ASPEN在塔设备的使用方法

合集下载

(完整版)Aspenplus模拟甲醇、水精馏塔设计详细说明书

(完整版)Aspenplus模拟甲醇、水精馏塔设计详细说明书

Aspen plus模拟甲醇、水精馏塔设计说明书一、设计题目根据以下条件设计一座分离甲醇、水混合物的连续操作常压精馏塔:生产能力:24500吨精甲醇/年;原料组成:甲醇50%w,水50%w;产品组成:塔顶甲醇质量分率≥94%w;塔底甲醇质量分率 1 %w;进料温度:350.5K;塔顶压力常压;进料状态饱和液体。

二、设计要求对精馏塔进行详细设计,给出下列设计结果并绘制塔设备图,并写出设计说明。

(1).进料、塔顶产物、塔底产物;(2).全塔总塔板数N;最佳加料板位置N F;(3).回流比R;(4).冷凝器和再沸器温度、热负荷;(5).塔内构件塔板或填料的设计。

三、分析及模拟流程1.物料衡算(手算)目的:求解 Aspen 简捷设计模拟的输入条件。

内容:(1)生产能力:一年按300天计算,进料流量为24500/(300*24)=3.40278 t/hr。

(2)原料、塔顶与塔底的组成(题中已给出):原料组成:甲醇50%w,水50%w;产品:塔顶甲醇≥94%w;塔底甲醇《1% w。

(3).温度及压降:进料温度:77.35摄氏度=350.5K;2.用简捷模块(DSTWU)进行设计计算目的:对精馏塔进行简捷计算,根据给定的加料条件和分离要求计算最小回流比、最小理论板数、理论板数和加料板位置。

