高二数学几何概型2

合集下载

江苏高级中学高二年级上学期数学教材目录

江苏高级中学高二年级上学期数学教材目录

江苏高级中学高二年级上学期数学教材目录第1章集合1.1集合的含义及其表示1.2子集、全集、补集1.3交集、并集第2章函数概念与基本初等函数Ⅰ2.1函数的概念和图象函数的概念和图象函数的表示方法函数的简单性质映射的概念2.2指数函数分数指数幂指数函数2.3对数函数对数对数函数2.4幂函数2.5函数与方程二次函数与一元二次方程用二分法求方程的近似解2.6函数模型及其应用数学2第3章立体几何初步3.1空间几何体棱柱、棱锥和棱台圆柱、圆锥、圆台和球中心投影和平行投影直观图画法空间图形的展开图柱、锥、台、球的体积3.2点、线、面之间的位置关系平面的基本性质空间两条直线的位置关系直线与平面的位置关系平面与平面的位置关系第4章平面解析几何初步4.1直线与方程直线的斜率直线的方程两条直线的平行与垂直两条直线的交点平面上两点间的距离点到直线的距离4.2圆与方程圆的方程直线与圆的位置关系圆与圆的位置关系4.3空间直角坐标系空间直角坐标系空间两点间的距离第5章算法初步5.1算法的意义5.2流程图5.3基本算法语句5.4算法案例第6章统计6.1抽样方法6.2总体分布的估计6.3总体特征数的估计6.4线性回归方程第7章概率7.1随机事件及其概率7.2古典概型7.3几何概型7.4互斥事件及其发生的概率数学4第8章三角函数8.1任意角、弧度8.2任意角的三角函数8.3三角函数的图象和性质第9章平面向量9.1向量的概念及表示9.2向量的线性运算9.3向量的坐标表示9.4向量的数量积9.5向量的应用第10章三角恒等变换10.1两角和与差的三角函数10.2二倍角的三角函数10.3几个三角恒等式高二数学上数学5第11章解三角形11.1正弦定理11.2余弦定理11.3正弦定理、余弦定理的应用第12章数列12.1等差数列12.2等比数列12.3数列的进一步认识第13章不等式13.1不等关系13.2一元二次不等式13.3二元一次不等式组与简单的线性规划问题13.4基本不等式文科数学选修系列11-1(上)第1章常用逻辑用语1.1命题及其关系1.2简单的逻辑联结词1.3全称量词与存在量词第2章圆锥曲线与方程2.1圆锥曲线2.2椭圆2.3双曲线2.4抛物线2.5圆锥曲线与方程第3章导数及其应用3.1导数的概念3.2导数的运算3.3导数在研究函数中的应用3.4导数在实际生活中的应用1-2(下)第1章统计案例1.1假设检验1.2独立性检验1.3线性回归分析1.4聚类分析第2章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3公理化思想第3章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算3.3复数的几何意义第4章框图4.1流程图5.2结构图理科数学选修系列22-1(上)第1章常用逻辑用语1.1命题及其关系1.2简单的逻辑连接词1.3全称量词与存在量词第2章圆锥曲线与方程第3章空间向量与立体几何2-2(上)第1章导数及其应用第2章推理与证明第3章数系的扩充与复数的引入2-3(下)第1章计数原理第2章概率第3章统计案例。

几何概型

几何概型
D F C D F C D F C
G
E G
EG
E
A
H
B
A
H
B
A
H
B
3.某人午休醒来 发觉表停了, 某人午休醒来, 例3.某人午休醒来,发觉表停了,他打开收音机想听电 台整点报时,求他等待的时间不多于于10分钟的概率. 10分钟的概率 台整点报时,求他等待的时间不多于于10分钟的概率.
分析: 分析:在哪个时间段打开收音机的概率只与该时间段的长度 有关,而与该时间段的位置无关,这符合几何概型的条件, 有关,而与该时间段的位置无关,这符合几何概型的条件, 由于收音机每一小时报一次, 由于收音机每一小时报一次,可以认为此人打 开收音机的时间正处于两次报时之间, 开收音机的时间正处于两次报时之间,即处于 [0,60]的任意一点 的任意一点, [0,60]的任意一点,于是概率等于等待时间 段的长度与两个整点之间长度的比. 段的长度与两个整点之间长度的比.
等待的时间小于10分钟”为事件A 10分钟 解:记“等待的时间小于10分钟”为事件A, 打开收音机的时刻位于[50 60]时间段内 [50, 打开收音机的时刻位于[50,60]时间段内 则事件A发生. 则事件A发生. 由几何概型的求概率公式得 10 1 P( A) = = 60 6 1 等待报时的时间不多于10分钟” 10分钟 答:等待报时的时间不多于10分钟”的概率为 .
6
变式训练2 某路公共汽车5 变式训练2:某路公共汽车5分钟一班准时到 达某车站,求某一人在该车站等车时间少于3 达某车站,求某一人在该车站等车时间少于3 分钟的概率(假定车到来后每人都能上) 分钟的概率(假定车到来后每人都能上).
a a+2 a+5
设上一班车离站时刻为a, 解:设上一班车离站时刻为a, 则某人到站的一切可能时刻为Ω=(a,a+5), 则某人到站的一切可能时刻为Ω=(a,a+5), 等车时间少于3分钟”为事件A 记“等车时间少于3分钟”为事件A, 则他到站的时刻只能为µ=(a+2,a+5)中的任一时刻 中的任一时刻, 则他到站的时刻只能为µ=(a+2,a+5)中的任一时刻,

高二年级数学必修3第三章知识点:古典概型与几何概型知识点总结

高二年级数学必修3第三章知识点:古典概型与几何概型知识点总结

高二年级数学必修3第三章知识点:古典概型与几何概型知
识点总结
数学在科学发展和现代生活生产中的应用非常广泛,以下是为大家整理的高二年级数学必修3第三章知识点,希望可以解决您所遇到的相关问题,加油,一直陪伴您。

知识梳理
1. 基本事件:一次试验连同其中可能出现的每一个结果(事件 )称为一个基本事件
特别提醒:基本事件有如下两个特点:
○1任何两个基本事件都是互斥的;
○2任何事件都可以表示成基本事件的和。

2.所有基本事件的全体,叫做样本空间,用表示,例如抛一枚硬币为一次实验,则={正面,反面}。

3.等可能性事件(古典概型):如果一次试验中可能出现的结果有个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是,这种事件叫等可能性事件
特别提醒:古典概型的两个共同特点:
○1有限性,即试中有可能出现的基本事件只有有限个,即样本空间中的元素个数是有限的;
○2等可能性,即每个基本事件出现的可能性相等。

4.古典概型的概率公式:如果一次试验中可能出现的结果有个,而且所有结果都是等可能的,如果事件包含个结果,那么事件的概率
5.几何概型:如果第个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。

特别提醒:几何概型的特点:
○1试验的结果是无限不可数的;
○2每个结果出现的可能性相等。

6.几何概型的概率公式: P(A)=
最后,希望小编整理的高二年级数学必修3第三章知识点对您有所帮助,祝同学们学习进步。

高二数学概率知识点总结

高二数学概率知识点总结

高二数学概率知识点总结
一、随机事件的概率
1. 随机事件:在一定条件下可能发生也可能不发生的事件。

2. 必然事件:在一定条件下必然发生的事件。

3. 不可能事件:在一定条件下不可能发生的事件。

4. 概率的定义:对于一个随机事件A,它发生的概率P(A)满足0 ≤ P(A) ≤ 1。

如果P(A)=1,则事件A 为必然事件;如果P(A)=0,则事件A 为不可能事件。

二、古典概型
1. 古典概型的特征:
-试验中所有可能出现的基本事件只有有限个。

-每个基本事件出现的可能性相等。

2. 古典概型的概率计算公式:P(A)=事件A 包含的基本事件数÷总的基本事件数。

三、几何概型
1. 几何概型的特征:
-试验中所有可能出现的结果(基本事件)有无限多个。

-每个基本事件出现的可能性相等。

2. 几何概型的概率计算公式:P(A)=构成事件A 的区域长度(面积或体积)
÷试验的全部结果所构成的区域长度(面积或体积)。

四、互斥事件和对立事件
1. 互斥事件:如果事件A 和事件B 不能同时发生,那么称事件A 和事件B 为互斥事件。

-互斥事件的概率加法公式:P(A∪B)=P(A)+P(B)(A、B 互斥)。

2. 对立事件:如果事件A 和事件B 必有一个发生,且仅有一个发生,那么称事件A 和事件 B 为对立事件。

-对立事件的概率计算公式:P(A)=1 - P(A 的对立事件)。

高二数学几何概型试题

高二数学几何概型试题

高二数学几何概型试题1.如图,EFGH是以O为圆心,1为半径的圆的内接正方形,将一颗豆子随机地掷到圆内,用A 表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形HOE(阴影部分)内”,则P (B|A)=()A. B. C. D.【答案】A【解析】由条件概率及几何概率可知:P(B|A),故选A.【考点】条件概率及几何概率.2.从如图所示的长方形区域内任取一个点M(x,y),则点M取自阴影部分的概率为________.【答案】【解析】阴影部分面积为,∴所求概率为.【考点】定积分计算曲边图形的面积,几何概型.3.如图所示的“赵爽弦图”中,四个相同的直角三角形与中间的小正方形拼成的一个边长为2的大正方形,若直角三角形中较小的锐角,现在向该正方形区域内随机地投掷一枚飞镖,飞镖落在小正方形内的概率是______________.【答案】【解析】观察这个图可知:大正方形的边长为2,总面积为4,而阴影区域的边长为,面积为,故飞镖落在阴影区域的概率.【考点】几何概率.4.已知,直线和曲线有两个不同的交点,他们围成的平面区域为,向区域上随机投以点,点落在内的概率为,若,则实数的取值范围是:【答案】【解析】将直线变形为,可知此直线过定点,为直线的斜率.曲线表示圆心在原点半径为2的上半个圆。

当直线与轴重合时平面区域和区域重合,此时;当直线位置时,区域的面积为,区域面积为,此时。

所以。

【考点】1不等式表示平面区域;2直线过定点问题及直线的斜率;3几何概型概率。

5.如图,在棱长为2的正方体内(含正方体表面)任取一点,则的概率 .【答案】【解析】以为原点为轴建立空间直角坐标系,则,设,则,则,从而.【考点】1.空间向量的数量积;2.几何概型.6.四边形ABCD为长方形,AB=2,BC=1,O为AB的中点。

在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为()A.B.C.D.【答案】C【解析】根据几何概型得,取到的点到O的距离大于2的概率:,选C.【考点】几何概型7.有一个底面半径为1、高为2的圆柱,点为这个圆柱底面圆的圆心,在这个圆柱内随机取一点,则点到点的距离大于1的概率为.【答案】【解析】空间内到点的距离等于1的点,是在以点为球心,1为半径的球面上,那么距离比1大的点在球的外部,因为基本事件总数是无限的,可以考虑几何概型,即圆柱内半球外部的体积与圆柱的体积比【考点】1、几何体的体积;2、几何概型.8.如图所示的矩形内随机撒芝麻,若落入阴影内的芝麻是628粒,则落入矩形内芝麻的粒数约是【答案】800【解析】由已知中矩形的长和宽可知,长是宽的2倍,根据随机模拟实验的概念,我们易得阴影部分的面积与矩形面积的比例约为芝麻落在阴影区域中的频率,由此我们构造关于S的方程,阴影解方程即可求矩形区域的粒数,故答案为800.【考点】几何概型点评:本题考查的知识点是几何概型与随机模拟实验,利用阴影面积与矩形面积的比例约为黄豆的方程,是解答本题的关键.落在阴影区域中的频率,构造关于S阴影9.取一根长度为米的绳子,拉直后在任意位置剪断,则剪得两段的长度都不小于1米,且以剪得的两段绳为两边的矩形的面积都不大于平方米的概率为()A.B.C.D.【答案】C【解析】设剪断后的两段绳长分别为x,y,那么可知的概率即为矩形区域的面积为25,那么满足题意的区域为,那么可知由几何概型概率可知为10:25=2:5,故答案为C.【考点】几何概型点评:主要是考查了几何概型的运用,分析区域长度和面积来求解,属于基础题。

