参数之间的制约关系来确立一种评价的标准,这种标准也就是不同器件的材料品质因子。 (1)Johnson 因子: Johnson因子是高频大功率BJT的材料品质因子,即是表征半导体材料对于高频大功率BJT适应能力的一个参量。 因为晶体管在高电压和大电流条件下工作时,将会产生势垒展宽、放大系 数下降和Kirk效应(基区展宽效应)等许多现象,并导致晶体管的最高工作频率下降,所以晶体管的最大输出功率与特征频率之间存在着一定的制约关系。一般,从半导体材料的基本特性来看,临界雪崩击穿电场强度Ec越大,载流子饱 和漂移速度vs越高,晶体管的最大功率处理能力就越强,特征频率也相应地越高。因此,可以采用半导体材料的临界雪崩击穿电场强度与载流子饱和漂移速度的乘积,即 来作为评价不同半导材料对制作高频大功率晶体管的适应能力。该乘积F1 就称为为第一材料品质因子,或者 Johnson因子。 实际上,Johnson因子的大小就是限制器件极限性能的一个量度。Johnson 因子的数值越大,则晶体管在高频下阻断电压和处理功率的能力就越强,即能够更好地兼顾高频率和大功率的要求。 根据不同半导体材料的基本特性参数和 Johnson因子的数值,可以见到:① 由于金刚石、氮化镓和碳化硅等宽禁带半导体的临界雪崩击穿电场,要比Si和GaAs的高出一个数量级,而饱和漂移速度的差别不大,因此,宽禁带半导体晶体管在同一特征频率下的电压承受能力要比Si和GaAs晶体管的高得多。②宽 禁带半导体材料的Johnson因子要比Si的大数十倍,所以宽禁带半导体材料将

晶闸管二极管主要参数及其含义

晶闸管二极管主要参数及其含义 IEC标准中用来表征晶闸管二极管性能特点的参数有数十项但用户经常用到的有十项左右本文就晶闸管二极管的主要参数做一简单介绍 1、正向平均电流I F(AV) (整流 管) 通态平均电流I T(AV) (晶闸管) 是指在规定的散热器温度T HS 或管壳温度 T C 时,允许流过器件的最大正弦半 波电流平均值此时器件的结温已达到其最高允许温度T jm 仪元公司产品手册中均 给出了相应通态电流对应的散热器温度T HS 或管壳温度 T C 值用户使用中应根据实 际通态电流和散热条件来选择合适型号的器件 2、正向方均根电流I FRMS (整流管) 通态方均根电流I TRMS (晶闸管) 是指在规定的散热器温度T HS 或管壳温度 T C 时,允许流过器件的最大有效电 流值用户在使用中须保证在任何条件下流过器件的电流有效值不超过对应壳温下的方均根电流值 3、浪涌电流I FSM (整流管)I TSM (晶闸管) 表示工作在异常情况下器件能承受的瞬时最大过载电流值用10ms底宽正弦半波峰值表示仪元公司在产品手册中给出的浪涌电流值是在器件处于最高允许 结温下施加80% V RRM 条件下的测试值器件在寿命期内能承受浪涌电流的次数是有限的用户在使用中应尽量避免出现过载现象

4、断态不重复峰值电压V DSM 反向不重复峰值电压V RSM 指晶闸管或整流二极管处于阻断状态时能承受的最大转折电压一般用单脉冲测试防止器件损坏用户在测试或使用中应禁止给器件施加该电压值以免损坏器件 5、断态重复峰值电压V DRM 反向重复峰值电压V RRM 是指器件处于阻断状态时断态和反向所能承受的最大重复峰值电压一般取器件不重复电压的90%标注高压器件取不重复电压减100V标注用户在使用中须保证在任何情况下均不应让器件承受的实际电压超过其断态和反向重复峰值电压 6、断态重复峰值漏电流I DRM 反向重复峰值漏电流I RRM 为晶闸管在阻断状态下承受断态重复峰值电压V DRM 和反向重复峰值电压V RRM 时流过 元件的正反向峰值漏电流该参数在器件允许工作的最高结温Tjm下测出 7、通态峰值电压V TM (晶闸管) 正向峰值电压V FM (整流管)

