搅拌釜式反应器设计
搅拌反应釜的设计

1 绪论1.1 反应釜概况搅拌设备是一种在一定容积的容器中,借助搅拌器向液相物料中传递必要的能量进行搅拌过程的化学反应设备。
反应釜就是其中比较典型的一种,它适用于多种物性(如粘度、密度)和多种操作条件(温度、压力)的反应过程,广泛应用于石油化工、橡胶、农药、染料、医药等行业,是一种用以完成磺化、硝化、氢化、烃化、聚合、缩合等工艺过程,以及有机染料和中间体的许多其它工艺过程的反应设备。
搅拌式反应釜有很大的通用性,由于搅拌可以把多种液体物料相混合,把固体物料溶解在液体中、将几种不互溶的液体制成乳浊液、把固体微粒搅浑在液体中制成悬浮液或在液相中析出结晶等,故搅拌反应釜可以在带有搅拌的许多物理过程中广泛的应用。
同时在研究容器的结构方面,如容器形状、搅拌装置、传热部件等,搅拌式反应釜都具有代表性。
在大多数设备中,反映釜是作为反应器来应用的。
例如在三大合成材料的生产中,搅拌设备作为反应器,约占反应器总数的90%。
其它如染料、医药、农药、油漆等设备的使用亦很广泛。
有色冶金部门对全国有色冶金行业中的搅拌设备作了调查及功率测试,结果是许多湿法车间的动力消耗50%以上是用在搅拌作业上。
搅拌设备的应用范围之所以这样广泛,还因为搅拌设备操作条件(如浓度、温度、停留时间等)的可控范围广,又能适用于多样化的生产。
搅拌式反应釜在石油化工生产中被用于物料混合、溶解、传热、制备悬浮液、聚合反应、制备催化剂等。
例如石油工业中,异种原油的混合调整和精致,汽油添加四乙基铅等添加物而进行混合,使原料液或产品均匀化。
化工生产中,制造苯乙烯、乙烯、高压聚乙烯、聚丙烯、合成橡胶、苯胺燃料和油漆颜料等工艺过程,都装备着各种型式的搅拌设备。
因为在石油工业中大量使用催化剂、添加剂,所以对于搅拌设备的需求量比较大。
由于物料操作条件的复杂性、多样性、对搅拌设备的要求也比较复杂。
如炼油厂的硅铝反应器、大浆罐、钡化反应釜、硫磷化反应釜、烃化反应釜、白土混合罐等都是装有各种不同型式搅拌器的搅拌设备。
搅拌反应釜设计论文

引言
反应釜的广义理解即有物理或化学反应的容器,通过对容器的结构设计与参数配置,实现工艺要求的加热、蒸发、冷却及低高速的混配功能。由于反应过程中的压力不同对容器的设计要求也不尽相同。不锈钢反应釜广泛应用于石油、化工、橡胶、农药、染料、医药、食品等生产型用户和各种科研实验项目的研究,用来完成水解、中和、结晶、蒸馏、蒸发、储存、氢化、烃化、聚合、缩合、加热混配、恒温反应等工艺过程的容器。反应釜是综合反应容器,根据条件对反应釜结构功能及配置附件的设计。从开始的进料到出料均能够以较高的自动化程度完成预先设定好的步骤要求,对反应过程中的温度、压力等重要参数进行严格的调整。
图5-6人孔……………………………………………………………………………………19
图5-7视镜……………………………………………………………………………………21
图6-1联轴器结构形式及尺寸………………………………………………………………24
图6-2 C型凸缘联轴器轴头…………………………………………………………………24
图6-3搅拌器型式……………………………………………………………………………25
图6-4桨式搅拌器的结构……………………………………………………………………25
图7-1电动机结构及安装尺寸………………………………………………………………27
图7-2 机架结构……………………………………………………………………………28
表格清单
表2-1 几种搅拌设备筒体的高径比…………………………………………………………6
表3-1 封头尺寸…………………………………………………………………………… 11
《搅拌釜式反应器设计条件》

长江大学工程技术学院课程设计题目:________________________________ 学生:_________________________________ 系部:_________________________________ 专业班级:_________________________________ 指导教师:_________________________________ 辅导教师:_________________________________ 时间:______________至_________________《搅拌釜式反应器设计条件》工艺条件管 口工艺条件图1. 确定筒体的直径和高度根据反应釜的设计要求,由于液-液相类型选取H/D i =1.3 得,由D i ≈3/4Di H V π= 33.125.34⨯⨯π=1.47m 圆整到标准公称直径系列,选取筒体直径D i =1400mm 。
查附录得,DN =1400mm 时标准椭圆封头高度h 1=350mm 直边h 2=25mm ,计算得每米高筒体的V 1=1.539m 3,表面积V h =0.398m 3H=1V V V h -=539.1398.025.3-=1.853m 筒体高度圆整为H =1800m于是H/D=1.285 核查结果符合原定范围内。
2. 确定夹套的直径和高度夹套的内径 D j =D i +100=1500mm (符合压力容器公称直径系列要求) H j =44.1398.085.0*25.32⨯-π=1.537m选取夹套H j =1600mm则H 0=H -Hj=200mm 这样便于筒体法兰螺栓的装拆 验算夹套传热面积F =F 1H j +F n =9.27 m 2>7.1m 2 即夹套传热面积符合设计要求 3. 确定夹套的材料和壁厚夹套选取Q235-A 的材质,可以知道板厚在4.5~16mm ,设计温度在150℃时Q235-A 的许用应力[σ]t =113MPa ,因为有夹套有安全阀,所以P =1.1P w 那么P =0.33MPa ,因为内部夹套无法探伤,故取φ=0.60 根据夹套的钢板厚度负偏差c 1=0.6mm,单面腐蚀取腐蚀余量c 2=1.0mm 。
理想混合连续搅拌釜式反应器(CSTR)