山东省高二数学内容目录

山东省高二数学内容目录

山东省高二数学内容目录高二数学目录主要包括了高二数学必修三以及高二数学选修2-1、选修2-2、选修2-3的课程目录。

涵盖了高二整个数学的课程,供高二的学生参考使用。

必修三目录第一章算法初步1.1算法与程序框图1.2基本算法语句1.3算法案例阅读与思考割圆术小结复习参考题第二章统计2.1随机抽样2.2用样本估计总体2.3变量间的相关关系第三章概率3.1随机事件的概率3.2古典概型3.3几何概型选修2-1目录第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2立体几何中的向量方法选修2-2目录第一章导数及其应用1.1变化率与导数و1.2导数的计算探究与发现牛顿法--用导数方法求方程的近似解1.3导数在研究函数中的应用信息技术应用图形技术与函数性质1.4生活中的优化问题举例1.5定积分的概念信息技术应用曲边梯形的面积1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理阅读与思考平面与空间中的余弦定理。

2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引人3.1数系的扩充和复数的概念3.2复数代数形式的四则运算阅读与思考代数基本定理小结选修2-3目录第一章计数原理1.1分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2排列与组合探究与发现组合数的两个性质1.3二项式定理探究与发现“杨辉三角”中的一些秘密小结。

第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用阅读与思考这样的买彩票方式可行吗探究与发现服从二项分布的随机变量取何值时概率最大2.3离散型随机变量的均值与方差2.4正态分布信息技术应用p.e对正态分布的影响第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用。