电感主要参数介绍

电感主要参数介绍 除固定电感器和部分阻流圈为通用元件(只要规格相同,各种电子整机上均可使用)外,其余的均为电视机、收音机等专用元件。专用元件一般都是一个型号对应一种机型(代用除外),购买及使用时应以元件型号为主要依据,具体参数大都不需考虑,若需了解,可查相应产品手册或有关资料,这里不可能一一示例。下面谈谈固定电感器及阻流圈的主要参数及识别。 1.电感量L 电感量L也称作自感系数,是表示电感元件自感应能力的一种物理量。当通过一个线圈的磁通(即通过某一面积的磁力线数)发生变化时,线圈中便会产生电势,这是电磁感应现象。所产生的电势称感应电势,电势大小正比于磁通变化的速度和线圈匝数。当线圈中通过变化的电流时,线圈产生的磁通也要变化,磁通掠过线圈,线圈两端便产生感应电势,这便是自感应现象。自感电势的方向总是阻止电流变化的,犹如线圈具有惯性,这种电磁惯性的大小就用电感量L来表示。L 的大小与线圈匝数、尺寸和导磁材料均有关,采用硅钢片或铁氧体作线圈铁芯,可以较小的匝数得到较大的电感量。L的基本单位为H(亨),实际用得较多的单位为mH(毫亨)和IxH(微亨),三者的换算关系如下:1μH—103→1mH—103→1H。 2.感抗XL 感抗XL在电感元件参数表上一般查不到,但它与电感量、电感元件的分类品质因数Q等参数密切相关,在分析电路中也经常需要用到,故这里专门作些介绍。前已述及,由于电感线圈的自感电势总是阻止线圈中电流变化,故线圈对交流电有阻力作用,阻力大小就用感抗XL来表示。XL与线圈电感量L和交流电频率f成正比,计算公式为:XL (Ω)=2лf(Hz)L(H)。不难看出,线圈通过低频电流时XL小。通过直流电时XL为零,仅线圈的直流电阻起阻力作用,因电阻:—般很小,所以近似短路。通过高频电流时XL大,若L也大,则近似开路。线圈的此种特性正好与电容相反,所以利用电感元件和电容器就可以组成各种高频、中频和低频滤波器,以及调谐回路、选频回路和阻流圈电路等等。 3.品质因数Q 这是表示电感线圈品质的参数,亦称作Q值或优值。线圈在一定频率的交流电压下工作时,其感抗XL和等效损耗电阻之比即为Q值,表达式如下:Q=2лL/R。由此可见,线圈的感抗越大,损耗电阻越小,其Q值就越高。值得注意的是,损耗电阻在频率f较低时可视作基本上以线圈直流电阻为主;当f较高时,因线圈骨架及浸渍物的介质损耗、铁芯及屏蔽罩损耗、导线高频趋肤效应损耗等影响较明显,R就应包括各种损耗在内的等效损耗电阻,不能仅计直流电阻。 Q的数值大都在几十至几百。Q值越高,电路的损耗越小,效率越高,但Q值提高到一定程度后便会受到种种因素限制,而且许多电路对线圈Q值也没有很高的要求,所以具体决定Q 值应视电路要求而定。 4.直流电阻

常用电感参数(精)

常用电感参数 来源:https://www.360docs.net/doc/c33806716.html, | 时间:2008年11月17日 电感参数 1 电感量L及精度 电感量L表示线圈本身固有特性,与电流大小无关。除专门的电感线圈(色码电感)外,电感量一般不专门标注在线圈上,而以特定的名称标注。线圈电感量的大小,主要决定于线圈的直径、匝数及有无铁芯等。电感线圈的用途不同,所需的电感量也不同。例如,在高频电路中,线圈的电感量一般为0.1uH—100Ho 电感量的精度,即实际电感量与要求电感量间的误差,对它的要求视用途而定。对振荡线圈要求较高,为o.2-o.5%。对耦合线圈和高频扼流圈要求较低,允许10—15%。对于某些要求电感量精度很高的场合,一般只能在绕制后用仪器测试,通过调节靠近边沿的线匝间距离或线圈中的磁芯位置来实现o 2 感抗XL 电感线圈对交流电流阻碍作用的大小称感抗XL,单位是欧姆。它与电感量L和交流电频率f的关系为XL=2πfL 3 品质因素Q 线圈的品质因数 品质因数Q用来表示线圈损耗的大小,高频线圈通常为50—300。对调谐回路线圈的Q值要求较高,用高Q值的线圈与电容组成的谐振电路有更好的谐振特性;用低Q值线圈与电容组成的谐振电路,其谐振特性不明显。对耦合线圈,要求可低一些,对高频扼流圈和低频扼流圈,则无要求。Q 值的大小,影响回路的选择性、效率、滤波特性以及频率的稳定性。一般均希望Q值大,但提高线圈的Q值并不是一件容易的事,因此应根据实际使用场合、对线圈Q值提出适当的要求。 线圈的品质因数为: Q=ωL/R 式中: ω——工作角频; L——线圈的电感量; R——线圈的总损耗电阻线圈的总损耗电阻,它是由直流电阻、高频电阻(由集肤效应和邻近效应引起)介质损耗等所组成。" 为了提高线圈的品质因数Q,可以采用镀银铜线,以减小高频电阻;用多股的绝缘线代替具有同样总裁面的单股线,以减少集肤效应;采用介质损