理想混合状态
物料在反应器内达到完全混合,不存在浓度和温度 的梯度分布。
反应器内各点的物料性质(如浓度、温度等)完全 相同,且随时间保持不变。
在理想混合状态下,反应器的性能达到最优,反应 效率和产物质量得到保证。
03
CSTR反应器的数学模型
物料平衡方程
进入反应器的物料流量与离开 反应器的物料流量相等,即输 入等于输出。
用于连续加入反应物和排出产物,实现连续化生产 。
工作流程
01
02
03
04
物料进入
反应物通过进料口连续加入反 应器内。
充分混合
在搅拌装置的作用下,物料在 反应器内充分混合,达到浓度 和温度的均匀分布。
反应进行
在适宜的反应条件下,物料在 反应器内进行化学反应。
产物排出
反应完成后,产物通过出料口 连续排出反应器。
100%
平均停留时间
表示物料在反应器内的平均停留 时间,影响反应器的生产能力和 产品质量。
80%
停留时间分布曲线
通过实验测定,可直观反映反应 器内物料的停留时间分布情况。
转化率与选择性
转化率
表示原料在反应器内转化为产 品的程度,是衡量反应器性能 的重要指标。
选择性
表示在给定转化率下,生成目 标产物的能力,反映反应器的 选择性能。
THANK YOU
感谢聆听
缺点与挑战
能耗较高
连续搅拌过程需要消耗大量能量,导致CSTR反应器的能耗相对较 高。
设备复杂度高
CSTR反应器结构复杂,涉及搅拌、传热、传质等多个过程,设备 设计、制造和维护难度较大。
放大效应
在将实验室规模的CSTR反应器放大至工业生产规模时,可能会遇到 放大效应问题,影响反应器的性能和产物质量。
夹套式机械搅拌反应釜设计计算说明书

夹套式机械搅拌反应釜设计计算说明书
夹套式机械搅拌反应釜是化工生产中常用的一种反应器,它能够在一定的温度、压力和搅拌条件下进行化学反应,多用于制备溶液、悬浮液和浆料等。
下面我们来介绍一下夹套式机械搅拌反应釜的设计、计算以及需要注意的问题。
首先,反应釜的设计要考虑反应液体的性质、反应条件、生产规模以及其他实际操作需求。
设计时需要确定反应釜的体积、夹套的面积、搅拌器的形式和转速、进、出料口的位置和尺寸等参数。
其次,计算夹套的面积应根据反应液体体积、夹套内部介质温度和外部冷却介质温度来确定。
夹套面积可以根据套管的长度和内径来计算,也可以根据实际使用需求进行选择。
夹套定温区的温差应该尽量缩小,以提高搅拌器对反应液体的混合效果。
再次,搅拌器的选择应根据反应液体的性质,是否易结晶、是否具有高黏度等来确定。
搅拌器的形状也应考虑到热传递和质量传递等方面的因素。
最后,需要注意反应釜的安全操作和维护。
反应釜在使用时需要注意反应液体的温度、压力和化学性质等因素,确保运行过程中不发生安全事故。
此外,反应釜在使用过程中会产生摩擦和磨损,因此需要定期对设备进行维护和保养,保证正常使用。
在停机时,应当进行充分的清洗和消毒,以防止残留物污染下一次生产。
总之,夹套式机械搅拌反应釜的设计、计算和维护,对于化工生产过程中的实际应用具有重要意义。
我们应该认真对待反应釜的使用和维护,避免出现不必要的安全事故,保证生产过程的稳定性和安全性。
搅拌反应器放大设计

搅拌反应器放大设计
对策1: 对策 :非几何相似放大
几何相似放大法通常仅适合于简单的物理过 对于聚合反应这样的复杂过程无能为力。 程,对于聚合反应这样的复杂过程无能为力。 几何相似仅是简化放大计算的手段,反应器 几何相似仅是简化放大计算的手段, 放大设计完全没有必要被几何相似所制约。 放大设计完全没有必要被几何相似所制约。 反应器非几何相似放大的实质——使工业反 反应器非几何相似放大的实质——使工业反 —— 应器中尽可能多的混合参数与中试相同,从 应器中尽可能多的混合参数与中试相同, 而能使工业中更好地重复中试的过程结果。 而能使工业中更好地重复中试的过程结果。
第七章 搅拌反应器放 大设计
搅拌反应器放大设计
搅拌反应器构成: 搅拌反应器构成:
传动装置 搅拌机构 搅拌机构 搅拌轴 搅拌器 叶轮 搅拌设备 轴封 搅拌槽 槽体 夹套 内构件
2
搅拌反应器放大设计
常用的搅拌器: 常用的搅拌器:
3
搅拌反应器放大设计
常用的夹套: 常用的夹套:
1.空心夹套 空心夹套
2.喷咀 喷咀
湍 流 扩 散 ○ ○ ○ ○ ○
○ ○ ○ ○ ○
50
注:有○者为合用,表元中空白者为不详或不合用。 有 者为合用,表元中空白者为不详或不合用。
搅拌反应器放大设计
低粘度
推进式
高粘度
传 统 叶 轮
齿片式 桨式、 桨式、涡轮式 三叶后掠式 螺带和螺杆式 INTERMIG MIG 锚式、 锚式、框式 、
橡 塑 三辊辗磨机 机 双螺杆挤出机 械 密炼机
粘度(Pas) 10-3 粘度
搅拌反应器放大设计
搅拌釜几何相似放大法
几何相似放大法其实只回答一个问题: 几何相似放大法其实只回答一个问题:在直 径为D 的中试槽中,当转速为N 径为 1的中试槽中,当转速为 1时能获满意 结果;则在直径为D 的工业槽中,转速N 结果;则在直径为 2的工业槽中,转速 2为 多少时能重复中试槽的结果? 多少时能重复中试槽的结果? 几何相似法可归结为: 几何相似法可归结为:(N2/N1)~(D2/D1) -β,故 值是几何相似放大的核心。 求取β 值是几何相似放大的核心。
搅拌釜式反应器课程设计计算表格

夹套内经 取hj 传热面积
δ 椭圆封头夹套厚度 δ
夹套壁厚 筒体厚度 筒体有效壁厚 最大允许工作压力
14 δ δ
e t
[Pw] σT σ Tf σ Tj σ Tjf Vhj W1 W2 W3
物料总质量 釜体及夹套质量
筒体厚度 有效壁厚
自取值 Te D0 L B [p] Te1 Ri A B2 [p]2
14 11.2 2028 2400 62 0.34240631 9.2 1800 0.00063889 82 0.41911111
D0/Te L/D0
181.0714 1.183432
化工设备课程设计计算表格
学号后两位 设备容积 工作压力 工作温度 工作介质 23 V 釜内 夹套 釜内 夹套 釜内 夹套 腐蚀情况 型式 转速 功率 9 0.11 0.3 80 140 溶液 水、蒸汽 轻微 平桨式 85 1.4 7.1 Q235-B 2.07 200 690 40 4.49302098 1.12573737 3.14159265 2.50645564 2.4 1.2 2200 2.0767373 2.2 18.3160287 0.33 6.96704369 6.96050504 11.2 11.2 8.1312 0.75513126 0.47195704 22.1823529 19.9764706 123.535417 111.038542 1.57485253 8542 2628 367.7 11538 38.4598509 mm MPa 单位 积 推荐材料 筒体直径 间隔 圆筒封头高度 封头直边高度 内表面积 封头容积 每米高圆筒体积 元整可取
r/min Kw m2 m mm mm mm m2 3 m m3 m m mm m m m2 mm mm 2 m
(完整word版)反应釜设计