2022-2023学年四川省成都市高二下学期期中考试数学(理)试题2【含答案】

2022-2023学年四川省成都市高二下学期期中考试数学(理)试题2【含答案】

2022-2023学年四川省成都市高二下学期期中考试数学(理)试题一、单选题1.已知i 为虚数单位,复数1iiz -=,则z =()A .1B .2C .3D .2【答案】B【分析】由复数的四则运算可得1i z =--,再由复数模的计算公式求解即可.【详解】解:因为21i (1i)i(i i )1i i i iz --⋅===--=--⋅,所以22(1)(1)2z =-+-=.故选:B.2.如图茎叶图记录了甲乙两位射箭运动员的5次比赛成绩(单位:环),若两位运动员平均成绩相同,则运动员乙成绩的方差为()A .2B .3C .9D .16【答案】A【分析】根据甲、乙二人的平均成绩相同求出x 的值,再根据方差公式求出乙的方差即可.【详解】因为甲乙二人的平均成绩相同,所以8789909193888990919055x+++++++++=,解得2x =,故乙的平均成绩8889909192905++++=,则乙成绩的方差222222[(8890)(8990)(9090)(9190)(9290)]25s -+-+-+-+-==.故选:A.3.已知双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线方程为20x y -=,则双曲线C 的离心率为()A .2B .2C .3D .5【答案】D 【分析】先求得ba,进而求得双曲线的离心率.【详解】依题意,双曲线的一条渐近线方程为20,2x y y x -==,所以2222222,15b c c a b b e a a a a a +⎛⎫=====+= ⎪⎝⎭.故选:D4.已知m ,n 表示两条不同的直线,α表示平面.下列说法正确的是()A .若m α ,n α∥,则m n ∥B .若m α⊥,n α⊥,则m n ∥C .若m α⊥,m n ⊥,则n α∥D .若m α ,m n ⊥,则n α⊥【答案】B【分析】根据空间直线与平面间的位置关系判断.【详解】对于A ,若m α ,n α∥,则m 与n 相交、平行或异面,故A 错误;对于B ,若m α⊥,n α⊥,由线面垂直的性质定理得m n ∥,故B 正确;对于C ,若m α⊥,m n ⊥,则n α∥或n ⊂α,故C 错误;对于D ,若m α ,m n ⊥,则n 与α相交、平行或n ⊂α,故D 错误.故选:B .5.“4m =”是“直线()34420m x y -+-=与直线220mx y +-=平行”的()A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】C【分析】由直线()34420m x y -+-=与直线220mx y +-=平行可求得m 的值,集合充分条件、必要条件的定义判断可得出结论.【详解】若直线()34420m x y -+-=与直线220mx y +-=平行,则()()23442342m mm m ⎧-=⎪⎨--≠-⎪⎩,解得4m =.因此,“4m =”是“直线()34420m x y -+-=与直线220mx y +-=平行”的充要条件.故选:C.6.执行该程序框图,若输入的a 、b 分别为35、28,则输出的=a ()A .1B .7C .14D .28【答案】B【分析】根据程序框图列举出循环的每一步,即可得出输出结果.【详解】第一次循环,35a =,28b =,a b ¹成立,a b >成立,则35287a =-=;第二次循环,7a =,28b =,a b ¹成立,a b >不成立,则28721b =-=;第三次循环,7a =,21b =,a b ¹成立,a b >不成立,则21714b =-=;第四次循环,7a =,14b =,a b ¹成立,a b >不成立,则1477b =-=.7a b ==,则a b ¹不成立,跳出循环体,输出a 的值为7.故选:B.7.函数()()22e xf x x x =-的图像大致是()A .B .C .D .【答案】B【分析】由函数()f x 有两个零点排除选项A ,C ;再借助导数探讨函数()f x 的单调性与极值情况即可判断作答.【详解】由()0f x =得,0x =或2x =,选项A ,C 不满足,即可排除A ,C由()()22e x f x x x =-求导得()()22e xx x f '=-,当2x <-或2x >时,()0f x ¢>,当22x -<<时,()0f x '<,于是得()f x 在(),2-∞-和()2,+∞上都单调递增,在()2,2-上单调递减,所以()f x 在2x =-处取极大值,在2x =处取极小值,D 不满足,B 满足.故选:B8.已知曲线1cos :sin x C y θθ=+⎧⎨=⎩(θ为参数).若直线323x y +=与曲线C 相交于不同的两点,A B ,则AB 的值为A .12B .32C .1D .3【答案】C【详解】分析:消参求出曲线C 的普通方程:22(1)1x y -+=,再求出圆心(1,0)到直线的距离d ,则弦长222AB r d =-.详解:根据22cos sin 1θθ+=,求出曲线C 的普通方程为22(1)1x y -+=,圆心(1,0)到直线的距离3233231d -==+,所以弦长222AB r d =-321=14=-,选C.点睛:本题主要考查将参数方程化为普通方程,直线与圆相交时,弦长的计算,属于中档题.9.过椭圆C :()222210x y a b a b +=>>右焦点F 的直线l :20x y --=交C 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12-,则椭圆C 的方程为()A .22184x y +=B .22195x y +=C .22173x y +=D .221106x y +=【答案】A【分析】由l 与x 轴交点横坐标可得半焦距c ,设出点A ,B 坐标,利用点差法求出22,a b 的关系即可计算作答.【详解】依题意,焦点(2,0)F ,即椭圆C 的半焦距2c =,设1122(,),(,)A x y B x y ,00(,)P x y ,则有2222221122222222b x a y a b b x a y a b⎧+=⎨+=⎩,两式相减得:2212121212()()a ()()0b x x x x y y y y +-++-=,而1201202,2x x x y y y +=+=,且0012y x =-,即有2212122()()0b x x a y y --+-=,又直线l 的斜率12121y y x x -=-,因此有222a b =,而2224a b c -==,解得228,4a b ==,经验证符合题意,所以椭圆C 的方程为22184x y +=.故选:A10.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”.可类似地构造如下图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成一个大等边三角形.设22DF AF ==,若在大等边三角形中随机取一点,则此点取自小等边三角形(阴影部分)的概率是A .413B .21313C .926D .31326【答案】A【分析】根据几何概率计算公式,求出中间小三角形区域的面积与大三角形面积的比值即可.【详解】在ABD ∆中,3AD =,1BD =,120ADB ∠=︒,由余弦定理,得222cos12013AB AD BD AD BD =+-⋅︒=,所以213DF AB =.所以所求概率为224=1313DEF ABC S S ∆∆⎛⎫= ⎪⎝⎭.故选A.【点睛】本题考查了几何概型的概率计算问题,是基础题.11.如图,在四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD ,2PA AB ==,4=AD ,E 为PC 的中点,则面PCD 与直线BE 所成角的余弦值为()A .35B .23015C .2515D .10515【答案】D【分析】以点A 为坐标原点,AB 、AD 、AP 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法结合同角三角函数的基本关系可求得面PCD 与直线BE 所成角的余弦值.【详解】因为PA ⊥平面ABCD ,四边形ABCD 为矩形,以点A 为坐标原点,AB 、AD 、AP 所在直线分别为x 、y 、z轴建立如下图所示的空间直角坐标系,则()2,0,0B 、()2,4,0C 、()0,4,0D 、()002P ,,、()1,2,1E ,设平面PCD 的法向量为(),,n x y z = ,()2,0,0DC =uuu r,()0,4,2DP =-uuu r ,则20420n DC x n DP y z ⎧⋅==⎪⎨⋅=-+=⎪⎩ ,取1y =,可得()0,1,2n = ,()1,2,1BE =- ,所以,4230cos ,1565BE n BE n BE n⋅===⨯⋅,所以,22230105sin ,1cos ,11515BE n BE n ⎛⎫=-=-= ⎪ ⎪⎝⎭,因此,面PCD 与直线BE 所成角的余弦值为10515.故选:D.12.已知函数()ln 1f x x ax =+-有两个零点1x 、2x ,且12x x <,则下列命题正确的个数是()①01a <<;②122x x a +<;③121x x ⋅>;④2111x x a->-;A .1个B .2个C .3个D .4个【答案】C【分析】由()0f x =可得1ln xa x+=,设()ln 1x g x x +=,其中0x >,则直线y a =与函数()g x 的图象有两个交点,利用导数分析函数()g x 的单调性与极值,数形结合可判断①;构造函数()()2h x f x f x a ⎛⎫=-- ⎪⎝⎭,其中10x a <<,分析函数()h x 的单调性,可判断②③;分析出1211e x x <<<、1210x x a<<<,利用不等式的基本性质可判断④.【详解】由()0f x =可得ln 1x a x+=,令()ln 1x g x x +=,其中0x >,则直线y a =与函数()g x 的图象有两个交点,()2ln xg x x '=-,由()0g x '>可得01x <<,即函数()g x 的单调递增区间为()0,1,由()0g x '<可得1x >,即函数()g x 的单调递减区间为()1,+∞,且当10e x <<时,()ln 10x g x x+=<,当1e x >时,()ln 10x g x x +=>,如下图所示:由图可知,当01a <<时,直线y a =与函数()g x 的图象有两个交点,①对;对于②,由图可知,1211ex x <<<,因为()11ax f x a x x -'=-=,由()0f x ¢>可得10x a<<,由()0f x '<可得1x a >,所以,函数()f x 的增区间为10,a ⎛⎫⎪⎝⎭,减区间为1,a ⎛⎫+∞ ⎪⎝⎭,则必有1210x x a <<<,所以,110x a <<,则121x a a->,令()()222ln ln h x f x f x x a x x ax a a a ⎛⎫⎛⎫⎛⎫=--=----+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其中10x a <<,则()212112022a x a h x a x x x x a a ⎛⎫- ⎪⎝⎭'=-+=<⎛⎫-- ⎪⎝⎭,则函数()h x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,所以,()110h x h a ⎛⎫>= ⎪⎝⎭,即()1120f x f x a ⎛⎫--> ⎪⎝⎭,即()112f x f x a ⎛⎫<- ⎪⎝⎭,又()20f x =,可得()212f x f x a ⎛⎫<- ⎪⎝⎭,因为函数()f x 的单调递减区间为1,a ⎛⎫+∞ ⎪⎝⎭,则212x x a >-,即122x x a +>,②错;对于③,由1122ln 1ln 1ax x ax x =+⎧⎨=+⎩,两式相加整理可得()1212ln 22x x x x a a ++=>,所以,()12ln 0x x >,可得121x x >,③对;对于④,由图可知1211ex x <<<,则11x ->-,又因为21x a >,所以,2111x x a->-,④对.故选;C.【点睛】证明极值点偏移的相关问题,一般有以下几种方法:(1)证明122x x a +<(或122x x a +>):①首先构造函数()()()2g x f x f a x =--,求导,确定函数()y f x =和函数()y g x =的单调性;②确定两个零点12x a x <<,且()()12f x f x =,由函数值()1g x 与()g a 的大小关系,得()()()()()1112122g x f x f a x f x f a x =--=--与零进行大小比较;③再由函数()y f x =在区间(),a +∞上的单调性得到2x 与12a x -的大小,从而证明相应问题;(2)证明212x x a <(或212x x a >)(1x 、2x 都为正数):①首先构造函数()()2a g x f x f x ⎛⎫=- ⎪⎝⎭,求导,确定函数()y f x =和函数()y g x =的单调性;②确定两个零点12x a x <<,且()()12f x f x =,由函数值()1g x 与()g a 的大小关系,得()()()2211211a a g x f x f f x f x x ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭与零进行大小比较;③再由函数()y f x =在区间(),a +∞上的单调性得到2x 与21a x 的大小,从而证明相应问题;(3)应用对数平均不等式12121212ln ln 2x x x xx x x x -+<<-证明极值点偏移:①由题中等式中产生对数;②将所得含对数的等式进行变形得到1212ln ln x x x x --;③利用对数平均不等式来证明相应的问题.二、填空题13.已知函数()sin cos f x x x =+,则π4f ⎛⎫'= ⎪⎝⎭______.【答案】0【分析】求出()f x ',代值计算可得出π4f ⎛⎫' ⎪⎝⎭的值.【详解】因为()sin cos f x x x =+,则()cos sin f x x x '=-,故πππcos sin 0444f ⎛⎫'=-= ⎪⎝⎭.故答案为:0.14.天府绿道是成都人民朋友圈的热门打卡地,经统计,天府绿道旅游人数x (单位:万人)与天府绿道周边商家经济收入y (单位:万元)之间具有线性相关关系,且满足回归直线方程为ˆ12.60.6yx =+,对近五个月天府绿道旅游人数和周边商家经济收入统计如下表:x23 3.5 4.57y26384360a则表中a 的值为___________.【答案】88【分析】根据样本平均值满足回归直线方程求解.【详解】样本平均值满足回归直线方程,x 的平均值为23 3.5 4.5745++++=,则y 的平均值2638436012.640.65a++++=⨯+,解得88a =,故答案为:88.15.已知函数f (x )=e x +ax ﹣3(a ∈R ),若对于任意的x 1,x 2∈[1,+∞)且x 1<x 2,都有()()()211212x f x x f x a x x -<-成立,则a 的取值范围是__.【答案】(﹣∞,3]【分析】原不等式等价于()()1212f x a f x a x x ++<,构造()()f x ah x x+=,由函数单调性的定义可知,h (x )在[1,+∞)上单调递增,即有h '(x )≥0在[1,+∞)上恒成立,亦即a ﹣3≤xe x ﹣e x 在[1,+∞)上恒成立,构造g (x )=x e x ﹣e x ,由导数求解函数g (x )的最小值,即可得到a 的取值范围.【详解】原不等式等价于()()1212f x a f x a x x ++<,令()()f x ah x x+=,则不等式等价于h (x 1)<h (x 2)对于任意的x 1,x 2∈[1,+∞)且x 1<x 2都成立,故函数h (x )在[1,+∞)上单调递增,又函数f (x )=e x +ax ﹣3,则()e 3x ax a h x x +-+=,所以h '(x )2e e 30x x x ax -+-=≥在[1,+∞)上恒成立,即x e x﹣e x +3﹣a ≥0在[1,+∞)上恒成立,即a ﹣3≤x e x ﹣e x 在[1,+∞)上恒成立,令g (x )=x e x ﹣e x ,因为g '(x )=x e x >0在[1,+∞)上恒成立,所以g (x )在[1,+∞)上单调递增,则g (x )≥g (1)=0,所以a ﹣3≤0,解得a ≤3,所以实数a 的取值范围是(﹣∞,3].故答案为:(﹣∞,3].16.已知点F 为抛物线28y x =的焦点,()2,0M -,点N 为抛物线上一动点,当NFNM最小时,点N 恰好在以M 、F 为焦点的双曲线上,则该双曲线的渐近线的斜率的平方为______.【答案】222+【分析】作出图形,分析可知MN 与抛物线28y x =相切时,NFNM取最小值,设直线MN 的方程为2x my =-,将该直线的方程与抛物线的方程联立,求出m 的值,进而可求出点N 的坐标,利用双曲线的定义求出a 的值,结合c 的值可得出22221b ca a=-,即为所求.【详解】抛物线28y x =的焦点为()2,0F ,其准线为:2l x =-,如下图所示:过点N 作NE l ⊥,垂足为点E ,由抛物线的定义可得NF NE =,易知//EN x 轴,则NMF MNE ∠=∠,所以,cos cos NF NE MNE NMF MNMN==∠=∠,当NFNM取最小值时,NMF ∠取最大值,此时,MN 与抛物线28y x =相切,设直线MN 的方程为2x my =-,联立228x my y x=-⎧⎨=⎩可得28160y my -+=,则264640m ∆=-=,解得1m =±,由对称性,取1m =,代入28160y my -+=可得28160y y -+=,解得4y =,代入直线MN 的方程2x y =-可得2x =,即点()2,4N ,则224NF =+=,()2222442MN =++=,设双曲线的标准方程为()222210,0x y a b a b -=>>,由双曲线的定义可得2424a MN NF =-=-,所以,()221a =-,又因为2c =,则()221221c a ==+-,所以,()222221211222b c a a =-=+-=+.故答案为:222+.三、解答题17.在直角坐标系xOy 中,直线l 的参数方程为12232x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 4cos 0ρθθ-=.(1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)已知直线l 与曲线C 交于A ,B 两点,设()2,0M ,求MA MB 的值.【答案】(1)3230x y --=,24y x=(2)323【分析】(1)根据直线参数方程消掉参数t 即可得到直线的普通方程;(2)由直线参数方程中t 的几何意义即可求解.【详解】(1)∵直线l 的参数方程为12232x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),∴消去t 可得直线l 的普通方程为:3230x y --=.∵曲线C 的极坐标方程为2sin 4cos 0ρθθ-=,即22sin 4cos 0ρθ-ρθ=,又∵cos x ρθ=,sin y ρθ=,∴曲线C 的直角坐标方程为24y x =.(2)将12232x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数)代入24y x =,得238320t t --=,显然0∆>,即方程有两个不相等的实根,设点A ,B 在直线l 的参数方程中对应的参数分别是1t ,2t ,则1283t t +=,12323t t =-,∴12323MA MB t t ==.18.已知函数()32f x x x ax b =-++,若曲线()y f x =在()()0,0f 处的切线方程为1y x =-+.(1)求a ,b 的值;(2)求函数()y f x =在[]22-,上的最小值.【答案】(1)1a =-;1b =(2)9-【分析】(1)根据函数的切线方程即可求得参数值;(2)判断函数在[]22-,上单调性,进而可得最值.【详解】(1)由已知可得()01f b ==.又()232f x x x a '=-+,所以()01f a '==-.(2)由(1)可知()321f x x x x =--+,()2321f x x x '=--,令()0f x ¢>,解得13x <-或1x >,所以()f x 在12,3⎡⎫--⎪⎢⎣⎭和[]1,2上单调递增,在1,13⎡⎫⎪⎢⎣⎭上单调递减.又()29f -=-,()10f =,所以函数()y f x =在[]22-,上的最小值为9-.19.某校组织全体学生参加“数学以我为傲”知识竞赛,现从中随机抽取了100名学生的成绩组成样本,并将得分分成以下6组:[40,50),[50,60),[60,70),……,[90,100],统计结果如图所示:(1)试估计这100名学生得分的平均数(同一组中的数据用该组区间中点值代表);(2)现在按分层抽样的方法在[80,90)和[90,100]两组中抽取5人,再从这5人中随机抽取2人参加这次竞赛的交流会,求两人都在[90,100]的概率.【答案】(1)70.5(2)110【分析】(1)根据频率分布直方图直接代入平均数的计算公式即可求解;(2)根据分层抽样在[)80,90分组中抽取的人数为15531015⨯=+人,在[]90,100分组中抽取的人数为2人,利用古典概型的概率计算公式即可求解.【详解】(1)由频率分布直方图的数据,可得这100名学生得分的平均数:()450.01550.015650.02750.03850.015950.011070.5x =⨯+⨯+⨯+⨯+⨯+⨯⨯=分.(2)在[)80,90和[]90,100两组中的人数分别为:100×(0.015×10)=15人和100×(0.01×10)=10人,所以在[)80,90分组中抽取的人数为15531015⨯=+人,记为a ,b ,c ,在[]90,100分组中抽取的人数为2人,记为1,2,所以这5人中随机抽取2人的情况有:()()()()()()()()()(){},,,1,2,1,2,1,2,12ab ac bc a a b b c c Ω=,共10种取法,其中两人得分都在[]90,100的情况只有(){}12,共有1种,所以两人得分都在[]90,100的概率为110P =.20.在如图所示的几何体中,四边形ABCD 是边长为2的正方形,四边形ADPQ 是梯形,PD //QA ,PD ⊥平面ABCD ,且22PD QA ==.(1)求证:BC ⊥平面QAB ;(2)求平面PBQ 与平面PCD 所成锐二面角的余弦值.【答案】(1)证明见解析(2)66【分析】(1)由PD ⊥平面ABCD ,PD //QA ,可得QA ⊥平面ABCD ,进而得到QA BC ⊥,结合BC AB ⊥,进而得证;(2)以DA 为x 轴,DC 为y 轴,DP 为z 轴,D 为原点建立空间直角坐标系,找出平面PBQ 与平面PCD 的法向量,根据两面的法向量即可求解.【详解】(1)证明:∵PD ⊥平面ABCD ,PD //QA ,∴QA ⊥平面ABCD .∵BC ⊂平面ABCD ,∴QA BC ⊥.在正方形ABCD 中,BC AB ⊥,又AB QA A ⋂=,AB ,QA ⊂平面QAB ,∴BC ⊥平面QAB .(2)建立空间直角坐标系如图:以DA 为x 轴,DC 为y 轴,DP 为z 轴,D 为原点,则有()2,2,0B ,()002P ,,,()2,0,1Q ,()0,2,1QB =- ,()2,0,1PQ =- ,设平面PBQ 的一个法向量为(),,m x y z = ,则有00m QB m PQ ⎧⋅=⎪⎨⋅=⎪⎩ ,得2020y z x z -=⎧⎨-=⎩,令2z =,则1x =,1y =,()1,1,2m = ,易知平面PCD 的一个法向量为()1,0,0n =r ,设平面PBQ 与平面PCD 所成二面角的平面角为α,则16cos 616m n m n α⋅===⨯⋅ ,即平面PBQ 与平面PCD 所成锐二面角的余弦值66.21.已知椭圆()2222:10x y C a b a b +=>>的离心率为32,左、右焦点分别为1F 、2F ,P 为C 的上顶点,且12PF F △的周长为423+.(1)求椭圆C 的方程;(2)设过定点()0,2M 的直线l 与椭圆C 交于不同的两点A 、B ,且AOB ∠为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.【答案】(1)2214x y +=(2)332,,222⎛⎫⎛⎫--⋃ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭【分析】(1)由椭圆的定义以及离心率可得出a 、c 的值,进而可求得b 的值,由此可得出椭圆C 的方程;(2)分析可知直线l 的斜率存在,设直线l 的方程为2y kx =+,设()11,A x y 、()22,B x y ,将直线l 的方程与椭圆C 的方程联立,列出韦达定理,由0∆>结合0OA OB ⋅> 可求得k 的取值范围.【详解】(1)设椭圆C 的半焦距为c .因为12PF F △的周长为121222423PF PF F F a c ++=+=+,①因为椭圆C 的离心率为32,所以32c a =,②由①②解得2a =,3c =.则221b a c =-=,所以椭圆C 的方程为2214x y +=.(2)若直线l x ⊥轴,此时,直线l 为y 轴,则A 、O 、B 三点共线,不合乎题意,设直线l 的方程为2y kx =+,设()11,A x y 、()22,B x y ,联立()22221141612042x y k x kx y kx ⎧+=⎪⇒+++=⎨⎪=+⎩,()()()222Δ164411216430k k k =-+⨯=->,解得234k >,由韦达定理可得1221641k x x k +=-+,1221241x x k =+,则()()()2121212122224y y kx kx k x x k x x =++=+++,又AOB ∠为锐角,A 、O 、B 不共线,则cos 0AOB ∠>,即()()()22221212121221213216412441k k k OA OB x x y y k x x k x x k +-++⋅=+=++++=+ 22164041k k -=>+,解得204k <<,所以,2344k <<,解得322k -<<-或322k <<,所以实数k 的取值范围为332,,222⎛⎫⎛⎫--⋃ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.【点睛】方法点睛:圆锥曲线中取值范围问题的五种求解策略:(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新的参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4)利用已知的不等关系建立不等式,从而求出参数的取值范围;(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.22.已知函数()2ln f x x x ax a =-+.(1)若()f x a ≤,求a 的取值范围;(2)若()f x 存在唯一的极小值点0x ,求a 的取值范围,并证明()0210a f x -<<.【答案】(1)1[,)e +∞(2)12a <;证明见解析;【分析】(1)可利用分离参数法,将问题转化为ln x a x ≥恒成立,然后研究ln ()x g x x=的单调性,求出最大值;(2)通过研究()f x '在()0,∞+内的变号零点,单调性情况确定唯一极小值点;若不能直接确定()f x '的零点范围及单调性,可以通过研究()g x '的零点、符号来确定()f x '的单调性,和特殊点(主要是能确定()f x '符号的点)处的函数值符号,从而确定()f x 的极值点的存在性和唯一性.【详解】(1)()f x 的定义域为()0,∞+.由()f x a ≤,得ln x a x ≥在()0,x ∈+∞恒成立,转化为max ln ()x a x ≥令ln ()x g x x =,则21ln ()x g x x -'=,∴ln ()x g x x=在()0,e 单调递增,在(),e +∞单调递减,∴()g x 的最大值为1(e)g e=,∴1a e ≥.∴a 的取值范围是1[,)e+∞.(2)设()()g x f x '=,则()ln 12g x x ax =+-,1()2g x a x'=-,0x >.①当a<0时,()0g x '>恒成立,()g x 在()0,∞+单调递增,又()1120g a =->,212121()21122(1)0a a a g e a ae a e ---=-+-=-<所以()g x 存在唯一零点()10,1x ∈.当()10,x x ∈时,()()0f x g x '=<,当()1,1x x ∈时,()()0f x g x '=>.所以()f x 存在唯一的极小值点01x x =.②当0a =时,()ln 1g x x =+,()g x 在()0,∞+单调递增,1()0g e =,所以()g x 在()0,∞+有唯一零点1e.当1(0,)∈x e时,()()0f x g x '=<,当1(,1)x e∈时,()()0f x g x '=>.所以()f x 存在唯一的极小值点01x e =.③当0a >时,令()0g x '>,得1(0,)2x a ∈;令()0g x '<,得1(,)2x a ∈+∞,∴()g x 在1(0,)2a 单调递增,在1(,)2a+∞单调递减,所以()g x 的最大值为1()ln(2)2g a a =-④当102a <<时,1()0g e<,()1120g a =->,1()02g a >,21212()212(1)10l 1n g a a aa a =-+-<--+-=-<(或用11111()20a a g eae a --=-<)由函数零点存在定理知:()g x 在区间()0,1,()1,+∞分别有一个零点2x ,3x 当()20,x x ∈时,()()0f x g x '=<;当()23,x x x ∈时,()()0f x g x '=>;所以()f x 存在唯一的极小值点02x x =,极大值点3x .⑤当12a ≥时,102g a ⎛⎫≤ ⎪⎝⎭,()()0f x g x '=≤所以()f x 在()0,∞+单调递减,无极值点.由①②④可知,a 的取值范围为1,2⎛⎫-∞ ⎪⎝⎭,当()00,x x ∈时,()0f x '<;所以()f x 在()00,x 单调递减,()0,1x 单调递增.所以()0(1)0f x f <=.由()000ln 120f x x ax '=+-=,得00ln 21x ax =-.所以20000ln ()f x x ax ax =-+2000(21)x ax ax a=--+200ax a x =+-2000()(21)1f x a ax a x --=--+[]00(1)(1)1x a x =-+-,因为0(0,1)x ∈,1,2a ⎛⎫∈-∞ ⎪⎝⎭,所以010x -<,()01112102a x +-<⨯-=所以()0(21)0f x a -->,即()021f x a >-;所以()0210a f x -<<.【点睛】本题通过导数研究函数的零点、极值点的情况,一般是先研究导函数的零点、单调性,从而确定原函数的极值点存在性和个数.同时考查学生运用函数思想、转化思想解决问题的能力和逻辑推理、数学运算等数学素养.。