可控硅参数名词解释

晶闸管参数名词解释 1. 反向重复峰值电压(VRRM):反向阻断晶闸管两端出现的重复最大瞬时值反向电压,包括所有的重复瞬态电压,但不包括所有的不重复瞬态电压。 注:反向重复峰值电压(VRRM)是可重复的,值大于工作峰值电压的最大值电压,如每个周期开关引起的毛疵电压。 2. 反向不重复峰值电压(VRSM):反向阻断晶闸管两端出现的任何不重复最大瞬时值瞬态反向电压。 1)测试目的:在规定条件下,检验晶闸管的反向不重复峰值电压额定值。 2)测试条件:a)结温:25℃和125℃;b)门极断路;c)脉冲电压波形:底宽近似10mS 的正弦半波;d)脉冲重复频率:单次脉冲;e)脉冲次数:按有关产品标准规定;f)测试电压:反向不重复峰值电压 注:反向不重复峰值电压(VRSM)是外部因素偶然引起的,值一般大于重复峰值电压的最大值电压。通常标准规定VRSM =1.11VRRM。应用设计应考虑一切偶然因素引起的过电压都不得超过不重复峰值电压。 3. 通态方均根电流(IT(RMS)):通态电流在一个周期内的方均根值。 4. 通态平均电流(IT(AV)):通态电流在一个周期内的平均值。 5. 浪涌电流(ITSM):一种由于电路异常情况(如故障)引起的,并使结温超过额定结温的不重复性最大通态过载电流。 1)测试目的:在规定条件下,检验晶闸管的通态(不重复)浪涌电流额定值。 2)测试条件:a)浪涌前结温:125℃;b)反半周电压:80%反向重复峰值电压;d)每次浪涌的周波数:一个周波,其导通角应在160度至180度之间 6. 通态电流临界上升率(di/dt):在规定条件下,晶闸管能承受而无有害影响的最大通态电流上升率。 1)测试目的:在规定条件下,检验晶闸管的通态电流临界上升率额定值。 2)测试条件:a)加通态电流前结温:125℃;b)门极触发条件:IGM =3~5IGT;c)开通前断态电压VDM=2/3VDRM ;d)开通后通态电流峰值:2 IT(AV)~3IT(AV);e)t1≥1us;f)重复频率:50HZ;g)通态电流持续时间:5s。 7. I2t值:浪涌电流的平方在其持续时间内的积分值。 1)测试目的:在规定条件下,检验和测量反向阻断三级晶闸管的I2t值 2)测试条件:a)浪涌前结温:125℃;b)浪涌电流波形:正弦半波; 3) I2t测试实质是持续时间小于工频正弦波(1-10ms范围)的一种不重复浪涌电流测试。通过浪涌电流it对其持续时间t积分∫it2dt,即可求得I2t值。 8. 门极平均值耗散功率(PG(AV)):在规定条件下,门极正向所允许的最大平均功率。 1) 测试目的:在规定条件下,检验反向阻断三级晶闸管的门极平均功率额定值 2) 测试条件:a)结温:125℃;b)门极功率:额定门极平均功率;c)测试持续时间:3S;d)主电路条件:阳,阴极间断路。 3)测量程序:a)被测器件加热到规定结温;b)从零缓慢调整电源的输出,使电流表和电压表指示的数字的乘积达到额定门极平均功率PG(AV),并保持3S时间,然后将电源的输出调回零;c)测试后,进行门极触发电流和电压测量,如无异常,则PG(AV)额定值得到确认。 9. 反向重复峰值电流(IRRM):晶闸管加上反向重复峰值电压时的峰值电流。 10. 断态重复峰值电流(IDRM):晶闸管加上断态重复峰值电压时的峰值电流。

贴片电感主要参数详解 电感器规格

贴片电感主要参数详解电感器规格 除固定电感器和部分阻流圈为通用元件(只要规格相同,各种电子整机上均可使用)外,其余的均为电视机、收音机等专用元件。专用元件一般都是一个型号对应一种机型(代用除外),购买及使用时应以元件型号为主要依据,具体参数大都不需考虑,若需了解,可查相应产品手册或有关资料,这里不可能一一示例。下面谈谈固定电感器及阻流圈的主要参数及识别。 1.电感量L 电感量L也称作自感系数,是表示电感元件自感应能力的一种物理量。当通过一个线圈的磁通(即通过某一面积的磁力线数)发生变化时,线圈中便会产生电势,这是电磁感应现象。所产生的电势称感应电势,电势大小正比于磁通变化的速度和线圈匝数。当线圈中通过变化的电流时,线圈产生的磁通也要变化,

磁通掠过线圈,线圈两端便产生感应电势,这便是自感应现象。自感电势的方向总是阻止电流变化的,犹如线圈具有惯性,这种电磁惯性的大小就用电感量L 来表示。L 的大小与线圈匝数、尺寸和导磁材料均有关,采用硅钢片或铁氧体作线圈铁芯,可以较小的匝数得到较大的电感量。L的基本单位为H(亨),实际用得较多的单位为mH(毫亨)和IxH(微亨),三者的换算关系如下:1H=103mH=106 μH。 2.感抗XL 感抗XL在电感元件参数表上一般查不到,但它与电感量、电感元件的分类品质因数Q等参数密切相关,在分析电路中也经常需要用到,故这里专门作些介绍。前已述及,由于电感线圈的自感电势总是阻止线圈中电流变化,故线圈对交流电有阻力作用,阻力大小就用感抗XL来表示。XL与线圈电感量L和交流电频率f成正比,计算公式为:XL (Ω)=2лf(Hz)L(H)。不难看出,线圈通过低频电流时XL小。通过直流电时XL为零,仅线圈的直流电阻起阻力作用,因电阻:—般很小,所以近似短路。通过高频电流时XL大,若L也大,则近似开路。线圈的此种特性正好与电容相反,所以利用电感元件和电容器就可以组成各种高频、中频和低频滤波器,以及调谐回路、选频回路和阻流圈电路等等。 3.品质因数Q