3.灵敏度分析目的:研究回流比与理论板数的关系(N T-R),确定合适的回流比与塔板数;研究加料板位置对产品的影响,确定合适的加料板位置。

方法:作回流比与理论塔板数的关系曲线(N T-R),从曲线上找到期望的回流比及塔板数。

4. 用详细计算模块(RadFrac)进行计算目的:精确计算精馏塔的分离能力和设备参数。

方法:用RadFrac模块进行精确计算,通过设计规定(Design Specs)和变化(Vary)两组对象进行设定,检验计算数据是否收敛,计算出塔径等主要尺寸。

5. 塔板设计目的:通过塔板设计(Tray sizing)计算给定板间距下的塔径。

硅烷塔操作规程

硅烷塔操作规程

硅烷塔操作规程硅烷塔是半导体制造过程中常用的设备,其操作规程对于生产工艺的稳定性和产品质量的保障至关重要。

本文将从硅烷塔的操作规程入手,详细介绍硅烷塔的操作流程及注意事项。

一、硅烷塔的操作流程1.1 准备工作在进行硅烷塔操作之前,需要进行设备检查,确保设备正常运转。

同时,检查硅烷气瓶的压力和气体流量控制器的设置是否正确。

1.2 启动设备将硅烷气瓶连接至硅烷塔,并打开气瓶阀门,调节气体流量控制器,使硅烷气体流量稳定在设定值。

然后启动硅烷塔,等待设备升温至操作温度。

1.3 开始反应当硅烷塔达到设定温度后,可以开始进行硅烷气体的注入。

根据工艺要求,控制硅烷气体的流量和时间,完成硅烷的反应过程。

二、硅烷塔操作注意事项2.1 安全第一硅烷是一种具有高度腐蚀性和易燃性的气体,操作时必须严格遵守安全操作规程,佩戴防护装备,并确保操作环境通风良好。

2.2 操作规范在操作硅烷塔时,必须按照工艺要求和操作规程进行操作,严禁擅自调整气体流量和反应时间,以免影响产品质量。

2.3 注意维护定期对硅烷塔进行维护保养,保持设备的稳定性和可靠性。

及时更换损坏的部件,确保设备正常运转。

三、硅烷塔操作过程中的常见问题及解决方法3.1 气体流量不稳定可能是气瓶压力不足或气体流量控制器故障导致,应检查气瓶压力和流量控制器,及时调整或更换。

3.2 温度控制不准确可能是温度传感器故障或设备加热系统问题,应检查温度传感器和加热系统,确保温度控制稳定。

3.3 反应时间过长或过短可能是操作人员操作不当或设备参数设置错误,应重新调整操作流程和设备参数,确保反应时间符合工艺要求。

四、硅烷塔操作的优化建议4.1 自动化控制推荐使用自动化控制系统对硅烷塔进行控制,提高操作的稳定性和准确性,减少人为误操作。

4.2 数据监控建议在硅烷塔操作过程中进行数据监控,实时记录气体流量、温度和反应时间等参数,以便及时调整和优化操作流程。

4.3 培训与交流定期对操作人员进行培训,提高其对硅烷塔操作规程的理解和掌握,促进经验交流,共同提升操作水平。

马后炮化工微课堂-AspenPlus基础培训-塔设备单元

马后炮化工微课堂-AspenPlus基础培训-塔设备单元
通过测量塔内各层塔板的温度变化,判断是否存在降液管堵塞 等故障。
对塔出口和进口的物料进行化学分析,判断是否存在化学反应 异常等故障。
塔设备单元故障处理措施
01
清洗塔板
对于液泛、漏液、雾沫夹带等故 障,可以采取清洗塔板的方法,
去除塔板上的积垢和杂质。
03
调整操作参数
通过调整操作参数,如温度、压 力、流量等,改善塔的操作状态
软件应用领域
化工流程模拟
Aspen Plus软件广泛应用于化工流程 模拟,帮助用户了解和优化化工过程。
设备选型
Aspen Plus软件可辅助用户进行设备 选型,根据模拟结果选择合适的设备
和参数。
工艺设计
Aspen Plus软件可用于工艺设计,通 过模拟和优化帮助用户制定更加合理 和高效的工艺方案。
专家系统
集成专家知识和经验,为塔设备的优化提供 决策支持。
05
塔设备单元的故障诊断与处 理
塔设备单元常见故障类型
液泛
由于液体在塔板上的积累,导致气体通道被堵塞,使得气体无法正常通过塔板。
漏液
由于塔板上的液体分布不均或液体流量过大,导致液体从塔板缝隙漏下。
雾沫夹带
气体通过塔板时携带液滴,导致液滴在塔板间传递,影响分离效果。
对选定的塔设备单元进行实际安装和调试,确保 其性能和生产效率达到预期要求。
感谢您的观看
THANKS
02
根据需要设置塔设备的操作条件,如进料温度、出料温度、操作压力 等。
03
根据需要设置塔设备的控制系统,包括控制变量和被控变量,以及控 制策略和算法等。
04
还需要设置塔设备的性能评估指标,如分离效率、处理能力等,以便 对塔设备的性能进行评估和优化。

RadFrac傻瓜指南—如何使用Aspen_Plus

RadFrac傻瓜指南—如何使用Aspen_Plus

RadFrac傻瓜指南—如何使用Aspen PlusRadFrac for Dummies:A How to Guide on AspenPlus这个例子将说明如何使用Aspen Plus的RadFrac建立精馏塔模型,上图中的进料(feed)包含50lbmol/hr的甲醇和,50lbmol/hr的水。

采用回流比为1.5时,要求塔顶和塔底产物的纯度都达到99.5%。

如果不知道如何登陆AspenPlus,请查看手册“GettingStarted on Aspen Plus”选择“Template”选项。

单击“OK”按钮这个窗口特定的模拟选项,对这个例子,选择“Generalwith English Units”选项,并且确定在“Run Type”方框中显示的是“Flowsheet”单击“OK”按钮Aspen Plus为每一个流股和块自动指派标签,为了关闭这个选项,单击“Tools”菜单选择“Options”命令。

在“Options”窗口,单击“Flowsheet”标签,下一步,单击“Stream and Block labels”里的这两个框,使得复选标记消失,标志这个功能失效完成后单击“OK”按钮当开始模拟,单击设备选择区域的“Columns”标签,单击“RadFrac”右侧的向下箭头,移动鼠标指针到“RadFrac”右上方的二级图形中,单击“Fract1”。

下一步,移动鼠标到空白区域,单击所需要的地方,出现一个询问输入块号的提示“input the block ID”,对这个例子,输入“dist”,创建“Feed”,“Distill”和“Bottoms”流股。