第一章 反应釜釜体与传热装置搅拌设备常被称作搅拌釜(或搅拌槽),当搅拌设备用作反应器时,又被称为搅拌釜式反应器,有时简称反应釜。
釜体的结构型式通常是立式圆筒形,其高径比值主要依据操作容器的装液高径比以及装料系数大小而定。
传热方式有两种:夹套式壁外传热结构和釜体内部蛇管联合使用。
根据工艺需要,釜体上还需要安装各种工艺接管。
所以,反应釜釜体和传热装置设计的主要内容包括釜体的结构和部分尺寸、传热形式和结构、各种工艺接管的安设等。
1.1反应釜釜体1.1.1确定反应釜釜体的直径和高度在已知搅拌器的操作容积后,首先要选择筒体适宜的长径比(H/D i ),以确定筒体直接和高度。
选择筒体长径比主要考虑一下两方面因素:① 长径比对搅拌功率的影响:在转速不变的情况下,P ∝D 5(其中D :搅拌器直径;P :搅拌功率),P 随釜体直径的增大而增大很多,减小长径比只能无谓的损耗一些搅拌功率。
一次一般情况下,长径比应该大一点。
② 长径比对传热的影响:当容积一定时H/D i 越高越有利于传热。
长径比的确定通常采用经验值。
在确定反应釜直径和高度时,还应该根据反应釜操作时所允许的装料程度---装料系数η等予以综合考虑,通常装料系数η可取0.6-0.85.如果物料在反应过程中产生泡沫或沸腾状态,η应取较低值,一般为0.6-0.7;若反应状态平稳,可取0.8-0.85(物料粘度大时可取最大值)。
因此,釜体的容积V 与操作溶积V 0有如下关系:V=V 0/η…………………………………………………………………(1.1) 选取反应釜装料系数η=0.8,由V=V 0/η可得设备容积:V 0=V ×η=1×0.8=0.83m 选取H/D i =1.0,由公式m D H V D ii 08.10.10.14433=⨯⨯==ππ……………………………………(1.2)将计算结果圆整至公称直径标准系列,选取筒体直径D i =1000mm ,查《化工设备机械基础》表8-27,DN=1000mm 时的标准封头曲面高度h=250mm ,直边高度h 2=25mm ,封头容积V h =0.1513m ,由手册查得每一米高的筒体容积为3195.0m V =。
连续搅拌釜式反应器(CSTR)控制系统设计 连续

连续连续搅拌釜式反应器搅拌釜式反应器搅拌釜式反应器((CSTR )控制系统设计1. 前言连续搅拌釜式反应器(continuous stirred tank reactor ,简称为CSTR )是聚合化学反应中广泛使用的一种反应器,该对象是过程工业中典型的、高度非线性的化学反应系统。
在早期反应釜的自动控制中,将单元组合仪表组成位置式控制装置,但是化学反应过程一般都有很强的非线性和时滞性,采用这种简单控制很难达到理想的控制精度。
随着计算机技术和PLC 控制器的发展,越来越多的化学反应采用计算机控制系统,控制方法主要为数字PID 控制。
但PID 控制是一种基于对象有精确数学模型的线性过程,而CSTR 模型最主要的一个特征就是非线性,因此PID 控制在这一过程中的应用受到限制。
随着现代控制理论和智能控制的发展,更加先进有效的控制方法应用于CSTR 的控制,如广义预测控制,神经模糊逆模PID 复合控制,自抗扰控制,非线性最优控制,基于逆系统方法控制,基于补偿算子的模糊神经网络控制,CSTR 的非线性H ∞控制等。
但任何一种复杂的化工反应过程都不能用一种简单的控制方式达到理想的控制效果。
目前先进的反应釜智能控制技术就是将智能控制理论和传统的控制方法相结合,如钟国情、何应坚等于1998年对基于专家系统的CSTR 控制系统进行了研究[1],宫会丽、杨树勋等于2003年发表了关于PID 参数自适应控制的新方法[2],冯斌、须文波等于1999年阐述了利用遗传算法的寻优PID 参数的模型参考自适应控制方法等[3]。
但由于这些控制方法的算法比较复杂,在算法的工程实现、现场调试及通用型方面存在着局限性,因此研究一种相对简单实用的CSTR 控制方法,更易为工程技术人员所接受。
本文在对CSTR 过程及其数学模型进行详细分析的基础上,针对过程的滞后性,采用Smith 预估算法与PID 控制相结合的方法实现CSTR 过程的控制,该方法具有实用性强及控制方法简单等特点,基于西门子PCS7系统完成了CSTR 过程控制系统设计。
连续搅拌釜式反应器(CSTR)控制系统设计 连续

连续连续搅拌釜式反应器搅拌釜式反应器搅拌釜式反应器((CSTR )控制系统设计1. 前言连续搅拌釜式反应器(continuous stirred tank reactor ,简称为CSTR )是聚合化学反应中广泛使用的一种反应器,该对象是过程工业中典型的、高度非线性的化学反应系统。
在早期反应釜的自动控制中,将单元组合仪表组成位置式控制装置,但是化学反应过程一般都有很强的非线性和时滞性,采用这种简单控制很难达到理想的控制精度。
随着计算机技术和PLC 控制器的发展,越来越多的化学反应采用计算机控制系统,控制方法主要为数字PID 控制。
但PID 控制是一种基于对象有精确数学模型的线性过程,而CSTR 模型最主要的一个特征就是非线性,因此PID 控制在这一过程中的应用受到限制。
随着现代控制理论和智能控制的发展,更加先进有效的控制方法应用于CSTR 的控制,如广义预测控制,神经模糊逆模PID 复合控制,自抗扰控制,非线性最优控制,基于逆系统方法控制,基于补偿算子的模糊神经网络控制,CSTR 的非线性H ∞控制等。
但任何一种复杂的化工反应过程都不能用一种简单的控制方式达到理想的控制效果。
目前先进的反应釜智能控制技术就是将智能控制理论和传统的控制方法相结合,如钟国情、何应坚等于1998年对基于专家系统的CSTR 控制系统进行了研究[1],宫会丽、杨树勋等于2003年发表了关于PID 参数自适应控制的新方法[2],冯斌、须文波等于1999年阐述了利用遗传算法的寻优PID 参数的模型参考自适应控制方法等[3]。
但由于这些控制方法的算法比较复杂,在算法的工程实现、现场调试及通用型方面存在着局限性,因此研究一种相对简单实用的CSTR 控制方法,更易为工程技术人员所接受。
本文在对CSTR 过程及其数学模型进行详细分析的基础上,针对过程的滞后性,采用Smith 预估算法与PID 控制相结合的方法实现CSTR 过程的控制,该方法具有实用性强及控制方法简单等特点,基于西门子PCS7系统完成了CSTR 过程控制系统设计。
搅拌釜式反应器课程设计书