可控硅的主要参数

可控硅 可控硅是硅可控整流元件的简称,亦称为晶闸管。具有体积小、结构相对简单、功能强等特点,是比较常用的半导体器件之一。该器件被广泛应用于各种电子设备和电子产品中,多用来作可控整流、逆变、变频、调压、无触点开关等。家用电器中的调光灯、调速风扇、空调机、电视机、电冰箱、洗衣机、照相机、组合音响、声光电路、定时控制器、玩具装置、无线电遥控、摄像机及工业控制等都大量使用了可控硅器件。按其工作特性,可控硅(THYRISTOR)可分为普通可控硅(SCR)即单向可控硅、双向可控硅(TRIAC)和其它特殊可控硅。 可控硅的主要参数 非过零触发-无论交流电电压在什么相位的时候都可触发导通可控硅,常见的是移相触发,即通过可控硅的主要参数 1、额定通态平均电流IT在一定条件下,阳极---阴极间可以连续通过的50赫兹正弦半波电流的平均值。 2、正向阻断峰值电压VPF 在控制极开路未加触发信号,阳极正向电压还未超过导能电压时,可以重复加在可控硅两端的正向峰值电压。可控硅承受的正向电压峰值,不能超过手册给出的这个参数值。 3、反向阴断峰值电压VPR当可控硅加反向电压,处于反向关断状态时,可以重复加在可控硅两端的反向峰值电压。使用时,不能超过手册给出的这个参数值。 4、控制极触发电流Ig1 、触发电压VGT在规定的环境温度下,阳极---阴极间加有一定电压时,可控硅从关断状态转为导通状态所需要的最小控制极电流和电压。

5、维持电流IH在规定温度下,控制极断路,维持可控硅导通所必需的最小阳极正向电流。 近年来,许多新型可控硅元件相继问世,如适于高频应用的快速可控硅,可以用正或负的触发信号控制两个方向导通的双向可控硅,可以用正触发信号使其导通,用负触发信号使其关断的可控硅等等。 可控硅的触发 过零触发-一般是调功,即当正弦交流电交流电电压相位过零点触发,必须是过零点才触发,导通可控硅。 非过零触发-无论交流电电压在什么相位的时候都可触发导通可控硅,常见的是移相触发,即通过改变正弦交流电的导通角(角相位),来改变输出百分比。 可控硅的主要参数 可控硅的主要参数: 1 额定通态电流(IT)即最大稳定工作电流,俗称电流。常用可控硅的IT一般为一安到几十安。 2 反向重复峰值电压(VRRM)或断态重复峰值电压(VDRM),俗称耐压。常用可控硅的VRRM/VDRM一般为几百伏到一千伏。 3 控制极触发电流(IGT),俗称触发电流。常用可控硅的IGT一般为几微安到几十毫安。可控硅的常用封装形式

电感的主要参数

电感的主要参数 1)μi(导磁率)(Permeability)---这是铁芯的一个重要参数,对于一个带铁芯的电感,铁芯的导磁率越高,电感值会越高。 2)L(电感值)(Inductance)---L=(4πμiN2A/l)*10-9 (H),N-线圈圈数,A-磁路截面积,l-磁路平均长度。电感值与铁芯的μi值成正比,与线圈圈数的平方成正比,与测试频率有关(电感值随测试频率的变化关系常用电感的频率曲线来表示),与环境温度有关,客户通常对电感值的要求是在某一特定频率下合于某一范围。电感值通常是不用计算得出的(因为就算你算得吐血也未必算得准,磁环的可以算得大概准确),而是用仪器测出的。目录上通常是标示L值的公差范围。 3) Q(品质因素)---客户通常对Q值的要求是越高越好, Q=2πfLe/Re (Re是有效电阻,是消耗能量的部份, 有效电阻由DCR、表面效应、铁损所贡献) (Le是真实电感扣除分布电容影响后的值),电子工 程施希望所选定的频率讯号通过,而且更希望所通 过的讯号损失越少越好,故他们希望Q值越高越好。 Q值也是随测试频率而变化的,(Q值随测试频率的 变化关系常用Q值的频率曲线来表示)。目录上通常 以其最小值为标注。 4)DCR(直流电阻)(Direct Current Resistance)---电感在直流电流下测量得之电阻,客户通常对DCR值的要求是越小越好。目录上通常以其最大值为标注。 5) SRF(自共振频率)(Self-Resonant Frequency) ---电感的真实电感与电感的分布电容产生共振 时的频率,客户通常对SRF值的要求是越大 越好。目录上通常以其最小值为标注。 自共振频时电感的表现就像电阻,即 (真实)电感值的感抗(2πfL)与分布电容的容抗

电阻,电感,电容的主要参数

电阻,电感,电容的主要参数 电阻主要特性参数 1、标称阻值:电阻器上面所标示的阻值。 2、允许误差:标称阻值与实际阻值的差值跟标称阻值之比的百分数称阻值偏差,它表示电阻器的精度。 允许误差与精度等级对应关系如下:±0.5%-0.05、±1%-0.1(或00)、±2%-0.2(或0)、±5%-Ⅰ级、±10%-Ⅱ级、±20%-Ⅲ级 3、额定功率:在正常的大气压力90-106.6KPa及环境温度为-55℃~+70℃的条件下,电阻器长期工作所允许耗散的最大功率。 线绕电阻器额定功率系列为(W):1/20、1/8、1/4、1/2、1、2、4、8、10、16、25、40、50、75、100、150、250、500 非线绕电阻器额定功率系列为(W):1/20、1/8、1/4、1/2、1、2、5、10、25、50、100 4、额定电压:由阻值和额定功率换算出的电压。 5、最高工作电压:允许的最大连续工作电压。在低气压工作时,最高工作电压较低。 6、温度系数:温度每变化1℃所引起的电阻值的相对变化。温度系数越小,电阻的稳定性越好。阻值随温度升高而增大的为正温度系数,反之为负温度系数。 7、老化系数:电阻器在额定功率长期负荷下,阻值相对变化的百分数,它是表示电阻器寿命长短的参数。 8、电压系数:在规定的电压范围内,电压每变化1伏,电阻器的相对变化量。 9、噪声:产生于电阻器中的一种不规则的电压起伏,包括热噪声和电流噪声两部分,热噪声是由于导体内部不规则的电子自由运动,使导体任意两点的电压不规则变化。 电感器的主要参数 电感器的主要参数有电感量、允许偏差、品质因数、分布电容及额定电流等。