高中数学 第三章第3节几何概型 理 知识精讲人教新课标A版必修3

高中数学 第三章第3节几何概型 理 知识精讲人教新课标A版必修3

高二数学 第三章第3节几何概型 理 知识精讲人教新课标A 版必修3一、学习目标:(1)了解几何概型的概念及基本特点 (2)熟练掌握几何概型中概率的计算公式 (3)会进行简单的几何概率计算(4)能运用模拟的方法估计概率,掌握模拟估计面积的思想二、重点、难点:重点:掌握几何概型中概率的计算公式;并能进行简单的几何概率计算。

难点:将实际问题转化为几何概型,并能正确应用几何概型的概率计算公式解决问题。

三、考点分析:本部分内容是新增的内容,对几何概型的要求仅限于体会几何概型的意义,所以在练习时,侧重于一些简单的试题即可。

(1)区别古典概型与几何概型(2)理解随机模拟求几何概型的概率1、几何概型的概念: 对于一个随机试验,我们将每个基本事件理解为从某个特定的可以几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则可以理解为恰好取到上述区域内的某个指定区域中的点。

这里的区域可以是线段,平面图形,立体图形等.用这种方法处理随机试验,称为几何概型。

2、几何概型的基本特点:(1)试验中所有可能出现的结果(基本事件)有无限多个; (2)每个基本事件出现的可能性相等。

3、几何概型的概率:一般地,在几何区域D 中随机地取一点,记事件“该点落在其内部一个区域d 内”为事件A ,则事件A 发生的概率()d P A D的测度的测度。

说明:(1)D 的测度不为0;(2)其中“测度”的意义依D 确定,当D 分别是线段,平面图形,立体图形时,相应的“测度”分别是长度,面积和体积。

(3)区域为“开区域”;(4)区域D 内随机取点是指:该点落在区域内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的测度成正比而与其形状位置无关。

4、模拟计算几何概型的步骤: (1)构造图形(作图);(2)模拟投点,计算落在阴影部分的点的频率m n; (3)利用()m d P A n D ≈=的测度的测度算出相应的量。

高二数学高中数学新课标人教A版试题答案及解析

高二数学高中数学新课标人教A版试题答案及解析

高二数学高中数学新课标人教A版试题答案及解析1.做变速直线运动的物体的速度满足,该物体在内经过的路程为9,则的值为( ) A.1B.2C.3D.4【答案】C【解析】将区间均分成个小区间,记第个区间为,此区间长为,用小矩形面积近似代替相应的小曲边梯形的面积,则近似地等于速度曲线与直线t=0,t=a,t轴围成的曲边梯形的面积.依题意得,∴解得a=3.【考点】定积分的概念.2.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有()A.20种B.30种C.40种D.60种【答案】A【解析】根据题意,分析可得,甲可以被分配在星期一、二、三;据此分3种情况讨论,计算可得其情况数目,进而由加法原理,计算可得答案.解:根据题意,要求甲安排在另外两位前面,则甲有3种分配方法,即甲在星期一、二、三;分3种情况讨论可得,甲在星期一有A42=12种安排方法,甲在星期二有A32=6种安排方法,甲在星期三有A22=2种安排方法,总共有12+6+2=20种;故选A.3.设是复数,则下列命题中的假命题是()A.若,则B.若,则C.若,则D.若,则【答案】D【解析】对于A中,若,则,所以是正确的;对于B中,若,则和互为共轭复数,所以是正确的;对于C中,设,若,则,,所以是正确的;对于D中,若,则,而,所以不正确,故选D.【考点】复数的概念与运算.4.已知复数,则()A.B.z的实部为1C.z的虚部为﹣1D.z的共轭复数为1+i【答案】C【解析】由题意可得,所以A错;C,D均错。

所以选B5.设函数为奇函数,其图象在点处的切线与直线垂直,导函数的最小值为.(1)求的值;(2)求函数的单调递增区间,并求函数在上的最大值和最小值.【答案】(1) (2) 最大值是,最小值是.【解析】(1)利用函数为奇函数,建立恒等式⋯①,切线与已知直线垂直得⋯②导函数的最小值得⋯③.解得的值;(2)通过导函数求单调区间及最大值,最小值.试题解析:(1)因为为奇函数,所以即,所以, 2分因为的最小值为,所以, 4分又直线的斜率为,因此,,∴. 6分(2)单调递增区间是和. 9分在上的最大值是,最小值是. 12分【考点】奇函数的性质,求函数的导数,及通过导数研究函数的单调区间及最值.6.用反证法证明命题“如果,那么”时,假设的内容应是 ( )A.B.C.且D.或【答案】C【解析】略7.用反证法证明命题“设为实数,则方程没有实数根”时,要做的假设是A.方程至多有一个实根B.方程至少有一个实根C.方程至多有两个实根D.方程恰好有两个实根【答案】A【解析】至少有一个实根的反面为没有实根 ,所以选A.8.已知与之间的一组数据:则与的线性回归方程为必过点()A.B.C.D.【答案】D【解析】回归直线必过点(),而,,所以回归直线过点,故选D.【考点】线性回归直线方程9.若不等式对任意的恒成立,则的取值范围是()A.B.C.D.【答案】D【解析】∵,∴,∴,∴,而为减函数,∴当时,函数取得最小值,最小值为1,∴.【考点】1.恒成立问题;2.函数的单调性;3.对数式.10.已知,函数,若.(1)求的值并求曲线在点处的切线方程;(2)设,求在上的最大值与最小值.【答案】(1)(2)在上有最大值1,有最小值.【解析】解:(1) ,由得,所以;当时,, ,又,所以曲线在处的切线方程为,即; 6分(2)由(1)得,又, , ,∴在上有最大值1,有最小值.- 12分【考点】导数的运用点评:主要是根据导数的几何意义求解切线方程以及函数的最值,属于中档题。

2020年新人教版高二数学必修第一章重点解析整理

2020年新人教版高二数学必修第一章重点解析整理

2020年新人教版高二数学必修3第一章重点解析整理【篇一:几何概型】【考点分析】在段考中,多以选择题和填空题的形式考查几何概型的计算公式等知识点,也会以解答题的形式考查。