搅拌釜式反应器课程设计书一、设计容安排1. 釜式反应器的结构设计包括:设备结构、人孔数量及位置,仪表接管选择、工艺接管管径计算等。
2. 设备壁厚计算及其强度、稳定性校核3. 筒体和裙座水压试验应力校核4. 编写设计计算书一份5. 绘制装配图一(电子版)二、设计条件三、设计要求1.学生要按照任务书要求,独立完成塔设备的机械设计;2.根据设计计算书、图纸及平时表现综合评分。
四、设计说明书的容1.符号说明2.前言(1)设计条件;(2)设计依据;(3)设备结构形式概述。
3.材料选择(1)选择材料的原则;(2)确定各零、部件的材质;(3)确定焊接材料。
4.绘制结构草图(1)按照工艺要求,绘制工艺结构草图;(2)确定裙座、接管、人孔、控制点接口及附件、部主要零部件的轴向及环向位置,以单线图表示;(3)标注形位尺寸。
5.标准化零、部件选择及补强计算:(1)接管及法兰选择:根据结构草图统一编制表格。
容包括:代号,PN,DN,法兰密封面形式,法兰标记,用途)。
补强计算。
(2)人孔选择:PN,DN,标记或代号。
补强计算。
(3)其它标准件选择。
6.结束语:对自己所做的设计进行小结与评价,经验与收获。
7.主要参考资料。
目录搅拌釜式反应器设计条件 (1)1 确定筒体的直径和高度 (2)2. 确定夹套的直径和高度 (2)3. 确定夹套的材料和壁厚 (3)4. 确定筒的材料和壁厚 (3)5. 水压试验及其强度校核 (5)6. 选择釜体法兰 (6)7. 选择搅拌器、搅拌轴和联轴器 (6)8. 选择搅拌传动装置和密封装置 (7)9. 校核L1/ B和L1/d (8)10. 容器支座的选用计算 (8)11. 选用手孔、视镜、温度计和工艺接管 (9)12 参考资料 (10)13 设计感想 (11)搅拌釜式反应器设计条件工艺条件工艺条件图1 确定筒体的直径和高度根据反应釜的设计要求,对于液-液相类型H/Di=1~1.3,选取H/D i =1.3 得,由D i ≈3/4Di H V π= 33.135.94⨯⨯π=2.09m ; 圆整(间隔100mm )到标准公称直径系列,选取筒体直径D i =2100mm 。
搅拌反应釜课程设计

课程设计说明书专业:班级:姓名:学号:指导教师:设计时间:要求与说明一、学生采用本报告完成课程设计总结。
二、要求文字(一律用计算机)填写,工整、清晰。
所附设备安装用计算机绘图画出。
三、本报告填写完成后,交指导老师批阅,并由学院统一存档。
目录一、设计任务书 (5)二、设计方案简介 (6)1.1罐体几何尺寸计算 (7)1.1.1确定筒体内径 (7)1.1.2确定封头尺寸 (8)1.1.3确定筒体高度 (9)1.2夹套几何计算 (10)1.2.1夹套内径 (10)1.2.2夹套高度计算 (10)1.2.3传热面积的计算 (10)1.3夹套反应釜的强度计算 (11)1.3.1强度计算的原则及依据 (11)1.3.2按内压对筒体和封头进行强度计算 (12)1.3.2.1压力计算 (12)1.3.2.2罐体及夹套厚度计算 (12)1.3.3按外压对筒体和封头进行稳定性校核 (14)1.3.4水压试验校核 (16)(二)、搅拌传动系统 (17)2.1进行传动系统方案设计 (17)2.2作带传动设计计算 (17)2.2.1计算设计功率Pc (17)2.2.2选择V形带型号 (17)2.2.3选取小带轮及大带轮 (17)2.2.4验算带速V (18)2.2.5确定中心距 (18) (18)2.2.6 验算小带轮包角12.2.7确定带的根数Z (18)2.2.8确定初拉力Q (19)2.3搅拌器设计 (19)2.4搅拌轴的设计及强度校核 (19)2.5选择轴承 (20)2.6选择联轴器 (20)2.7选择轴封型式 (21)(三)、设计机架结构 (21)(四)、凸缘法兰及安装底盖 (22)4.1凸缘法兰 (22)4.2安装底盖 (23)(五)、支座形式 (24)5.1 支座的选型 (24)5.2支座载荷的校核计算 (25)(六)、容器附件 (26)6.1手孔和人孔 (27)6.2设备接口 (27)6.2.1接管与管法兰 (27)6.3视镜 (28)四、设计结果汇总 (31)五、参考资料 (33)六、后记 (35)七、设计说明书评定 (37)八、答辩过程评定 (37)一、设计任务书设计题目:夹套反应釜的设计设计条件:设计参数及要求设计参数及要求简图容器内夹套内工作压力/MPa 0.18 0.25设计压力/MPa 0.2 0.3工作温度/℃100 130设计温度/℃<120 <150介质染料及有机溶剂水蒸气全容积/m3 2.5操作容积/ m3 2.0传热面积/ m2>3腐蚀情况微弱推荐材料Q345R或Q245R搅拌器型式浆式200搅拌轴转速/(r/min)轴功率/kW 4工艺接管表符号公称尺寸连接面形式A 25 PL/RF 蒸汽入口B 65 PL/RF 进料口C1,2100 - 视镜D 25 PL/RF 温度计管口E 25 PL/RF 压缩空气入口F 40 PL/RF 放料口G 25 PL/RF 冷凝水出口设备安装场合室内二、设计方案简介三、工艺计算及主要设备计算(一)、罐体和夹套的结构设计夹套式反应釜是由罐体和夹套两大部分组成的。
2.5 理想混合连续搅拌釜式反应器(CSTR)