大功率半导体器件IGBT产业化基地奠基

大功率半导体器件IGBT产业化基地奠基 5月25日,由公司负责具体实施的中国南车大功率半导体器件绝缘栅双极晶体管(简称“IGBT”)产业化基地在田心工业园奠基,我国首条8英寸IGBT芯片生产线项目随之启动。从芯片设计、到模块封装,再到系统应用,公司成为国内唯一掌握IGBT成套技术,形成完整产业链的企业。业内评价指出,“该基地的奠基,我国IGBT关键技术长期受制于人的局面由此改变”。 国家发改委产业协调司机械装备处处长李刚,铁道部运输局装备部副主任申瑞源,国家工业和信息化部装备工业司机械处处长王建宇,及铁道部、工信部、中国交通运输协会城市轨道交通专业委员会、湖南省经委、科技厅相关领导,中国南车董事长赵小刚、总工程师张新宁,株洲市市长王群、副市长肖文伟,公司决策委员会成员、部分中高层干部及员工代表参加了奠基仪式。 IGBT是功率半导体器件第三次技术革命的代表性产品,广泛应用于轨道交通、航空航天、智能电网、新能源汽车等战略性产业领域,是节能技术和低碳经济的主要支撑,被业界誉为功率变流装置的“CPU”、绿色经济的“核芯”。目前国内IGBT的主要供应商为外国厂商,为支持我国企业技术突围,IGBT成为国家产业政策重点支持和扶植的重大科技项目。相关研究机构指出,“在IGBT这个以技术为门槛的行业中,谁掌握了技术,谁就掌握了市场”。 据悉,轨道交通、新能源、 电动汽车等绿色经济产业在 未来十年甚至更长的时间里 将保持每年20-30%的高速增 长,发展绿色经济成为全球 各个主要经济体的共识。作 为绿色经济的功率“核芯”, IGBT市场发展前景光明。 中国南车总工程师张新宁致欢迎辞。对参加此次奠基仪式的领导及嘉宾表示欢迎。张新宁指出,作为电力电子技术的关键核心,IGBT已经逐步成为衡量一个企业、行业乃至国家电力电子技术水平的重要标志。

晶闸管参数说明

IEC标准中用来表征晶闸管、二极管性能、特点的参数有数十项,但用户经常用到的有十项左右,本文就晶闸管、二极管的主要参数做一简单介绍。 1.正向平均电流I F(A V)( 整流管) 通态平均电流I T(A V)( 晶闸管) 是指在规定的散热器温度THS或管壳温度T C时,允许流过器件的最大正弦半波电流平均值。此时,器件的结温已达到其最高允许温度Tjm。台基公司产品手册中均给出了相应通态电流对应的散热器温度THS或管壳温度T C值,用户使用中应根据实际通态电流和散热条件来选择合适型号的器件。 2.正向方均根电流I F(RMS)( 整流管) 通态方均根电流I T(RMS)( 晶闸管) 是指在规定的散热器温度THS或管壳温度TC 时,允许流过器件的最大有效电流值。用户在使用中,须保证在任何条件下,流过器件的电流有效值不超过对应壳温下的方均根电流值。3.浪涌电流I FSM(整流管)、I TSM(晶闸管) 表示工作在异常情况下,器件能承受的瞬时最大过载电流值。用10ms底宽正弦半波峰值表示,台基公司在产品手册中给出的浪涌电流值是在器件处于最高允许结温下,施加80% V RRM条件下的测试值。器件在寿命期内能承受浪涌电流的次数是有限的,用户在使用中应尽量避免出现过载现象。 4.断态不重复峰值电压V DSM 反向不重复峰值电压V RSM 指晶闸管或整流二极管处于阻断状态时能承受的最大转折电压,一般用单脉冲测试防止器件损坏。用户在测试或使用中,应禁止给器件施加该电压值,以免损坏器件。 5.断态重复峰值电压V DRM 反向重复峰值电压V RRM 是指器件处于阻断状态时,断态和反向所能承受的最大重复峰值电压。一般取器件不重复电压的90%标注(高压器件取不重复电压减100V标注)。用户在使用中须保证在任何情况下,均不应让器件承受的实际电压超过其断态和反向重复峰值电压。 6.断态重复峰值(漏)电流IDRM 反向重复峰值(漏)电流IRRM 为晶闸管在阻断状态下,承受断态重复峰值电压VDRM和反向重复峰值电压VRRM时,流过元件的正反向峰值漏电流。该参数在器件允许工作的最高结温Tjm下测出。 7.通态峰值电压V TM(晶闸管) 正向峰值电压V FM(整流管) 指器件通过规定正向峰值电流I FM(整流管)或通态峰值电流I TM(晶闸管)时的峰值电压,也称峰值压降。该参数直接反映了器件的通态损耗特性,影响着器件的通态电流额定能力。器件在不同电流值下的的通态(正向)峰值电压可近似用门槛电压和斜率电阻来表示: V TM=VTO+rT*I TM V FM=VFO+rF*I FM 台基公司在产品手册中给出了各型号器件的最大通态(正向)峰值电压及门槛电压和斜率电阻,用户需要时,可以提供该器件的实测门槛电压和斜率电阻值。 8.电路换向关断时间t q(晶闸管) 在规定条件下,在晶闸管正向主电流下降过零后,从过零点到元件能承受规定的重加电压而不至导通的最小时间间隔。晶闸管的关断时间值决定于测试条件,台基公司对所制造的快速、高频晶闸管均提供了每只器件的关断时间实测值,在未作特别说明时,其对应的测试条件如下: l 通态峰值电流ITM等于器件ITA V;