在高考中有时会以选择题和填空题的形式考查几何概型的计算公式,有时也不考,一般属于中档题。

【知识点误区】求几何概型时,注意首先寻找到一些重要的临界位置,再解答。

一般与线性规划知识有联系。

【同步练习题】1.已知函数f(x)=log2x,若在[1,8]上任取一个实数x0,则不等式1≤f(x0)≤2成立的概率是.解析:区间[1,8]的长度为7,满足不等式1≤f(x0)≤2即不等式1≤log2x0≤2,解答2≤x0≤4,对应区间[2,4]长度为2,由几何概型公式可得使不等式1≤f(x0)≤2成立的概率是27.点评:本题考查了几何概型问题,其与线段上的区间长度及函数被不等式的解法问题相交汇,使此类问题具有一定的灵活性,关键是明确集合测度,本题利用区间长度的比求几何概型的概率.2.在区间[-3,5]上随机取一个数a,则使函数f(x)=x2+2ax+4无零点的概率是.解析:由已知区间[-3,5]长度为8,使函数f(x)=x2+2ax+4无零点即判别式Δ=4a2-16<0,解得-2点评:本题属于几何概型,只要求出区间长度以及满足条件的区间长度,由几何概型公式解答.【篇二:古典概型】古典概型的基本概念1.基本事件:在一次试验中可能出现的每一个基本结果称为基本事件;2.等可能基本事件:若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件;3.古典概型:满足以下两个条件的随机试验的概率模型称为古典概型①所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等;4.古典概型的概率:如果一次试验的等可能基本事件共有n 个,那么每一个等可能基本事件发生的概率都是1,如果某个事件A包含了其中m个等可能基本事件,那么事件A发生的概率为nP(A)?m.n知识点一:古典概型的基本概念例1:从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?思路分析:题意分析:本试题考查一次试验中用列举法列出所有基本事件的结果,而画树状图是列举法的基本方法.解题思路:为了了解基本事件,我们可以按照字典排序的顺序,把所有可能的结果都列出来.或者利用树状图将它们之间的关系列出来.解答过程:解法一:所求的基本事件共有6个:A?{a,b},B?{a,c},C?{a,d}D?{b,c},E?{b,d},F?{c,d}解法二:树状图解题后的思考:用树状图求解一次试验中的基本事件数比较直观、形象,可做到不重不漏.掌握列举法,学会用数形结合、分类讨论的思想解决概率的计算问题.例2:(1)向一个圆面内随机地投射一个点,如该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?(2)如图,某同学随机地向一靶心射击,这一试验的结果只有有限个:命中10环、命中9环??命中5环和不中环.你认为这是古典概型吗?为什么?思路分析:题意分析:本题考查古典概型的概念.应明确什么是古典概型及其应具备什么样的条件.解题思路:结合古典概型的两个基本特征可进行判定解决.解答过程:答:(1)不是古典概型,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件.(2)不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环??命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件.解题后的思考:判定是不是古典概型,主要看两个方面,一是实验结果是不是有限的;另一个就是每个事件是不是等可能的.例3:单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择正确的答案.假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?思路分析:题意分析:本题考查古典概型概率的求解运算.解题思路:解本题的关键,即讨论这个问题什么情况下可以看成古典概型.如果考生掌握了全部或部分考查内容,这都不满足古典概型的第2个条件——等可能性,因此,只有在假定考生不会做,随机地选择了一个答案的情况下,才可将此问题看作古典概型.解答过程:这是一个古典概型,因为试验的可能结果只有4个:选择A、选择B、选择C、选择D,即基本事件共有4个,考生随机地选择一个答案是选择A,B,C,D的可能性是相等的.从而由古典概型的概率计算公式得:P(答对\答对所包含的基本事件的个数1==0.25基本事件的总数4解题后的思考:运用古典概型的概率公式求概率时,一定要先判定该试题是不是古典概型,然后明确试验的总的基本事件数,和事件A发生的基本事件数,再借助于概率公式运算.小结:本知识点的例题主要考查对古典概型及其概率概念的基本理解.把握古典概型的两个特征是解决概率问题的第一个关键点;理解一次试验中的所有基本事件数,和事件A发生的基本事件数,是解决概率问题的第二个关键点.知识点二:古典概型的运用例4:同时掷两个骰子,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是5的结果有多少种?(3)向上的点数之和是5的概率是多少?(4)为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?思路分析:题意分析:本题考查了古典概型的基本运算问题.解题思路:先分析“同时掷两个骰子的所有事件数”,然后分析事件A:向上的点数之和为5的基本事件数,最后结合概率公式运算.同时可以运用举一反三的思想自行设问、解答.解答过程:解:(1)掷一个骰子的结果有6种,我们把两个骰子标上记号1,2以便区分,由于1号骰子的结果都可与2号骰子的任意一个结果配对,我们用一个“有序实数对”来表示组成同时掷两个骰子的一个结果(如表),其中第一个数表示掷1号骰子的结果,第二个数表示掷2号骰子的结果.(可由列表法得到)1号骰子2号骰子1(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)123456由表中可知同时掷两个骰子的结果共有36种.(2)在上面的结果中,向上的点数之和为5的结果有4种,分别为:(1,4),(2,3),(3,2),(4,1)(3)由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,由古典概型的概率计算公式可得P(A)=A所包含的基本事件的个数41==基本事件的总数369(4)如果不标上记号,类似于(1,2)和(2,1)的结果将没有区别.这时,所有可能的结果将是:(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5)(5,6)(6,6)共有21种,和是5的结果有2个,它们是(1,4)(2,3),则所求的概率为P(A)=A所包含的基本事件的个数2=基本事件的总数21这就需要我们考察两种解法是否满足古典概型的要求了.可以通过展示两个不同的骰子所抛掷出来的点,感受第二种方法构造的基本事件不是等可能事件.解题后的思考:考查同学们运用古典概型的概率计算公式时应注意验证所构造的基本事件是否满足古典概型的第二个条件.对于同时抛掷的问题,我们要将骰子编号,因为这样就能反映出所有的情况,不至于把(1,2)和(2,1)看作相同的情况,保证基本事件的等可能性.我们也可将此试验通过先后抛掷来解决,这样就有顺序了,则基本事件的出现也是等可能的.例5:从含有两件正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率.思路分析:题意分析:本题考查的是不放回抽样的古典概型概率的运用解题思路:首先注意到该题中取出的过程是有顺序的.同时明白一次试验指的是“不放回的,连续的取两次”.先列举出试验中的所有基本事件数,然后求事件A的基本事件数,利用概率公式求解.解答过程:解法1:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a1,a2),(a1,b1),(a2,a1),(a2,b1),(b1,a1),(b1,a2).其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品.用A表示“取出的两件中,恰好有一件次品”这一事件,则A=[(a1,b1),(a2,b1),(b1,a1),(b1,a2)]事件A由4个基本事件组成,因而P(A)=42=63解法2:可以看作不放回3次无顺序抽样,先按抽取顺序(x,y)记录结果,则x有3种可能,y有2种可能,但(x,y),(y,x)是相同的,所以试验的所有结果有3×2÷2=3种,按同样的方法,事件B包含的基本事件个数为2×1÷1=2,因此P(B)=23解题后的思考:关于不放回抽样,计算基本事件的个数时,既可以看作是有顺序的,也可以看作是无顺序的,其结果是一样的,但无论选择哪一种方式,观察的角度必须一致,否则会导致错误.例6:从含有两件正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后放回,连续取两次,求取出的两件产品中恰有一件次品的概率.思路分析:题意分析:本题考查放回抽样的概率问题.解题思路:首先注意到该题中取出的过程是有顺序的.同时明白一次试验指的是“有放回的,连续的取两次”.解答过程:每次取出一个后放回,连续取两次,其一切可能的结果组成的基本事件有9个,即(a1,a1),(a1,a2)和(a1,b1)(a2,a1),(a2,b1)和(a2,a2)(b1,a1),(b1,a2)和(b1,b1)其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品.用A表示“取出的两件中,恰好有一件次品”这一事件,则A=[(b1,a1),(b1,a2),(a2,b1),(a1,b1)]事件A由4个基本事件组成,因此P(A)=4.9解题后的思考:对于有放回抽样的概率问题我们要理解每次取的时候,总数是不变的,且同一个体可被重复抽取,同时,在求基本事件数时,要做到不重不漏.小结:(1)古典概型概率的计算公式是非常重要的一个公式,要深刻体会古典概型的概念及其概率公式的运用,为我们学好概率奠定基础.(2)体会求解不放回和有放回概率的题型.知识点三:随机数产生的方法及随机模拟试验的步骤例7:某篮球爱好者,做投篮练习,假设其每次投篮命中的概率是40%,那么在连续三次投篮中,恰有两次投中的概率是多少?思路分析:题意分析:本题考查的是近似计算非古典概型的概率.解题思路:其投篮的可能结果有有限个,但是每个结果的出现不是等可能的,所以不能用古典概型的概率公式计算,我们用计算机或计算器做模拟试验可以模拟投篮命中的概率为40%.解答过程:我们通过设计模拟试验的方法来解决问题,利用计算机或计算器可以生产0到9之间的取整数值的随机数.我们用1,2,3,4表示投中,用5,6,7,8,9,0表示未投中,这样可以体现投中的概率是40%.因为是投篮三次,所以每三个随机数作为一组.例如:产生20组随机数:812,932,569,683,271,989,730,537,925,488907,113,966,191,431,257,393,027,556,458这就相当于做了20次试验,在这组数中,如果恰有两个数在1,2,3,4中,则表示恰有两次投中,它们分别是812,932,271,191,393,即共有5个数,我们得到了三次投篮中恰有两次投中的概率近似为解题后的思考:(1)利用计算机或计算器做随机模拟试验,可以解决非古典概型的概率的求解问题.(2)对于上述试验,如果亲手做大量重复试验的话,花费的时间太多,因此利用计算机或计算器做随机模拟试验可以大大节省时间.(3)随机函数(RANDBETWEEN)(a,b)产生从整数a到整数b的取整数值的随机数.小结:能够简单的体会模拟试验求解非古典概型概率的方法和步骤.高考对这部分内容不作更多的要求,了解即可.5=25%.20【篇三:随机事件】一、确定事件必然发生的事件:当A是必然发生的事件时,P(A)=1不可能发生的事件:当A是不可能发生的事件时,P(A)=0二、随机事件:当A是可能发生的事件时,发生的频率mn 会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率。

必修三第3章第3节几何概型

必修三第3章第3节几何概型

年 级 高二 学 科 数学版 本苏教版课程标题 必修三第3章第3节 几何概型编稿老师 褚哲 一校 黄楠二校张琦锋审核孙永涛一、学习目标1. 正确理解几何概型的概念。

2. 掌握几何概型的概率计算公式。

二、重点、难点几何概型的概念、概率计算公式及应用三、考点分析本讲内容在高考中所占比重较小,近几年的高考对概率相关知识的要求降低,主要是以现实生活为背景,以几何图形为载体,重点考查几何概型的概率的求法,多以选择题、填空题形式出现。

其中与长度、面积(体积)有关的几何概型更为重要。

1. 几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型。

几何概型的特点:(1)试验中所有可能出现的结果(基本事件)有无限多个;(2)每个基本事件出现的可能性相等。

2. 几何概型的概率公式: P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A知识点一:几何概型与古典概型的区别例1 判断下列试验中事件A 发生的概率属于古典概型,还是几何概型。

(1)抛掷两颗骰子,求出现两个“4点”的概率;(2)有一个转盘,甲乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜,求甲获胜的概率。

思路分析:本题考查几何概型与古典概型的特点。

古典概型具有有限性和等可能性,而几何概型则是在试验中会出现无限多个结果,且与构成事件的区域长度(面积或体积)有关。

解题过程:(1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型;(2)游戏中转盘指针指向B 区域时有无限多个结果,且不难发现“指针落在阴影部分”,所求概率可以用B 区域的面积与总面积的比来衡量,即与区域面积有关,因此属于几何概型。

解题后反思:要注意几何概型与古典概型的区别:古典概型具有有限性和等可能性,而几何概型则是在试验中会出现无限多个结果,且与构成事件的区域长度(面积或体积)有关。

2025年人教版(2024)高二数学下册阶段测试试卷含答案

2025年人教版(2024)高二数学下册阶段测试试卷含答案

2025年人教版(2024)高二数学下册阶段测试试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四总分得分评卷人得分一、选择题(共9题,共18分)1、已知两个变量x与y之间具有线性相关关系;5次试验的观测数据如下:。

x 100 120 140 160 180y 45 54 62 75 92那么变量y关于x的回归直线方程只可能是()A.B.C.D.2、当z=-时,z100+z50+1的值等于().A. 1B. -1C. iD. -i3、【题文】设等差数列{a n}的前n项和为若则当取最大值等于()A. 4B. 5C. 6D. 74、【题文】若则下列不等式成立的是()A.B.C.D.5、【题文】在中,内角满足则=()A B C D6、【题文】sin150°的值为。