将出口处的浓度、温度等参数代入得到出口处反应速率,将其代入基础
设计式即得。
如:恒温恒容不可逆反应
1 k
CA0 xA
n=0 n=1
CA0 xA kCA0 (1 xA)
xA k(1 xA)
n=2
CA0 xA
kC
2 A0
(1
xA )2
kCA0
x
A
(1
x
A
)2
图解法
在连续操作釜式反应器内,过程参数与空间位置、时间无关, 各处的物料组成和温度都是相同的,且等于出口处的组成和温度。
连续操作釜式反应器适用于产量大的产品生产,特别适宜对温 度敏感的化学反应。容易自动控制,操作简单,节省人力。稳定性 好,操作安全。
单个连续操作釜式反应器(1-CSTR)
基础设计式
连续操作釜式反应器 单个连续釜 多个串联连续釜
理想混合连续搅拌釜式反应器(CSTR)
连续操作釜式反应器的结构和间歇操作釜式反应器相同,但进 出物料的操作是连续的,即一边连续恒定地向反应器内加入反应物, 同时连续不断地把反应产物引出反应器。这样的流动状况很接近理 想混合流动模型或全混流模型。
例3-5、例3-6讲解
多个串联连续操作釜式反应器(N-CSTR)
为什么要采用N-CSTR代替1-CSTR?
由于1-CSTR存在严重的返混,降低了反应速率,同时容易在某些反应中导 致副反应的增加。
为了降低逆向混合的程度,又发挥其优点,可采用N-CSTR,这样可以使 物料浓度呈阶梯状下降,有效提高反应速率;
例题讲解。
图解法
适用于级数较高的化学反应,特别适于非一、二级反应,但只适于(rA)能用单一组分表示的简单反应,对复杂反应不适用。
釜式反应器设计说明书123

一概述醋酸乙酯生产工艺的现状和特点醋酸乙酯分子式C4H8O2,又名:乙酸乙酯,英文名称:acetic ester;ethyl acetate,简称EA。
醋酸乙酯是醋酸工业重要的下游产品,也是一种重要的绿色有机溶剂,溶解能力及快干性能均属上乘,主要用做涂料(油漆和瓷漆)、油墨和粘合剂配方中的活性溶剂,也可用做制药和有机化学合成的工艺溶剂。
EA可用于制造乙酰胺、乙酰醋酸酯、甲基庚烯酮等,并在香料、油漆、医药、火胶棉、硝化纤维、人造革、染料等行业中广泛应用,还可用作萃取剂和脱水剂,亦可用于食品工业。
还可用于硝酸纤维、乙基纤维、氯化橡胶和乙烯树脂、乙酸纤维素脂、纤维素乙酸丁酯和合成橡胶等的生产过程;也可用于复印机的液体硝基纤维墨水。
在纺织工业中用作清洗剂;在食品工业中作为特殊改性酒精的香味萃取剂;在香料工业中是重要的香料添加剂,可作为调香剂的组份。
同时醋酸乙酯本身也是制造染料、香料和药物的原料。
在高级油墨、油漆及制鞋用胶生产过程中,对醋酸乙酯的质量要求较高。
当前全球醋酸乙酯的市场状况是:欧美等发达国家醋酸乙酯的市场发展比较成熟,产量和消费量的增长都比较缓慢,亚洲尤其是中国成为醋酸乙酯生产和消费增长最为快速的国家和地区。
由于中国国内快速发展的市场,尤其是建筑、汽车等行业的强劲发展,推动国内醋酸乙酯的需求,但是同时,醋酸乙酯生产能力的增长也非常快速,市场未来发展充满了机遇与挑战。
醋酸乙酯消费持续增长的主要原因是它取代了污染空气环境的用于表面涂层和油墨配方的甲乙酮和甲基异丁基酮。
醋酸乙酯作为优良溶剂,正逐步替代一些低档溶剂,发展潜力较大。
受消费拉动,20世纪90年代以来,我国醋酸乙酯生产发展迅速。
“八五”期间,产量年均增长率为%;1995-2000年,年均增长率达到%;2000-2002年,年均增长率高达%。
目前我国有醋酸乙酯生产企业30多家,年产能力为万吨。
其中,万吨级以上规模的企业有14家,年产能力为47万吨。
釜式反应器课程设计样例1

夹套搅拌反应器设计任务书一、设计内容设计一台夹套搅拌反应器。
二、设计参数和技术特性指标见附表1。
三、设计要求1.进行罐体和夹套设计计算;2.选择支座形式;3.手孔校核计算;4.选择接管、管法兰、设备法兰;5.进行搅拌传动系统设计;(1)进行传动系统方案设计;(2)作带传动设计计算:定出带型,带轮相关尺寸;(3)选择轴承;(4)选择联轴器;(5)进行罐内搅拌轴的结构设计、搅拌器与搅拌轴的连接结构设计;6.选择轴封形式;7.绘制装配图(1#);8.大V带轮零件图(3#);9.编制技术要求;10.编写设计说明书。
(1)封面;(2)目录;(3)任务书;(4)设计计算:要有详细的设计步骤及演算过程;(5)对本设计的评价及心得体会;(6)用B5大小纸书写。
表 1夹套反应釜设计任务书简图 设计参数及要求容器内 夹套内工作压力, Mpa<2.2 <2.3 设计压力, MPa2.2 2.3 工作温度, ℃<150 <200 设计温度, ℃150 200 介质 有机溶剂 蒸汽或水全容积,m 操作容积, 3 3.83.04 m传热面积, 3 ≥6 m2 腐蚀情况 推荐材料 微弱Q235-A推进式搅拌器型式 搅拌轴转 210 3.4 速,r/min轴功率,kW接管表公称尺寸 符号 连接面形式 用途 DN25 2580 65 25 40 25 ab cdef突面 突面 蒸汽入口 加料口 视镜 凹凸面 突面 温度计口 空气口 放料口 水出口 突面 突面 g突面 h 100 突面 手孔目录1.夹套反应釜的结构 (5)1.1夹套反应釜的功能和用途...................................1.2夹套反应釜的反应条件.....................................2.设计标准 (6)3.设计方案的分析和拟定 (6)4.各部分结构尺寸的确定和设计计算.............................. - 8 -4.1罐体和夹套的结构设计.....................................4.1.1罐体几何尺寸计算.................................. - 9 -4.1.2夹套几何尺寸计算................................. - 10 -4.2夹套反应釜的强度计算.....................................4.2.1强度计算(按内压计算强度) (12)4.2.2稳定性校核(按外压校核厚度) (14)4.2.3水压试验校核 (17)4.3反应釜的搅拌器...........................................4.3.1搅拌装置的搅拌器 (18)4.3.2搅拌器的安装方式及其与轴连接的结构设计 (19)4.3.3搅拌装置的搅拌轴设计 (19)4.4反应釜的传动装置设计....................................4.4.1常用电机及其连接尺寸 (21)4.4.2釜用减速机类型、标准及其选用 (22)4.4.3 V带减速机 (22)4.4.4凸缘法兰 (24)4.4.5安装底盖 (25)4.4.6机架 (25)4.4.7联轴器 (27)4.5反应釜的轴封装置设计.....................................4.5.1填料密封 (27)4.5.2机械密封 (28)4.6反应釜的其他附件设计 (29)4.6.1支座 (29)4.6.2手孔和人孔 (30)4.6.3设备接口 (30)5.设计小结................................................... - 31 -6.参考文献 (36)设计说明书1.夹套反应釜的结构夹套反应釜主要由搅拌容器、搅拌装置、传动装置、轴封装置、支座、人孔、工艺接管和一些附件组成。
反应釜设计分解