DC DC电感选型指南

一:电感主要参数意义 DC-DC外围电感选型需要考虑以下几个参数:电感量L,自谐频率f0,内阻DCR,饱和电流Isat,有效电流Irms。 电感量L:L越大,储能能力越强,纹波越小,所需的滤波电容也就小。但是L越大,通常要求电感尺寸也会变大,DCR增加。导致DC-DC效率降低。相应的电感成本也会增加。 自谐频率f0:由于电感中存在寄生电容,使得电感存在一个自谐振频率。超过此F0是,电感表现为电容效应,低于此F0,电感才表现为电感效应(阻抗随频率增大而增加)。 内阻DCR:指电感的直流阻抗。该内阻造成I2R的能量损耗,一方面造成DC-DC降低效率,同时也是导致电感发热的主要原因。 饱和电流Isat:通常指电感量下降30%时对应的DC电流值。 有效电流Irms:通常指是电感表面温度上升到40度时的等效电流值。 二:DC-DC电感选型步骤 根据DC-DC的输入输出特性计算所需的最小电感量。。(对于电感量的计算,各DC-DC芯片手册上有明确的计算方法,请以手册为准,以下公式只是个举例说明) 对于Buck型DC-DC,计算公式如下 Lmin=【Vout*(1-Vout/Vinmax)】/Fsw*Irpp 其中:Vinmax = maximum input voltage Vout = output voltage fsw = switching frequency Irpp = inductor peak-to-peak ripple current 通常将Irpp控制在50%的输出额定电流Irate。则上述公式变化如下: Lmin=2*【Vout*(1-Vout/Vinmax)】/Fsw*Irate 对于Boost型DC—DC的Lmin电感计算公式如下: Lmin=2*【Vinmax*(1-Vinmax/Vout)】/Fsw*Irate

电感的主要参数

电感的主要参数 1)??μi(导磁率)(Permeability)---这是铁芯的一个重要参数,对于一个带铁芯的电感,铁芯的导磁率越高,电感值会越高。 2)???? L(电感值)(Inductance)---L=(4πμiN2A/l)*10-9(H),N-线圈圈数,A-磁路截面积,l-磁路平均长度。电感值与铁芯的μi值成正比,与线圈圈数的平方成正比,与测试频率有关(电感值随测试频率的变化关系常用电感的频率曲线来表示),与环境温度有关,客户通常对电感值的要求是在某一特定频率下合于某一范围。电感值通常是不用计算得出的(因为就算你算得吐血也未必算得准,磁环的可以算得大概准确),而是用仪器测出的。目录上通常是标示L值的公差范围。 3) Q(品质因素)---客户通常对Q值的要求是越高越好, Q=2πfLe/Re (Re是有效电阻,是消耗能量的部份, 有效电阻由DCR、表面效应、铁损所贡献) (Le是真实电感扣除分布电容影响后的值),电子工 程施希望所选定的频率讯号通过,而且更希望所通 过的讯号损失越少越好,故他们希望Q值越高越好。 Q值也是随测试频率而变化的,(Q值随测试频率的 变化关系常用Q值的频率曲线来表示)。目录上通常 以其最小值为标注。 4)DCR(直流电阻)(Direct Current Resistance)---电感在直流电流下测量得之电阻,客户通常对DCR值的要求是越小越好。目录上通常以其最大值为标注。 5) SRF(自共振频率)(Self-Resonant Frequency) ---电感的真实电感与电感的分布电容产生共振 时的频率,客户通常对SRF值的要求是越大 越好。目录上通常以其最小值为标注。 自共振频时电感的表现就像电阻,即 (真实)电感值的感抗(2πfL)与分布电容的容抗 (-1/2πfC d )相互抵消,即2πfL-1/2πfC d =0, 所以自共振频率f=1/2π√LC d 。自共振频时电感的Le(有效电感值)为0,所以此时的Q值为0。