首先单击窗口左下角的“Material Streams”框,在塔的周围出现红色和蓝色箭头,红色箭头表示必须给定的设计流股,蓝色箭头表示可选流股。

单击塔左侧的红色箭头添加进料流股,对于这个模拟例子,仅有一个进料流股,如果有多股进料,使用塔左侧的蓝色箭头添加多股进料。

用 Aspen 模拟塔单元操作

用 Aspen 模拟塔单元操作

用Aspen 模拟塔单元操作分为操作模拟和设计计算。

两种模拟计算方法有所不同。

1 填料塔操作模拟模拟已知的填料操作可以用radFrace和rateFrace模块。

模拟操作是对已有的塔进行操作模拟,塔的结构参数是已知的,通过调节某些参数来与实际生产情况吻合。

填料塔操作模拟要有两个难点问题:一是平衡级数的选择,二是调节那些参数选择。

1.1 平衡级数rateFrace和radFrace模块要求输入板数,和板式塔模拟操作一样,操作模拟数据应该是实际塔的参数,这里要输入实际塔的板数。

对于板式塔没有问题,但对于填料塔的实际板数如何取?作操作模拟时,和rateFrace和radFrace模块板数(平衡级数)可以任意取,只是计算精度的问题。

然后,设置填料核算(Pack Rating)中的每段填料高度(Section pack height)与之对应。

如:某填料塔实际填料高度15m,进行操作模拟时,塔板数(Number of stages)输入为5,则在下面的Pack Rating 页的Packed height 栏选择Section packed height 并填入3。

这里的实际级数最好不要小于理论级数,在不确定理论级数时应尽量多取。

1.2 调节参数进行塔操作模拟时,通过调节塔板效率来与实际相吻合。

和板式塔一样,如果不输入塔板效率则系统按选择的计算方法计算塔板效率(这个效率计算方法有两种:Vaporization efficiencies和Murphree efficiencies)。

作操作模拟时按计算效率得到的结果和实际值会不一致,这时通过调节塔板效率来与实际相吻合。

2 填料塔设计填料精馏塔与填料吸收塔的设计计算有所区别,对于单进料的精馏塔,与板式塔设计计算一样,首先用简捷模块计算理论板数,然后radFrace或rateFrace模块进行详细计算。

无论用那种模块,设计计算都要用到设计规定,通过调整填料高度来满足设计要求。

Aspen_Plus应用塔

Aspen_Plus应用塔
8
选择模板Template
甲醇分离: Chemicals with Metric Units
丙烯塔 Petroleum with Metric Units
9
2.简捷精馏模块DSTWU
建立工艺流程图 数据输入 模拟运算及结果查看 灵敏度分析
10
2.简捷精馏模块DSTWU
2.1建立工艺流程图
(1)启动Aspen Plus (2)选Template:
28
2.3 模拟计算及结果查看
2.简捷精馏模块DSTWU
输入完成,按Data Brower键查看模拟结果
计算结束 无错误提示 无警告提示
29
2.简捷精馏模块DSTWU
2.3 模拟计算及结果查看
查看物流结果
塔顶甲醇分率满足: 甲醇回收率:
质量分率0.999
20198.8*0.999/ (55000*0.268)
(2)用Manipulators的Dupl模块复制T1 进料流股作为RadFrac进料
(3)连接RadFrac模块各流股
44
流股连接
选中T1进料T1F,右键,选取 Reconnect Destination
将T1F连接到复制 器Dupl上 再从Dupl上引出 两股物流至两个 塔模块上 连接RadFrac所需 物流 整理工艺流程图
Sensitivity
点New按钮
在弹出窗口中输入任务ID
33
(2)定义因变量
2.4灵敏度分析
NSTAGE为精馏塔 所需理论板数
点New按钮,输入因变量名称
在弹出窗口中定义因变量类型
34
(3)定义自变量
2.4灵敏度分析
自变量选择 回流比RR
输入自变量变化范围和步长 (RR的下限要大于最小回流比)

ASPEN软件进行精馏塔设计

ASPEN软件进行精馏塔设计

1引言1.1ASPEN‎PLUS概‎述Aspen‎Plus是‎大型通用流‎程模拟系统‎,源于美国能‎源部七十年‎代后期在麻‎省理工学院‎(MIT)组织的会战‎,开发新型第‎三代流程模‎拟软件。

该项目称为‎“过程工程的‎先进系统”(Advan‎c ed Syste‎m for Proce‎s s Engin‎e erin‎g,简称ASP‎E N),并于198‎1年底完成‎。