A B C D7、【题文】若变量满足则点表示区域的面积为()A.B.C.D.8、如图所示的程序框图输出的结果是()A.B.C.D.9、已知平面α的一个法向量=(2,1,2),点A(-2,3,0)在α内,则P(1,1,4)到α的距离为()A. 10B. 4C.D.评卷人得分二、填空题(共9题,共18分)10、已知点P,A,B,C,D都是直径为3的球O表面上的点,PA⊥平面ABCD,四边形ABCD是正方形,若PA=1,则几何体P-ABCD的体积为____.11、设(2x-3)4=a+a1x+a2x2+a3x3+a4x4,则a+a1+a2+a3+a4=____.12、直线被圆x2+y2-4y=0所截得的弦长为____.13、已知E,F,G,H分别为空间四边形ABCD四条边AB,BC,CD,DA的中点,若BD=2,AC=6,那么EG2+HF2=____.14、点P在直线上,O为原点,则|的最小值是____15、【题文】向长为40厘米宽为30厘米的矩形的外接圆内投入黄豆粒,黄豆粒落到矩形内的概率等于____.16、【题文】已知椭圆上任意一点P及点则的最大值为____17、如图,正方体ABCD﹣A1B1C1D1的棱长为1,N为CD1中点,M为线段BC1上的动点,(M不与B,C1重合)有四个命题:①CD1⊥平面BMN;②MN∥平面AB1D1;③平面AA1CC1⊥平面BMN;④三棱锥D﹣MNC的体积有最大值.其中真命题的序号是____.18、过原点与曲线y=x鈭�1相切的切线方程为 ______ .评卷人得分三、作图题(共5题,共10分)19、著名的“将军饮马”问题:有一位将军骑着马要从A地走到B地;但途中要到水边喂马喝一次水,则将军怎样走最近?20、A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)21、已知,A,B在直线l的两侧,在l上求一点,使得PA+PB最小.(如图所示)22、著名的“将军饮马”问题:有一位将军骑着马要从A地走到B地;但途中要到水边喂马喝一次水,则将军怎样走最近?23、A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)评卷人得分四、计算题(共1题,共10分)24、已知f(x)=∫1x(4t3﹣)dt,求f(1﹣i)•f(i).参考答案一、选择题(共9题,共18分)1、A【分析】计算出横标和纵标的平均数:代入回归直线方程检验:A:适合此方程.线性回归方程=x+必过样本中心点;故A正确.故选A.【解析】【答案】线性回归方程= x+ 必过样本中心点;首先计算出横标和纵标的平均数,代入回归直线方程检验即可.2、D【分析】【解析】试题分析:根据题意,当z=-时,z100+z50+1=的值等于-i,故选D.考点:导数研究函数的单调性【解析】【答案】D3、B【分析】【解析】试题分析:由得又所以故所以前项的和最大;选B.考点:等差数列通项公式、等差数列前项和.【解析】【答案】B4、B【分析】【解析】此题考查偶函数的性质。

高二数学几何概型2

高二数学几何概型2
二次构造柱泵:https://
ห้องสมุดไป่ตู้
[单选]移植肾动态显像,肾既无血流灌注,也无摄取,静态显像为放射性缺损区,提示()。A.血管栓塞B.急性肾小管坏死C.尿漏D.尿路梗阻E.环孢菌素A中毒 [填空题]()是当地太阳位于正南向的瞬时为正午12时的计时方式。 [单选]小儿水肿脾肾阳虚证的治法是()A.疏风利水B.淡渗利湿C.泻肺逐水D.温肾健脾E.辛开苦降 [单选]关先生以0.2元每股的价格买入行权价为20元的甲股票认购期权(合约单位为10000股),则股票在到期日价格为多少事,王先生能获得2000的利润()。A、19.8B、20C、20.2D、20.4 [单选]从下列城市中没有提出申请举办2010年世博会()A、中国上海B、韩国丽水C、葡萄牙里斯本D、俄罗斯莫斯科 [单选,A2型题]用森田机制解释恐怖症的说法中,不正确的是()A.恐怖症患者多具有神经质性格倾向B.正常人出现一过性恐怖情绪时,如不特别在意,常可自行消逝C.有神经质倾向的人往往对自己的恐怖感觉特别注意D.恐怖症患者所害怕的是引起恐怖感觉的事件E.治疗方法就是让患者对自己的恐怖 quot;听其自然&quot; [单选,A1型题]反刍动物前胃迟缓的主要临诊特征不包括()A.前胃蠕动机能减弱B.食欲减退C.反刍障碍D.呼吸极度困难E.前胃蠕动机能停止 [单选]有效成立的行政行为非依法律规定不得随意变更、撤销或者废止,这体现了行政行为的()A.拘束力B.执行力C.确定力D.公定力 [多选]电动机按用途可分为驱动用电动机和控制用电动机,其中驱动用电动机主要包括()。A.步进电动机B.伺服电动机C.家电用电动机D.电动工具用电动机 [单选,B1型题]属于神经反射的是()A.面部表情、有无异常行为等B.握持C.颈抵抗D.克氏征、四肢肌张力E.精神状态、拥抱反射

高二数学几何概型知识与常见题型梳理

高二数学几何概型知识与常见题型梳理

几何概型知识与常见题型梳理几何概型和古典概型是随机概率中两类主要模型,是概率考查中的重点,下面就几何概型的知识与常见题型做一梳理,以期能使读者对于这一知识点做到脉络清晰,条理分明。

一 基本知识剖析:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。

2.几何概型的概率公式: P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ;:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等. :一方面,古典概型具有有限性,即试验结果是可数的;而几何概型则是在试验中出现无限多个结果,且与事件的区域长度(或面积、体积等)有关,即试验结果具有无限性,是不可数的。

这是二者的不同之处;另一方面,古典概型与几何概型的试验结果都具有等可能性,这是二者的共性。

通过以上对于几何概型的基本知识点的梳理,我们不难看出其要核是:要抓住几何概型具有无限性和等可能性两个特点,无限性是指在一次试验中,基本事件的个数可以是无限的,这是区分几何概型与古典概型的关键所在;等可能性是指每一个基本事件发生的可能性是均等的,这是解题的基本前提。

因此,用几何概型求解的概率问题和古典概型的基本思路是相同的,同属于“比例法”,即随机事件A 的概率可以用“事件A 包含的基本事件所占的图形的长度、面积(体积)和角度等”与“试验的基本事件所占总长度、面积(体积)和角度等”之比来表示。

下面就几何概型常见类型题作一归纳梳理。

二 常见题型梳理例1. 小赵欲在国庆六十周年之后从某车站乘车外出考察,已知该站发往各站的客车均每小时一班,求小赵等车时间不多于10分钟的概率.例2 在长为12cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,求这个正方形的面积介于36cm 2与81cm 2之间的概率.2.面积、体积之比类型例3. (08江苏高考6).在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随意投一点,则落入E 中的概率为 。

7.4.2 超几何分布 -高二数学同步精品讲义(人教A版2019选择性必修第三册)(解析版)

7.4.2 超几何分布 -高二数学同步精品讲义(人教A版2019选择性必修第三册)(解析版)