大功率半导体器件综述及介绍

自从50年代,硅晶闸管问世以后,50多年来,功率半导体器件的研究工作者为达到理想化的目标做出了不懈的努力,并以取得了使世人瞩目的成就。60年代后期,可关断晶闸管GTO实现了门极可关断功能,并使斩波工作频率扩展到1KHZ以上。70年代中期,大功率晶体管和功率MOSFET 问世,功率器件实现了场控功能,打开了高频应用的大门。80年代,绝缘栅双极晶体管(IGBT)问世,它综合了功率MOSFET和双极型功率晶体管两者的功能。因此,当前功率器件研究工作的重点主要集中在研究现有功率器件的集成性能,MOS门控晶体管的改进,以及采用新型半导体材料制造新型的功率器件等。 瑞士ABB半导体公司是ABB集团的全资子公司,是世界上最著名的大功率半导体生产商之一。西安赛晶电子科技责任有限公司是瑞士ABB 半导体公司在中国的首家代理,本公司在为客户提供先进的大功率半导体器件的同时,以西安电力电子技术研究所为其坚强的技术后盾,为客户提供较强的技术支持和服务。 一大功率半导体器件的最新发展 1.普通晶闸管(PCT) PCT自问世以来,其功率容量已提高了近3000倍。现在许多国家已能稳定生产Φ100mm,8000V/4000A的晶闸管。日本现在已能稳定生产8000V/4000A和6000V/6000A的光触发晶闸管。近十几年来,由于自关断器件的飞速发展,晶闸管的应用领域有所缩小,但是,由于它的高电压、大电流特性,它在HVDC,静止无功补偿(SVC),大功率直流电源及超大功率和高压变频调速等方面仍然占有十分重要的地位。预计在今后若干年内,晶闸管仍将在高电压、大电流应用场合得到继续发展。 2、门极可关断晶闸管(GTO) 1982年日本日立公司首先研制成功2500V,1000A的GTO。许多的生产商可提供额定开关功率36MVA(6000V,6000A)用的高压大电流GTO。为了折衷它的导通、开通和关断特性,传统GTO的典型的关断增量仅为3-5。GTO关断期间的不均匀性使GTO关断期间dv/dt必须限制在 500-1000v/μs。为此,人们不得不使用体积大、笨重、昂贵的吸收电路。它的其他缺点是门极驱动电路较复杂和要求较大的驱动功率。但是,高的导通电流密度、高的阻断电压、阻断状态下高的dv/dt耐量和有可能在内部集成一个反并二极管,这些突出的优点仍使人们对GTO感兴趣。到目前为止,传统的GTO在高压(VBR>3300V)/大功率(0.5-20MVA)牵引、工业和电力逆变器中是应用得最为普遍得门控功率半导体器件。目前,GTO的最高研究水平为6英寸、6000V/6000A以及9000V/10000A。这种GTO采用了大直径均匀结技术和全压接式结构,通过少子寿命控制技术折衷了GTO导通电压与关断损耗两者之间的矛盾。由于GTO具有门极全控功能,它正在许多应用领域逐步代替PCT。为了满足电力系统对1兆VA以上的三相逆变功率电压源的需要,近期很可能开发10,000A,12,000V的GTO,并可能解决30多个高压GTO串联的技术,可望使电力电子技术在电力系统应用方面再上一个台阶。 3、绝缘栅双极晶体管(IGBT)

晶闸管的主要参数教程文件

晶闸管的主要参数

晶闸管的主要参数 (1) 断态不重复峰值电压U DSM 门极开路时,施加于晶闸管的阳极电压上升到正向伏安特性曲线急剧转折处所对应的电压值UDSM 。 它是一个不能重复,且每次持续时间不大于10ms的断态最大脉冲电压。 UDSM 值应小于转折电压U b0。 (2) 断态重复峰值电压U DRM 晶闸管在门极开路而结温为额定值时,允许重复加于晶闸管上的正向断态最大脉冲电压。 每秒50次每次持续时间不大于10ms, 规定U DRM 为U DSM 的90%。 (3) 反向不重复峰值电压U RSM 门极开路,晶闸管承受反向电压时,对应于反向伏安特性曲线急剧转折处的反向峰值电压值U RSM。

它是一个不能重复施加且持续时间不大于10ms的反向脉冲电压。反向不重复峰值电压U RSM应小于反向击穿电压。 (4) 反向重复峰值电压U RRM 晶闸管在门极开路而结温为额定值时,允许重复加于晶闸管上的反向最大脉冲电压。 每秒50次每次持续时间不大于10ms。 规定U RRM 为U RSM 的90%。 (5) 额定电压UR 断态重复峰值电压UDRM和反向重复峰值电压URRM两者中较小的一个电压值规定为额定电压U R。 在选用晶闸管时,应该使其额定电压为正常工作电压峰值U M 的2~3倍,以作为安全裕量。 (6)通态峰值电压U TM 规定为额定电流时的管子导通的管压降峰值。 一般为1.5~2.5V,且随阳极电流的增加而略为增加。 额定电流时的通态平均电压降一般为1V左右。 (7) 通态平均电流I T (AV) 在环境温度为+40℃和规定的散热冷却条件下,晶闸管在导通角不小于170°电阻性负载的单相、工频正弦半波导电,结温稳定在额定值125°时,所允许通过的最大电流平均值。 ——允许流过的最大工频正弦半波电流的平均值。