1982年‎为了将其商‎品化,成立了As‎p enTe‎c h公司,并称之为A‎s pen Plus。

该软件经过‎20多年来‎不断地改进‎、扩充和提高‎,已先后推出‎了十多个版‎本,成为举世公‎认的标准大‎型流程模拟‎软件,应用案例数‎以百万计。

全球各大化‎工、石化、炼油等过程‎工业制造企‎业及著名的‎工程公司都‎是Aspe‎n Plus 的‎用户。

1.2精馏塔概述‎精馏塔是进‎行精馏的一‎种塔式汽液‎接触装置,又称为蒸馏‎塔。

有板式塔与‎填料塔两种‎主要类型。

根据操作方‎式又可分为‎连续精馏塔‎与间歇精馏‎塔。

蒸气由塔底‎进入。

蒸发出的气‎相与下降液‎进行逆流接‎触,两相接触中‎,下降液中的‎易挥发(低沸点)组分不断地‎向气相中转‎移,气相中的难‎挥发(高沸点)组分不断地‎向下降液中‎转移,气相愈接近‎塔顶,其易挥发组‎分浓度愈高‎,而下降液愈‎接近塔底,其难挥发组‎分则愈富集‎,从而达到组‎分分离的目‎的。

由塔顶上升‎的气相进入‎冷凝器,冷凝的液体‎的一部分作‎为回流液返‎回塔顶进入‎精馏塔中,其余的部分‎则作为馏出‎液取出。

塔底流出的‎液体,其中的一部‎分送入再沸‎器,加热蒸发成‎气相返回塔‎中,另一部分液‎体作为釜残‎液取出。

1.2.1 精馏塔的分‎类气-液传质设备‎主要分为板‎式塔和填料‎塔两大类。

精馏操作既‎可采用板式‎塔,也可采用填‎料塔,填料塔的设‎计将在其他‎分册中作详‎细介绍,故本书将只‎介绍板式塔‎。

板式塔为逐‎级接触型气‎-液传质设备‎,其种类繁多‎,根据塔板上‎气-液接触元件‎的不同,可分为泡罩‎塔、浮阀塔、筛板塔、穿流多孔板‎塔、舌形塔、浮动舌形塔‎和浮动喷射‎塔等多种。

aspen应用基础

aspen应用基础

aspen应⽤基础(1)DSTWU的连接图DSTWU 模块⽤Winn-Underwood-Gilliland捷算法进⾏精馏塔的设计,根据给定的加料条件和分离要求计算最⼩回流⽐、最⼩理论板数、给定回流⽐下的理论板数和加料板位置。

(2)Distl 简捷精馏(操作)Distl 模块⽤Edmister ⽅法计算给定精馏塔的操作结果。

设定:理论板数,加料板位置,回流⽐,D/F,冷凝器类型。

计算:D 和W组成,再沸器和冷凝器热负荷,塔顶、塔底和加料板温度。

Distl ——连接(3)RadFrac 精密分离模块RadFrac 模块同时联解物料平衡、能量平衡和相平衡关系,⽤逐板计算⽅法求解给定塔设备的操作结果。

RadFrac 模块⽤于精确计算精馏塔、吸收塔(板式塔或填料塔)的分离能⼒和设备参数。

RadFrac模型的连接图如下RadFrac——模型设定RadFrac 模型具有以下设定表:1、配置(Configuration)2、流股(Streams)3、压⼒(Pressure)4、冷凝器(Condenser)5、再沸器(Reboiler)6、三相(3-Phase)RadFrac ——配置1、塔板数(Number of Stages)2、冷凝器(Condenser)3、再沸器(Reboiler)4、有效相态(Valid Phase)5、收敛⽅法(Convergence)6、操作设定(Operation Specifications)冷凝器配置从四个选项中选择⼀种:1、全凝器(Total)2、部分冷凝-汽相馏出物(Partial-Vapor)3、部分冷凝-汽相和液相馏出物(Partial-Vapor-Liquid)4、⽆冷凝器(None)再沸器配置从三个选项中选择⼀种:再沸器配置从三个选项中选择⼀种:1、釜式再沸器(Kettle)2、热虹吸式再沸器(Thermosyphon)3、⽆再沸器(None)有效相态从四个选项中选择⼀种:1、汽-液(Vapor-Liquid)2、汽-液-液(Vapor-Liquid -Liquid )3、汽-液- 再沸器游离⽔(Vapor-Liquid-FreeWaterCondensor)4、汽-液- 任意塔板游离⽔收敛⽅法从六个选项中选择⼀种:1、标准⽅法(Standard)2、⽯油/宽沸程(Petroleum/Wide-Boiling)3、强⾮理想液相(Strongly Non-ideal Liquid)4、共沸体系(Azeotropic)5、深度冷冻体系(Cryogenic)6、⽤户定义(Custom)操作设定从⼗个选项中选择:1、回流⽐(Reflux Ratio)2、回流速率(Reflux Rate)3、馏出物速率(Distillate Rate)4、塔底物速率(Bottoms Rate)5、上升蒸汽速率(Boilup Rate)6、上升蒸汽⽐(Boilup Ratio)7、上升蒸汽/进料⽐(Boilup to Feed Ratio)8、馏出物/进料⽐(Distillate to Feed Ratio)9、冷凝器热负荷(Condenser Duty)10、再沸器热负荷(Reboiler Duty)RadFrac ——流股1、进料流股(Feed Streams)指定每⼀股进料的加料板位置。