7.4.2超几何分布课程标准课标解读1.理解超几何分布概率模型的特点,理解超几何分布与古典概型之间的关系;2.根据超几何分布概率模型的特点,会求超几何概型的分布列、期望、方差;3.在实际问题中能用超几何概型解决实际问题.通过本节课的学习,能解决数学中的超几何概率的相关问题,能建立超几何概型解决实际问题.知识点1超几何分布1.定义:在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=k n k M N MnNC C C --,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *,即如果随机变量X 的分布列具有下表形式X01…mP00nM N MnNC CC--11nM N MnNC CC--…m n mM N MnNC CC--则称随机变量X服从超几何分布.2.均值:若X服从参数为N,M,n的超几何分布,则E(X)=nMN.3.对超几何分布的理解(1)在超几何分布的模型中,“任取n件”应理解为“不放回地一次取一件,连续取n件”.如果是有放回地抽取,就变成了n重伯努利试验,这时概率分布是二项分布.所以两个分布的区别就在于是否为有放回地抽取.(2)若随机变量X满足:试验是不放回地抽取n次;随机变量X表示抽到两类中其中一类物品的件数.则该随机变量服从超几何分布.(3)超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数,超几发布的特征是:①考察对象分两类;②已知各类对象的个数;③从中抽取若干个个体,考查某类个体数X的概率分布超几何分布主要用于抽检产品,摸不同类别的小球概率模型,其实质是古典概型.【即学即练1】下列问题中,哪些属于超几何分布问题,说明理由.(1)抛掷三枚骰子,所得向上的数是6的骰子的个数记为X,求X的分布列;(2)有一批种子的发芽率为70%,任取10颗种子做发芽实验,把实验中发芽的种子的个数记为X,求X的分布列;(3)盒子中有红球3只,黄球4只,蓝球5只,任取3只球,把不是红色的球的个数记为X,求X的分布列;(4)某班级有男生25人,女生20人.选派4名学生参加学校组织的活动,班长必须参加,其中女生人数记为X,求X的分布列;(5)现有100台平板电脑未经检测,抽取10台送检,把检验结果为不合格的平板电脑的个数记为X,求X的分布列.【解析】(1)(2)中样本没有分类,不是超几何分布问题,是重复试验问题.(3)(4)符合超几何分布的特征,样本都分为两类,随机变量X表示抽取n件样本某类样本被抽取的件数,是超几何分布.(5)中没有给出不合格产品数,无法计算X的分布列,所以不属于超几何分布问题.【即学即练2】现有来自甲、乙两班学生共7名,从中任选2名都是甲班的概率为1 7 .(1)求7名学生中甲班的学生数;(2)设所选2名学生中甲班的学生数为ξ,求ξ≥1的概率.【解析】(1)设甲班的学生人数为M ,则C 2MC 27=M (M -1)42=17,即M 2-M -6=0,解得M =3或M =-2(舍去).∴7名学生中甲班的学生共有3人.(2)由题意可知,ξ服从超几何分布.∴P (ξ≥1)=P (ξ=1)+p (ξ=2)=C 13C 14C 27+C 23C 04C 27=47+17=57.【即学即练3】有N 件产品,其中有M 件次品,从中不放回地抽n 件产品,抽到的次品数的均值是()A .n B.(n -1)M N C.nMND.(n +1)M N【解析】设抽到的次品数为X ,则有N 件产品,其中有M 件次品,从中不放回地抽n 件产品,抽到的次品数X 服从超几何分布,∴抽到的次品数的均值E (X )=nMN.故选C 【即学即练4】某校高一,高二年级的学生参加书法比赛集训,高一年级推荐了4名男生,2名女生,高二年级推荐了3名男生,5名女生,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队参加市上比赛.(1)求高一恰好有1名学生入选代表队的概率;(2)正式比赛时,从代表队的6名队员中随机抽取2人参赛,设ξ表示参赛的男生人数,求ξ的分布列和数学期望【答案】(1)435;(2)ξ的分布列见解析,()1E ξ=.(1)从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队的抽取方法数为3377C C 1225⋅=,代表队中恰好有1名高一学生的抽取方式中,恰有1名高一学生,若学生为男生,则抽取方法数为123435C C C 120⋅⋅=,若学生为女生,则抽取方法数为312325C C C 20⋅⋅=,∴高一恰好有1名学生入选代表队的概率120204122535P +==;(2)依题意得,ξ的所有可能取值为0,1,2,则()2326C 310C 155P ξ====,()113326C C 3331C 155P ξ⨯====,()2326C 312C 155P ξ====,ξ∴的分布了如下:ξ12P153515()1310121555E ξ∴=⨯+⨯⨯.知识点2超几何分布和二项分布的区别和联系(1)超几何分布需要知道总体的容量,而二项分布不需要;(2)超几何分布是“不放回”抽取,而二项分布是“有放回”抽取(独立重复);(3)当总体的容量非常大时,超几何分布近似于二项分布.注:(1)区别由古典概型得出超几何分布,由伯努利试验得出二项分布.这两个分布的关系是,假设一批产品共有N 件,其中有M 件次品.从N 件产品中随机抽取n 件,用X 表示抽取的n 件产品中的次品数,若采用有放回抽样的方法抽取,则随机变量X 服从二项分布,即(,)X B n p (其中Mp N=)若采用不放回抽样的方法抽取,则随机变量X 服从超几何分布.超几何分布需要知道总体的容量,二项分布不需要知道总体容量,但需要知道“成功率”.超几何分布的概率计算是古典概型问题,二项分布的概率计算是相互独立事件的概率问题.(2)联系二项分布和超几何分布都可以描述随机抽取n 件产品中次品数的分布规律,并且二者的均值相同.每次试验只有两种可能的结果:成功或失败.当总数很大而抽样数不太大时,不放回抽样可以认为是有放回抽样,即对于不放回抽样,当n 远远小于N 时,每抽取一次后,对N 的影响很小,超几何分布可以近似为二项分布.【即学即练5】某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的质量(单位:克),质量的分组区间为(490,495],(495,500],…,(510,515],由此得到样本的频率分布直方图如图.(1)根据频率分布直方图,求质量超过505克的产品数量;(2)在上述抽取的40件产品中任取2件,设X 为质量超过505克的产品数量,求X 的分布列,并求其均值;(3)从该流水线上任取2件产品,设Y 为质量超过505克的产品数量,求Y 的分布列.【解析】(1)质量超过505克的产品的频率为5×0.05+5×0.01=0.3,所以质量超过505克的产品数量为40×0.3=12(件).(2)质量超过505克的产品数量为12件,则质量未超过505克的产品数量为28件,X 的取值为0,1,2,X 服从超几何分布.P (X =0)=C 228C 240=63130,P (X =1)=C 112C 128C 240=2865,P (X =2)=C 212C 240=11130,∴X 的分布列为X 012P63130286511130∴X 的均值为方法一E (X )=0×63130+1×2865+2×11130=35.方法二E (X )=2×1240=35.(3)根据样本估计总体的思想,取一件产品,该产品的质量超过505克的概率为1240=310.从流水线上任取2件产品互不影响,该问题可看成2重伯努利试验,质量超过505克的件数Y 的可能取值为0,1,2,且Y ~2,310,P (Y =k )=C k 2310k×1-310-k,k =0,1,2,∴P (Y =0)=C 02×7102=49100,P (Y =1)=C 12×310×710=2150,P (Y =2)=C 22=9100.∴Y 的分布列为Y 012P4910021509100考点一对超几何分布的理解解题方略:判断一个随机变量是否服从超几何分布,应看三点(1)总体是否可分为两类明确的对象.(2)是否为不放回抽样.(3)随机变量是否为样本中其中一类个体的个数.【例1-1】【多选】下列随机变量中,服从超几何分布的有()A .在10件产品中有3件次品,一件一件地不放回地任意取出4件,记取到的次品数为XB .从3台甲型彩电和2台乙型彩电中任取2台,记X 表示所取的2台彩电中甲型彩电的台数C .一名学生骑自行车上学,途中有6个交通岗,记此学生遇到红灯的数为随机变量XD .从10名男生,5名女生中选3人参加植树活动,其中男生人数记为X【解析】依据超几何分布模型定义可知,ABD 中随机变量X 服从超几何分布.而C 中显然不能看作一个不放回抽样问题,故随机变量X 不服从超几何分布.故选ABD变式1:下列问题中,哪些属于超几何分布问题,说明理由.(1)抛掷三枚骰子,所得向上的数是6的骰子的个数记为X ,求X 的概率分布;(2)有一批种子的发芽率为70%,任取10颗种子做发芽试验,把试验中发芽的种子的个数记为X ,求X 的概率分布;(3)盒子中有红球3只,黄球4只,蓝球5只.任取3只球,把不是红色的球的个数记为X ,求X 的概率分布;(4)某班级有男生25人,女生20人.选派4名学生参加学校组织的活动,班长必须参加,其中女生人数记为X,求X的概率分布;(5)现有100台MP3播放器未经检测,抽取10台送检,把检验结果为不合格的MP3播放器的个数记为X,求X的概率分布.【答案】答案见解析【详解】(1)(2)中样本没有分类,不是超几何分布问题,是重复试验问题.(3)(4)符合超几何分布的特征,样本都分为两类.随机变量X表示抽取n件样本中某类样本被抽取的件数,是超几何分布.(5)中没有给出不合格品数,无法计算X的概率分布,所以不属于超几何分布问题.变式2:一个袋中有6个同样大小的黑球,编号为1,2,3,4,5,6,还有4个同样大小的白球,编号为7,8,9,10.现从中任取4个球,有如下几种变量:①X表示取出的最大号码;②X表示取出的最小号码;③取出一个黑球记2分,取出一个白球记1分,X表示取出的4个球的总得分;④X表示取出的黑球个数.这四种变量中服从超几何分布的是()A.①②B.③④C.①②④D.①②③④【答案】BX=表示从黑球编号为1,2,3,4,5中取3个黑球,【详解】对于①,当X表示最大号码,比如6而8X=表示从6个黑球和编号为7的白球共7个球中取3个球,故该随机变量不服从超几何分布,同理②中的随机变量不服从超几何分布.对于③,X的可能取值为4,5,6,7,8,X=表示取出4个白球;45X=表示取出3个白球1个黑球;X=表示取出2个白球2个黑球;6X=表示取出1个白球3个黑球;7X=表示取出4个黑球;8因此X服从超几何分布.由超几何分布的概念知④符合,故选:B.考点二超几何分布的概率解题方略:求超几何分布的分布列的步骤【例2-1】某12人的兴趣小组中,有5名“三好学生”,现从中任意选6人参加竞赛,用X 表示这6人中“三好学生”的人数,则当X 取________时,对应的概率为C 35C 37C 612.【解析】由题意可知,X 服从超几何分布,由概率值中的C 35可以看出“从5名三好学生中选取了3名”.【例2-2】一个盒子里装有大小相同的10个黑球,12个红球,4个白球,从中任取2个,其中白球的个数记为X ,则下列概率等于C 122C 14+C 222C 226的是()A .P (0<X ≤2)B .P (X ≤1)C .P (X =1)D .P (X =2)【解析】本题相当于求至多取出1个白球的概率,即取到1个白球或没有取到白球的概率.故选B【例2-3】在100张奖券中,有4张能中奖,从中任取2张,则2张都能中奖的概率是()A.150B.125C.1825D.14950【解析】记X 为2张中的中奖数,则P (X =2)=C 24C 096C 2100=1825.故选C变式1:从一副不含大、小王的52张扑克牌中任意抽出5张,则至少有3张是A 的概率为()A.C 34C 248C 552B.C 348C 24C 552C .1-C 148C 44C 552D.C 34C 248+C 44C 148C 552【解析】设X 为抽出的5张扑克牌中含A 的张数,则P (X ≥3)=P (X =3)+P (X =4)=C 34C 248C 552+C 44C 148C 552.故选D变式2:在10个排球中有6个正品,4个次品,从中抽取4个,则正品数比次品数少的概率为()A.542B.435C.1942D.821【解析】正品数比次品数少,有两种情况:0个正品4个次品,1个正品3个次品,由超几何分布的概率公式可知,当0个正品4个次品时,P =C 44C 410=1210,当1个正品3个次品时,P =C 16C 34C 410=24210=435,所以正品数比次品数少的概率为1210+435=542.故选A.变式3:从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A “取出的2件产品都是二等品”的概率P (A )=0.04.(1)求从该批产品中任取1件是二等品的概率;(2)若该批产品共10件,从中任意抽取2件,X 表示取出的2件产品中二等品的件数,求X 的分布列.【解析】(1)设任取一件产品是二等品的概率为p ,依题意有P (A )=p 2=0.04,解得p 1=0.2,p 2=-0.2(舍去),故从该批产品中任取1件是二等品的概率为0.2.(2)若该批产品共10件,由(1)知其二等品有10×0.2=2(件),故X 的可能取值为0,1,2.P (X =0)=C 28C 210=2845,P (X =1)=C 18C 12C 210=1645,P (X =2)=C 22C 210=145.所以X 的分布列为X 012P28451645145变式4:某市A ,B 两所中学的学生组队参加辩论赛,A 中学推荐了3名男生、2名女生,B 中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队.(1)求A 中学至少有1名学生入选代表队的概率;(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X 表示参赛的男生人数,求X 的分布列.【解析】(1)由题意知,参加集训的男生、女生各有6人.代表队中的学生全从B 中学抽取(等价于A 中学没有学生入选代表队)的概率为C 33C 34C 36C 36=1100.因此,A 中学至少有1名学生入选代表队的概率为1-1100=99100.(2)根据题意,知X 的所有的可能取值为1,2,3.P (X =1)=C 13C 33C 46=15,P (X =2)=C 23C 23C 46=35,P (X =3)=C 33C 13C 46=15.所以X 的分布列为X 123P153515变式5:吃粽子是我国端午节的传统习俗.现有一盘子粽子装有10个,其中红豆粽2个,肉粽3个,蛋黄粽5个,假设这三种粽子除馅料外外观完全相同,从中任意选取3个.(1)求选取的三个粽子中恰有1个肉粽的概率;(2)求所选3个粽子有肉粽的条件下红豆粽不少于1个的概率.(3)设ξ表示取到的红豆粽个数,求ξ的分布列与期望.【答案】(1)2140(2)3985(3)分布列见解析,35【详解】(1)令A 表示事件“三个粽子中有1个肉粽”,从中任意选取3个有310C 120=种可能,其中恰有1个肉粽的可能选法有1237C C 63=种,∴由古典概型的概率计算公式有1237310C C 21()C 40P A ==.(2)所选3个粽子有肉粽的可能选法有33107C C 1203585-=-=种,所选3个粽子有肉粽的条件下红豆粽不少于1个的选法有111221235323C (C C C )C C 39++=种,故所选3个粽子有肉粽的条件下红豆粽不少于1个的概率为3985.(3)由题意知,ξ可能取的值为0,1,2,则()328310C C ,0,1,2C k k P k k ξ-===∴0328310C C 7(0)C 15P ξ===,1228310C C 7(1)C 15P ξ===,2310218C C 1(2)C 15P ξ===,故ξ的分布列为:ξ012。

高二概率与统计知识点归纳

高二概率与统计知识点归纳

高二概率与统计知识点归纳概率与统计是数学中一门重要的分支,也是实际生活中运用较为广泛的数学知识。

在高中数学课程中,高二学生将接触到更加深入和具体的概率与统计知识。

本文将对高二概率与统计的知识点进行归纳和总结,以帮助学生更好地理解和掌握这一部分内容。

一、基本概念1.随机事件:指在相同的条件下,可能发生,也可能不发生的事件。

常用字母A、B、C等表示。

2.样本空间:表示一个随机试验中所有可能的结果组成的集合,常用Ω表示。

3.事件:样本空间中的某一子集,常用字母A、B、C等表示。

4.必然事件:即样本空间Ω本身,表示一定发生的事件。

5.不可能事件:即空集,表示一定不会发生的事件。

二、概率的基本计算方法1.古典概型:指每种可能的结果的情况都是等可能的情况。

计算公式为P(A) = n(A) / n(Ω),其中n(A)表示事件A的有利结果的个数,n(Ω)表示样本空间Ω中结果的总个数。

2.几何概型:通过几何图形的性质来计算概率。

例如,计算一个点在正方形内部出现的概率等。

3.频率概率:通过大量试验次数的统计结果来估计概率。

计算公式为P(A) = n(A) / n,其中n(A)表示事件A发生的次数,n表示试验的总次数。

三、事件的关系与运算1.事件的包含关系:事件A包含事件B,表示如果事件A发生,必然有事件B发生。

常用符号“⊆”表示。

2.事件的互斥关系:两个事件A、B的发生不能同时发生。

常用符号“∩”表示。

3.事件的和事件:事件A、B的和事件,表示事件A或事件B至少发生一个。

常用符号“∪”表示。

4.事件的差事件:事件A减去事件B,表示在事件A发生的条件下,事件B不发生的事件。

常用符号“-”表示。

四、条件概率与独立事件1.条件概率:指在已知事件B发生的条件下,事件A发生的概率。

计算公式为P(A|B) = P(A∩B) / P(B),其中“|”表示“在……条件下”。

2.乘法定理:指事件A与事件B同时发生的概率等于事件B发生的概率乘以在事件B发生的条件下,事件A发生的概率。

高二数学选修2_3第二章随机变量和分布

高二数学选修2_3第二章随机变量和分布

§2.1.1离散型随机变量一、教学目标1.复习古典概型、几何概型有关知识。

2.理解离散型随机变量的概念,学会区分离散型与非离散型随机变量。

3. 理解随机变量所表示试验结果的含义,并恰当地定义随机变量.重点:离散型随机变量的概念,以及在实际问题中如何恰当地定义随机变量.难点:对引入随机变量目的的认识,了解什么样的随机变量便于研究.二、复习引入:1.试验中不能的随机事件,其他事件可以用它们来,这样的事件称为。

所有基本事件构成的集合称为,常用大写希腊字母表示。

2.一次试验中的两个事件叫做互斥事件(或称互不相容事件)。

互斥事件的概率加法公式。

3. 一次试验中的两个事件叫做互为对立事件,事件A的对立事件记作,对立事件的概率公式4.古典概型的两个特征:(1) .(2) .5.概率的古典定义:P(A)= 。