电感的参数和识别

电感的参数和识别 除固定电感器和部分阻流线圈为通用元件(只要规格相同,各种电子整机上均可使用)外,其余的均为电视机、收音机等专用元件。专用元件一般都是一个型号对应一种机型(代用除外),购买及使用时应以元件型号为主要依据,具体参数大都不需考虑,若需了解,可查相应产品手册或有关资料,这里不可能一一示例。下面谈谈新晨阳电容电感的固定电感器及阻流圈的主要参数及识别。 一.电感量L 电感量L也称作自感系数,是表示电感元件自感应能力的一种物理量。当通过一个线圈的磁通(即通过某一面积的磁力线数)发生变化时,线圈中便会产生电势,这是电磁感应现象。所产生的电势称感应电势,电势大小正比于磁通变化的速度和线圈匝数。当线圈中通过变化的电流时,线圈产生的磁通也要变化,磁通掠过线圈,线圈两端便产生感应电势,这便是自感应现象。自感电势的方向总是阻止电流变化的,犹如线圈具有惯性,这种电磁惯性的大小就用电感量L来表示。L的大小与线圈匝数、尺寸和导磁材料均有关,采用硅钢片或铁氧体作线圈铁芯,可以较小的匝数得到较大的电感量。L的基本单位为H(亨),实际用得较多的单位为mH(毫亨)和IxH(微亨),三者的换算关系如下:1H=103mH=106 μH。

二.感抗XL 感抗XL在电感元件参数表上一般查不到,但它与电感量、电感元件的分类品质因数Q 等参数密切相关,在分析电路中也经常需要用到,故这里专门作些介绍。前已述及,由于电感线圈的自感电势总是阻止线圈中电流变化,故线圈对交流电有阻力作用,阻力大小就用感抗XL来表示。XL与线圈电感量L和交流电频率f成正比,计算公式为:XL(Ω)=2лf(Hz)L(H)。不难看出,线圈通过低频电流时XL小。通过直流电时XL为零,仅线圈的直流电阻起阻力作用,因电阻:—般很小,所以近似短路。通过高频电流时XL大,若L也大,则近似开路。线圈的此种特性正好与电容相反,所以利用电感元件和电容器就可以组成各种高频、中频和低频滤波器,以及调谐回路、选频回路和阻流圈电路等等。 三.品质因数Q 这是表示电感线圈品质的参数,亦称作Q值或优值。线圈在一定频率的交流电压下工作时,其感抗XL和等效损耗电阻之比即为Q值,表达式如下:Q=2лL/R。由此可见,线圈的感抗越大,损耗电阻越小,其Q值就越高。值得注意的是,损耗电阻在频率f较低时可视作基本上以线圈直流电阻为主;当f较高时,因线圈骨架及浸渍物的介质损耗、铁芯及屏蔽罩损耗、导线高频趋肤效应损耗等影响较明显,R就应包括各种损耗在内的等效损耗电阻,不能仅计直流电阻。Q的数值大都在几十至几百。Q值越高,电路的损耗越小,效率越高,但Q值提高到一定程度后便会受到种种因素限制,而且许多电路对线圈Q值也没有很高的要求,所以具体决定Q值应视电路要求而定。

13种常用的功率半导体器件介绍

13种常用的功率半导体器件介绍 电力电子器件(Power Electronic Device),又称为功率半导体器件,用于电能变换和电能控制电路中的大功率(通常指电流为数十至数千安,电压为数百伏以上)电子器件。可以分为半控型器件、全控型器件和不可控型器件,其中晶闸管为半控型器件,承受电压和电流容量在所有器件中最高;电力二极管为不可控器件,结构和原理简单,工作可靠;还可以分为电压驱动型器件和电流驱动型器件,其中GTO、GTR为电流驱动型器件,IGBT、电力MOSFET为电压驱动型器件。 1. MCT (MOS Control led Thyristor):MOS控制晶闸管 MCT 是一种新型MOS 与双极复合型器件。如上图所示。MCT是将MOSFET 的高阻抗、低驱动图MCT 的功率、快开关速度的特性与晶闸管的高压、大电流特型结合在一起,形成大功率、高压、快速全控型器件。实质上MCT 是一个MOS 门极控制的晶闸管。它可在门极上加一窄脉冲使其导通或关断,它由无数单胞并联而成。它与GTR,MOSFET,IGBT,GTO 等器件相比,有如下优点: (1)电压高、电流容量大,阻断电压已达3 000V,峰值电流达1 000 A,最大可关断电流密度为6000kA/m2; (2)通态压降小、损耗小,通态压降约为11V; (3)极高的dv/dt和di/dt耐量,dv/dt已达20 kV/s ,di/dt为2 kA/s; (4)开关速度快,开关损耗小,开通时间约200ns,1 000 V 器件可在2 s 内关断; 2. IGCT(Intergrated Gate Commutated Thyristors) IGCT 是在晶闸管技术的基础上结合IGBT 和GTO 等技术开发的新型器件,适用于高压大容量变频系统中,是一种用于巨型电力电子成套装置中的新型电力半导体器件。 IGCT 是将GTO 芯片与反并联二极管和门极驱动电路集成在一起,再与其门极驱动器在外围以低电感方式连接,结合了晶体管的稳定关断能力和晶闸管低通态损耗的优点。在导通阶段发挥晶闸管的性能,关断阶段呈现晶体管的特性。IGCT 芯片在不串不并的情况下,二电平逆变器功率0.5~ 3 MW,三电平逆变器1~ 6 MW;若反向二极管分离,不与IGCT

相关文档
最新文档