精选ppt
38
桨叶与轴的固定方法
焊接法:制造方便,强度不大, 拆卸困难,用于直径小容器。 螺钉连接法:轴是圆形时,易 产生滑动,拆卸方便,适用于 功率小的场合。 螺钉连接法:轴是方的,克服 浆叶与之滑动。 键固定法:克服以上缺点,广 泛采用。
精选ppt
39
(2)推进式搅拌器
特点:
a.轴向流搅拌器
螺旋形蛇管
精选ppt
同心圆蛇管式
31
三、 搅拌器
搅拌器的作用:加强介质的混合或分散,提供适宜的流 动状态,加快反应速度,达到搅拌过程。
1、搅拌器的类型和流型
常用的有:桨式、涡轮式、推进式、锚式、框式、螺带 式、螺杆式等。 有三种基本流型:
轴向流 径向流 混合流
精选ppt
32
搅拌器的三种基本流型
径向流式流体从轴向 进入叶轮,从径向流 出。常用于低粘度乳 浊液、悬浊液、固-液的搅拌。
强时间搅度用的拌、有密器稳机封转定载,速性热在等计体搅选算,拌择按冷轴。前却穿述介过
方质封搅法通头拌进常处器行用要通。冷有常却密用水封可或装拆盐置连水即接。轴固 传封定热。在面搅积拌要轴满上足。工艺所需
传电热机量、的减要速求器。重量不大时
可利用机架支精承选p在pt 封头上
4
精选ppt
5
反应釜
精选ppt
8
精选ppt
9
1、釜体的尺寸
(1) 长径比(H1/D1)的确定
确定长径比时应考虑:
①③长反径应比过对程搅对拌长功径率 比的影要响求:用 N于∝发d酵j5,过长程径的比发越酵大罐,,即为D使1 或通 d入j 越的小空,气所与需发搅酵拌液功充率分也接越触小,。
②需长有径足比够对的传液热深的,影因响此:要长求径长比 大径,比可大以。使传热表面到釜中心 的距离较小,釜内温度梯度小, 有利于传热。
连续搅拌釜式反应器详解

3.参考下列表格记录测定反应速率和反应速率常数的实验数据
实 验 序 号 1 2 3 4 5
反应温度T/℃
反应体积V/L 总体积流率Vs,0/L· min-1 反应物A的 出口浓 度 U/mV
(U-Uf)/mV
CA/mol· L-1
4.参考下列表格整理实验数据
实 验 组 号
反应温度T/K 空间时间/min 反应速率(-rA)/ mol· L-1· min-1 反应速率常数k/L· mol-1· min-1 (1) (2) (3) (4)
式中:τ=V/Vs,0,即为空间时间。对于恒容过程,进出口又无 返混时,则空间
时间也就是平均停留时间。因此,当V和Vs,0一定时,只要实验测得CA,0和CA, 即可直接测得在一定温度下的反应速率(-rA)。
2. 反应速率常数
CH3COOC2H5(A)+NaOH(B)→CH3COONa(C)+C2H5OH(D) 因为该反应为双分子反应,则反应速率方程为: (-rA)=kCACB 本实验中,反应物A和B采用相同的浓度和相同的流率,则上式可简为: (-rA)=kCA2 将上式线性化后,可得:lg(-rA)=2lgCA+lgk 当反应温度T和反应器有效容积V一定时,可利用改变流率的方法,测得 不同CA下的反 应速率(-rA)。由lg(-rA)对lgCA进行标绘,可得到一条 直线。由直线的截距lgk 求取k值。或用最小二乘法进行线性回归求得k 值。
2.
3.测定反应速率和反应速率常数的实验步骤
(1)停止加热和搅拌后,将反应器内的纯水放尽。启 动并调定计量泵,同时以等流率向器 内加入料液A和 B。待液面稳定后,启动搅拌器和加热器并控制转速和 温度恒定。当搅拌转速 在600r· min-1 时,总体积流率 在2.7~16L· h-1(相当于计量泵显示10~60 r·min-1)范围 (2)当操作状态达到稳定之后,按数据采集键,采集 与浓度CA相应的电压信号U。待屏幕 上 显示的曲线平直 之后,按终止采集键,取其平直段的平均值,即为与釜 内最终浓度CA相应 的U (3)改变流量重复上述实验步骤,测得一组在一定温 度下,不同流量时的U值数据。
釜式反应器