6.几何概型中的概率定义:P(A)= 。

三、预习自测:1.在随机试验中,试验可能出现的结果,并且X是随着试验的结果的不同而的,这样的变量X叫做一个。

常用表示。

2.如果随机变量X的所有可能的取值,则称X为。

四、典例解析:例1写出下列各随机变量可能取得值:(1)抛掷一枚骰子得到的点数。

(2)袋中装有6个红球,4个白球,从中任取5个球,其中所含白球的个数。

(3)抛掷两枚骰子得到的点数之和。

(4)某项试验的成功率为0.001,在n次试验中成功的次数。

(5)某射手有五发子弹,射击一次命中率为0.9,若命中了就停止射击,若不命中就一直射到子弹耗尽.求这名射手的射击次数X的可能取值例2随机变量X为抛掷两枚硬币时正面向上的硬币数,求X的所有可能取值及相应概率。

变式训练一只口袋装有6个小球,其中有3个白球,3个红球,从中任取2个小球,取得白球的个数为X,求X的所有可能取值及相应概率。

例3△ABC中,D,E分别为AB,AC的中点,向△ABC部随意投入一个小球,求小球落在△ADE 中的概率。

五、当堂检测1.将一颗均匀骰子掷两次,不能作为随机变量的是:()(A)两次出现的点数之和;(B)两次掷出的最大点数;(C)第一次减去第二次的点数差;(D)抛掷的次数。

公开课:几何概型

公开课:几何概型

课题:几何概型泰兴市第四高级中学 纪伟教学目标:1.了解几何概型的定义;2.会求简单的几何概型的概率问题;3.会用比较类比的方法学习新知识,提高学生的解题分析能力。

教学重点:关于几何概型的概率计算。

教学难点:准确确定几何区域D 和与事件A 对应的区域d ,并求出它们的测度。

教学过程:一、创设情景,引入新课玩一个转盘游戏提问:在转盘游戏中,当指针停止时,为什么指针指向代号为R 的区域的可能性大?二、学生活动(分组讨论)问题1:取一根长度为3m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1m 的概率有多大?问题2:射箭比赛的箭靶涂有五个彩色得分环,从外向内为白色、黑色、蓝色、红色,靶心为金色。

金色靶心叫“黄心”。

奥运会的比赛靶面直径为122cm ,靶心直径为12.2cm ,运动员在70m 外射。

假设射箭都能中靶,且射中靶面内任意一点都是等可能的,那么射中黄心的概率有多大?归纳:在这两个问题中,基本事件有无限多个,虽然类似于古典概型的“等可能性”还存在着,但是显然不能用古典概型的方法求解.那怎样处理呢?三、数学建构1、几何概型的概念:对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一个点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段,平面图形,立体图形等.用这种方法处理随机试验,称为几何概型.2、古典概型的本质特征:(1)所有基本事件个数只有有限个;(2)每个基本事件的发生都是等可能的。

将古典概型中的有限性推广到无限性,而保留等可能性,就得到几何概型。

几何概型的本质特征:(1)试验中基本事件有无限多个; (2)每个基本事件的发生都是等可能的。

3、几何概型的概率一般地,在几何区域D 中随机地取一点,记事件“该点落在其内部一个区域d 内”为事件A,则事件A 发生的概率为:的测度的测度D d A P )( N m3m注:(1)D 的测度不能为0(2)其中“测度”的意义依D 确定.当D 分别为线段,平面图形,立体图形时,相应的“测度”分别为长度,面积,体积等.(3)区域D 内随机取点指:该点落在区域内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的测度成正比,而与其形状、位置无关。

部编版高二数学目录

部编版高二数学目录

部编版高二数学目录第一章算法初步
1.1算法与程序框图
1.2基本算法语句
1.3算法案例
阅读与思考割圆术
小结
复习参考题
第二章统计
2.1随机抽样
阅读与思考一个著名的案例
阅读与思考广告中数据的可靠性
阅读与思考如何得到敏感性问题的诚实反

2.2用样本估计总体
阅读与思考生产过程中的质量控制图
2.3变量间的相关关系
阅读与思考相关关系的强与弱
实习作业
小结
复习参考题
第三章概率
3.1随机事件的概率
阅读与思考天气变化的认识过程
3.2古典概型
3.3几何概型
阅读与思考概率与密码
小结
复习参考题
后记。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选]下列沿河河堤冲刷防护工程中属于间接防护的是()。A.石笼B.顺坝C.挡土墙D.砌石 [问答题,案例分析题]患儿,男性,5岁,因左眼被氢氧化钠溅伤16小时入院。入院时体格检查:双眼视力检查不合作,左眼上方球结膜充血,下方角膜缘球结膜苍白,下方穹隆部结膜局部坏死呈灰黑色。角膜呈瓷白色,眼内结构窥部清。右眼未见异常。 [单选]对于一级航行通告项中有“EST”的通告,下列说法中正确的是。()A.表示该资料为永久性资料B.需要以后再发布一个航行通告以取消或代替C.到预计时间后自行失效 [填空题]自然资源是人类可以直接或间接利用的存在于自然界的()或(),与人类生存直接相关的自然资源有()、()、()、()、()和()。 [填空题]烧嘴保护泵为()泵,共有()台。 [单选]()是按照相互之间的从属关系来划分的。A.从合同B.有名合同C.默示合同D.书面合同 [单选]FMGS的组件包括:()A、2FMGS2MCDU2FAC2FCUB、2FMGS2MCDU2FAC1FCUC、2FMGS2MCDU2FAC2ECAMD、2FMGS2MCDU1FAC2ECAM [单选]下列乳腺癌中哪一种癌在超声显示上有特征性()。A.黏液癌B.导管内乳头状癌C.未分化癌D.腺癌E.以上都不是 [单选]根据营业税法律制度的规定,下列业务中,属于营业税征税范围的是()。A.汽修厂修理汽车B.百货商店销售日用品C.建材商店销售装修材料D.电信公司销售移动电话并提供相关电信服务 [单选]温经理所领导的团队根据组织目标确定了相应的发展目标——“到7月底,提高对问题的诊断能力”。这属于发展循环周期中的()阶段。A.明确发展要求B.同意发展目标C.选择发展方法D.评估其有效性 [判断题]采用顺序分配法分配辅助生产费用,其特点是受益少的先分配,受益多的后分配。先分配的辅助生产车间不负担后分配的辅助生产车间的费用。()A.正确B.错误 [单选]热拌沥青碎石的配合比设计不包括()。A.目标配合比设计阶段B.目标配合比验证阶段C.生产配合比设计阶段D.生产配合比验证阶段 [单选]暗沟是由于筑堤()、土块堆垒或裂缝遇水冲扩而造成的。A.较高B.不够密实C.较宽D.较早 [问答题,简答题]世界第一大群岛国? [单选,A2型题,A1/A2型题]婴儿出生后4周内,称为()A.新生儿期B.儿童期C.青春期D.幼儿期E.哺乳期 [单选,A型题]隐匿性旁路是指()。A.QRS波群起始部有delta波B.PR间期&lt;0.12sC.房室旁路仅有前向传导功能D.房室旁路仅有逆向传导功能E.既可前向传导,又可逆向传导 [单选]有限责任公司若需要修改公司章程、增加或者减少注册资本等事项,必须经过()以上股东表决通过。A.1/2B.2/3C.1/3D.3/4 [单选,A2型题,A1/A2型题]当代医学科学研究和创新的“双刃剑”效应是指()A.当代医学科学研究和创新带来了医学的进步B.当代医学科学研究和创新带来了道德的退步C.当代医学科学研究和创新促进了人类健康D.当代医学科学研究和创新可能用于危害人类健康E.当代医学科学研究和创新既有 [单选]全球所面临的城市问题有()。A.住房拥挤、交通堵塞、水源短缺B.空气污浊、土地紧张C.住房拥挤、交通堵塞、水源短缺、空气污浊、土地紧张D.住房拥挤、交通堵塞、水源短缺、空气污浊E.以上都不是 [单选]职业道德是适应各种职业要求而必然产生的()。A、工作流程B、法规总和C、各种法律、准则D、道德规范 [单选,A型题]X线钡餐检查发现胃小弯侧胃壁圆形高密度影,下列哪项提示为良性()A.位于胃底部B.半月征C.溃疡龛影周围有光滑的环行低密度带D.合并十二指肠壶腹部溃疡E.溃疡位于胃大弯 [单选]男,58岁,毒性弥漫性甲状腺肿6年,疏于治疗,近因心律失常被诊为甲亢性心脏病,其出现可能性最多的心律失常是()A.室上性心动过速B.室性早搏C.房室交界性早搏D.心房颤动E.心房扑动 [单选]下列哪项不属于CT扫描成像基本步骤()A.产生X线B.采集数据C.重建图像D.显示图像E.图像后处理 [单选]以下招聘方法中不属于外部招聘的是()。A.员工推荐B.猎头公司C.职位转换D.就业机构介绍 [判断题]在出口玩具质量许可的有效期内,深圳局不需对企业进行监督审查。( )A.正确B.错误 [单选,B1型题]肺透明膜病多见于()A.剖宫产儿B.早产儿C.过期产儿D.巨大儿E.小于胎龄儿 [多选]下列选项中,不计提折旧的有()。A.单独估价入账的土地B.当月增加的固定资产C.已提足折旧提前报废的固定资产D.经营租入的固定资产 [多选]有关渠道开挖施工方法说法不正确的是()。A、渠道开挖常用的施工方法有人工开挖、机械开挖等,不能采取爆破开挖B、选择开挖方法取决于土壤种类、渠道纵横断面尺寸、地下水位等因素C、渠道开挖的土方多直接运走D、田间渠道断面尺寸很小,不可采用开沟机开挖 [问答题,简答题]日本的化妆品,首推资生堂。近年来,它连续名列日本各化妆品公司榜首。资生堂之所以长盛不衰,与其独具特色的营销策略密不可分。八十年代以前,资生堂实行的是一种不对顾客进行细分的大众营销策略,即希望自己的每种化妆品对所有的顾客都适用。八十年代中期,资生 [单选]仓储管理包括()两部分。A.仓库管理和库存管理B.仓库管理和储存管理C.库房管理和储存管理D.库房管理和库存管理 [单选]颈椎病是否需要行手术治疗的主要依据是()A.临床症状和体征B.X线平片上脊髓受压的程度CT片上颈脊髓受压的程度D.MRI上颈脊髓受压的程度E.患者对手术的期望程度 [判断题]行长和出纳业务负责人要定期查库。A.正确B.错误 [单选]避免放射性肺炎发生的重要措施是()A.大剂量博来霉素B.一般不用抗生素C.大剂量联合化疗D.防止癌细胞扩散,不用激素E.大面积照射时,放射剂量应控制在40GY以下 [单选]男,10月,体重7.5kg,腹泻6天,中度脱水并酸中毒,脱水纠正后突发惊厥,先考虑()A.低血镁B.低血钠C.低血钙D.碱中毒E.高血钠 [单选]纵骨架式是()船体骨架型式。A.纵向骨材较稀、尺寸较小,横向骨材较密、尺寸较大B.纵向骨材较密、尺寸较小,横向骨材较稀、尺寸较大C.纵向骨材较密、尺寸较大,横向骨材较稀、尺寸较小D.纵向骨材较稀、尺寸较大,横向骨材较密、尺寸较小 [多选]为了病伤者的需要,应有的医疗机构包括()A.急性病医院B.慢性病医院C.日间医院D.护理中心E.社区医疗站 [填空题]TND360型数控车床的回转刀架具有()工位 [单选]公路管理机构扣留车辆、工具的,应当当场出具凭证,并告知当事人在规定期限内到公路管理机构接受处理。逾期不接受处理,并且经公告()仍不来接受处理的,对扣留的车辆、工具,由公路管理机构依法处理。A、1个月B、3个月C、6个月 [问答题,简答题]适应形成的条件以及在进化中的作用? [单选]应隔离治疗的皮肤病是()A.带状疱疹B.盘状红斑狼疮C.疥疮D.药物性皮炎E.丘疹样荨麻疹
相关文档
最新文档