• 式中,nI为体系中参与反应的任意组分I的摩尔数, αI为其计量系数,nI0为起始时刻组分I的摩尔数。
模块一釜式反应器
3.转化率
转化率是指某一反应物转化的百分率
某一反应物的转化量 n A0 n A xA = 该反应物的起始量 n A0
应用:
nA=nA0(1-xA)
CA=CA0(1-xA)
最后结合反应动力学数据来感觉反应结果。
模块一釜式反应器
二、均相反应动力学基础
均相反应: 参与反应的各化学组分处于同一相(气相或液 相)内进行化学反应。
气相均相反应
包括 液相均相反应
特点:反应物系中不存在相界面
模块一釜式反应器
均相反应动力学是研究均相反应过程的基础, 也为工业反应装置的选型、设计计算和反应器的 操作分析提供理论依据和基础数据。
理想流动模型 理想混合流动模型
非理想流动
模块一釜式反应器
(一)理想流动模型 1.理想置换流动模型
理想置换流动模型也称作平推流模型或活塞流模型。 任一截面的物料如同气缸活塞一样在反应器中移动,垂 直于流体流动方向的任一横截面上所有物料质点的年龄 相同,是一种返混量为零的极限流动模型。
加料 产物
模块一釜式反应器
• 大量实验表明,均相反应的速率是反应物系组成、 温度和压力的函数。 • 反应压力通常可由反应物系的组成和温度通过状 态方程来确定,不是独立变量。所以主要考虑反 应物系组成和温度对反应速率的影响。 • 化学反应动力学方程有多种形式,对于均相反应, 方程多数可以写为(或可以近似写为,至少在一 定浓度范围之内可以写为)幂函数形式,反应速 率与反应物浓度的某一方次呈正比。
模块一釜式反应器
(二)非理想流动
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.8m3搅拌釜式反应器设计搅拌釜式反应器由搅拌器和釜体组成。
搅拌器包括传动装置,搅拌轴(含轴封),搅拌桨;釜体包括筒体,夹套和内件,盘管,导流筒等。
工业上应用的搅拌釜式反应器有成百上千种,按反应物料的相态可分成均相反应器和非均相反应器两大类。
非均相反应器包括固-液反应器,液-液反应器,气-液反应器和气-液-固三相反应器。
本次设计的釜式反应器适用性广操作弹性大,是工业生产中最广泛使用的反应器。
1 前言1.1 反应器的现状及发展前景反应釜的广义理解即有物理或化学反应的不锈钢容器,通过对容器的结构设计与参数配置,实现工艺要求的加热、蒸发、冷却及低高速的混合功能。
随之,反应过程中的压力要求对容器的设计要求也不尽相同。
生产必须严格按照相应的标准加工、检测并试运行。
不锈钢反应釜根据不同的生产工艺、操作条件等不尽相同,反应釜的设计结构及参数不同,即反应釜的结构样式不同,属于废标的容器设备。
不锈钢反应釜广泛应用于石油、化工、橡胶、农药、染料、医药、食品等生产型用户和各种科研实验项目的研究,用来完成水解、中和、结晶、蒸馏、储存、氢化、烃化、聚合、缩合、加热混配、恒温反应等工业过程的容器。
反应釜是综合反应容器,根据反应条件对反应釜结构功能及配置附件的设计。
从开始的进料-反应-出料均能够以较高的自动化程度完成预先设定好的反应步骤,对反应过程中的温度、压力、力学控制(搅拌、鼓风等)、反应物/产物浓度等重要参数进行严格的调控。
搅拌釜式反应器,这种反应器是工业生产中最广泛采用的反应器形式,适用于各种相态物料的反应。
反应釜中设有各种不同型式的搅拌、传热装置,可适应不同性质的物料和不同热效应的反应,以保持反应物料在釜内合理地流动、混合和料号的传热。
搅拌釜式反应器既可间隙操作也可连续操作或半连续操作,既可单釜操作,又可多釜串联操作。
搅拌釜式反应器的使用性广,操作弹性大,浓度容易控制。
它通常由釜体、换热装置。
搅拌器和传动装置等构件组成。
[1]1.2 搅拌式反应釜结构设计及其工作原理示意图图1 反应釜结构及原理图Fig.1 the reactor structure and schematic diagram2 设计条件及设计内容分析由设计条件单可知,设计的反应釜可操作容积为1.8m3、搅拌装置配置的电动机功率为1.8KW、搅拌轴的转速为60r/min、搅拌桨的形式为框式;加热的方式为用夹套内的导热油进行电加热:装置上设有8个工艺接管、1个视镜、4个耳式支座、1个人孔(或固体物料进口)。
2.1 反应釜设计的内容主要有:釜体的强度、刚度、稳定性计算和结构设计夹套的强度、刚度计算和结构设计;设计釜体的法兰联接结构、选择接管、管法兰;人孔的选型及补强计算;支座选型及验算;视镜的选型;焊缝的结果与尺寸设计;电机、减速机的选型;搅拌轴及框式搅拌桨的尺寸设计;选择联轴器;设计机架结构及尺寸;设计底盖结构及尺寸;选择轴封形式;绘总装配图及搅拌轴零件图等。
3 反应釜釜体的设计3.1 釜体DN 的确定3.1.1 釜体DN 的确定选取反应釜装料系数η=0.8,由V=V 0/η,可得设备体积V=η0V =8.08.1=2.25m 3 (1)对于液—液相类型选取H/D i =1.2.由此,估算筒体的内径为D i =3Di4H V π=32.125.24⨯⨯π=1.337m (2) 将计算结果圆整至公称直径标准系列,选取筒体直径D i =1400mm 。
3.2 釜体筒体壁厚的设计3.2.1 设计参数的确定取P=1.1P W (3) P=1.1P W =1.1⨯0.33=0.33MPa液体静力压力:由于P L =0.1⨯1000013001.1⨯=0.0143<5%P=0.05⨯1.1⨯0.33=0.01815因此可以忽略P L 取P C =P=1.1⨯0.33MPa mm C mm C 28.06.021===Φ∴,,用导热油加热取介质最高温度130ºC,查表得取t=150 º 3.2.2 筒体壁厚的设计假设S n =6mm 在t=150℃下查得Q235-A 材料[σ]t =113MPa由S /n =C P D P c t i c +-φ][2σ=33.06.01132130033.0-⨯⨯⨯=5.971mm (4)圆整 S /n =6mm=S n 假设合理3.3 釜体封头的设计3.3.1 封头的选型球冠形封头,平板封头都存在较大的边缘应力,且采用平板封头厚度较大,故不宜采用。
理论上应对各种凸形封头进行比较计算,再确定封头形式。
但由于定性分析半封形封头受力最好壁厚最薄,质量轻,但深度大,制造较难,中低压小设备不宜采用;蝶形封头的深度通读过度半径r 加以调节,但由于母线曲率不连续,存在局部应力,故受力不如椭圆形封头;标准椭圆形封头制造比较容易,受力状况比蝶形封,头好。
因此题目该反应釜的封头采用标准椭球封头,类型是EHA 3.3.2 设计参数的确定P=1.1P W =1.1⨯0.4MPa ,压力同釜体P C =P=0.33MPaφ=0.6(从安全考虑,检讨上所有焊缝系数都为0.6) t=150 ºC C 1=0.6mm C 2=1mm 3.3.3 封头的壁厚得设计设封头壁厚S n =6mm (封头厚度取与筒体厚度一致)查表得[σ]t =113MPaS /n =C P D P c t i c +-5.0][2ϕσ=33.05.06.01132130033.0⨯-⨯⨯⨯+1.6=4.767mm (5)圆整S n =6mm= S /n 假设合理3.3.4 封头的直边尺寸、体积的确定查表知EHA 的总高度 H F =325mm对于标准椭圆形封头直边高度h 2=4D 4i -H =413003504-⨯=25mm (6)h 1=350-25=325mm 体积V F =0.3208m 33.4 筒体长度H 的设计3.4.1 筒体长度H 的设计由上计算的每一米高的筒体积V 1=1.327m 3 H=1V V V h -=539.1398.025.2-=1.454m (7)筒体高度圆整为H=1400mm 。
H/D=1400÷1300=1.08, 复核结果基本符合原定范围。
3.4.2 釜体长径比校核H/D=1400÷1300=1.08, 复核结果基本符合原定范围。
3.5 外压筒体壁厚的设计3.5.1 设计外压的确定P C =0.1MPa3.5.2 试差法设计外压筒体的壁厚设筒体的壁厚为S n =6mm S e =S n -C=6-1.25=4.75mm D 0=D i +2S n =1200+2⨯6=1212mm由Lcr=1.17 D 0(D 0/ S e )1/2得Lcr=1.17⨯1212(1212/4.75)1/2=22651.3mm L /=H+(h 1-h)/3+h=1140+(325-25)/3+25=1265mm ≤Lcr=22651.3mm∴该筒体为短圆筒,圆筒的临界压力Pcr=2.59E 2e S /[L /D 0(D 0/S e )1/2]查表15-7得E=1.91⨯105代入 得Pcr=2.59⨯ 1.91⨯105⨯ 3.752/[945⨯1212⨯(1212/4.75)1/2]=0.34522MPa=3.4522Kgf/cm 2 (8)[P]=Pcr/m 对于圆筒 m=3 得 [P]=3.4522 /3=1.1507Kgf/cm 2圆筒设计外压P=1.0Kgf/cm 2 (9) 可知[P]>P 则S n =6mm 设计合理。
3.5.3 图算法设计筒体的壁厚设筒体的壁厚s =6mm ,则:e S =≥=6-1.25 = 4.75mm ,2o i n D D S =+=1212⨯,6.125575.4/1212/0==e S D 。
0'/1265/1212 1.043L D ==在文献[2]305页中图15- 4中的/o L D '坐标上找到1.102的值,由该点做水平线与对应的6.1255/0=e S D 线相交,沿此点再做竖直线与横坐标相交,交点的对应为:A ≈0.00029。
由文献[2]307页中图15- 7中选取,在水平坐标中找到A =2.9×10-4点,由该点做竖线与对应的材料温度线相交,沿此点再做水平线与右方的纵坐标相交,得到系数B 的值为:B ≈37MPa 、E =1.900×105MPa 。
根据[]p =/o e B D S 得: []p =75.4/121237=0.145(MPa ). (10)因为p =0.1MPa < []p =0.145MPa ,所以假设n S =6mm 合理,取封头的壁厚n S =6M 。
由文献[2]316页表16-3知,1200DN =、n S =6mm 的筒体1m 高筒节钢板的质量约178kg ,则筒体质量为:178×1.360=242.08(kg )又知1m 高的内表面积21 4.77m F =故筒体的内表面积:S F =1 1.425 4.77 1.425 6.80F ⨯=⨯=2m (11)3.6 外压封头壁厚得设计3.6.1 设计外压得确定P C =0.1MPa3.6.2 封头壁厚得计算设封头的壁厚为Sn =6mm Se=Sn-C=4.75mm对于标准椭球形封头 K=0.9,Ri =KDi=0.9⨯1200=1080mm (12)R i /Se=1080/4.75=227.4计算系数A=0.125/(Ri /Se)= 5.500⨯10-4由A=5.500⨯10-4可确定B查表15-7得B=63MPa,E=1.91=1.91⨯105MPa由[P]=B/(Ri /Se)得[P]=63 /(1080/4.75)=0.2770Mpa=2.770Kgf/cm2ΘP=1.0Kgf/cm2<[P]=2.770Kgf/cm2∴假设S n=6mm合理。
4 反应釜夹套得设计4.1 夹套釜体DN,PN得确定4.1.1 夹套釜体DN得确定Di=D i+100=1300+100=1400mm所以DN=1400mm4.1.2 夹套釜体PN得确定Pw=0.4MPa P=1.1Pw=0.44MPa4.2 夹套筒体的设计4.2.1 设计参数的确定因为釜体内反应物浓度与水相近,故按水计算反应物静压,即:P液=ghρ=1.0⨯103⨯9.8⨯1.265⨯10-6=0.0124MPa (13)0.0124100%100%11%5%0.1 1.1P P ⨯=⨯=>⨯Q液(14)∴P液不能忽略P C =P+P液=0.1⨯1.1+0.0124=0.1224MPa,由于夹套内的温度为125℃~150℃故取t=150℃,查Q235-A的[σ]t=113MPa 4.2.2 夹套筒体壁厚的设计按强度条件设计由公式Sd =PCDi/{2[σ]tφ-P C}+C (15)得Sd=(0.1224⨯1400)/(2⨯113⨯0.6-0.1224)+1.0+0.6=2.8642mm圆整Sd =3mm Sn=Sd因此假设合理由PC=0.1MPa<0.3MPa 按强度设计的壁厚不能满足刚度要求,需按刚度条件重新计算D i =1500<3800mm S min =2D i /1000+C2 =4mm 所以Sn=4mm对于碳钢制造的筒体壁厚取Sn =6mm4.2.3 夹套筒体的高度确定H j =1h V V V -η=2h 04i D V V ⨯-π=23.1414.3321.08.1⨯-=1.115m (16)选取夹套高度H j =1200mm ,则H 0=H-H j =200mm,这样是便于筒体法兰螺栓拆装的。