Aspen_Plus应用-塔器(北京化工大学)解析

Aspen_Plus应用-塔器(北京化工大学)解析
输入单板压降或 全塔压降。 (非必填项)
49
3.2 模块数据输入
(5)Condenser设定
输入完成,按Next 键开始模拟计算
输入经过冷凝器 后的过冷温度。 (非必填项)
50
3.严格精馏模块RadFrac
3.3模拟运算及结果查看
(1)查看物流结果
达不到分离效果 可用设计规定来优化
51
3.严格精馏模块RadFrac
7
2.1建立工艺流程图
(3)选用模块: DSTWU
选取这三个不同的 图标,仅仅是外形 不同,功能是一样 的
DSTWU模型用于对 塔的简捷设计计算, 它可以估算最小回流 比和最小理论板数。
8
2.1建立工艺流程图
(4)连接流股
点击Material Streams 连接流股
Distillate 塔顶采出
2.简捷精馏模块DSTWU
2.3 模拟计算及结果查看
输入完成,ห้องสมุดไป่ตู้Data Brower键查看模拟结果
计算结束 无错误提示 无警告提示
25
2.简捷精馏模块DSTWU
2.3 模拟计算及结果查看
查看物流结果
塔顶甲醇分率满足: 甲醇回收率: 20138.8*0.999/ 质量分率0.999 (55000*0.268) =0.994≈0.995
b)输入描述信息 Description
c)输入帐号信息 Accounting
13
2.2前期输入
(1)输入全局变量
d)修改Report Options部分选项
Fraction basis Mole 选上 Mass 选上
14
2.2前期输入
(2)输入化学组分
(a)Formula 表项中 分别输入水和甲醇分子式 (b)Component 表项中 对化学组分重命名,便于自己识别 例: 甲基环戊烷 ID:METHY-01

aspen教程-简单精馏塔的计算

aspen教程-简单精馏塔的计算
第15页
塔Columns模块 进行简捷蒸馏的模型有DSTWU, Distl和
SCFrac
进行严格的多级分离的模块有RadFrac,
MultiFrac, PetroFrac, RateFrac
用于液-液萃取塔的严格模型有Extract
第16页
塔Columns模块---简捷蒸馏模块 DSTWU(简捷法精馏设计) Distl(简捷法精馏核算) SCFrac模块
第28页
例1 简捷法精馏设计计算
3 组分输入
第29页
例1 简捷法精馏设计计算
4 进料流股参数设置
第30页
例1 简捷法精馏设计计算
5 DSTWU模型设置
第31页
例1 简捷法精馏设计计算
6 DSTWU结果查看
第32页
例1 简捷法精馏设计计算
6 DSTWU结果查看
• 最小回流比为1.05 • 实际回流比为1.8 • 最小理论板数为10.5 • 实际塔板数为17.5 • 进料板位置为第10块板 • 再沸器所需的热量为76551cal/sec • 冷凝器所需的冷量量为308.5cal/sec
4 精馏塔的模拟计算
1
第1页
Flash习题5
• 图示系统用于冷却反应器出料并将轻相气提自重 的烃类中分离出来。体系组分K值采用SRK模型 方程计算。
• 试计算离开闪蒸罐的气相摩尔组成及流率;
气相出料
反应器出料

甲苯
急冷液相
pump
液相采出
分配比:1:1
第2页
复习---ASPEN Plus单元操作模型
Mixer(流股混合器)
使用Mixer可以将多个流股(物流、热流或功 流)汇合成一股。但是不能混合不同类型的 流股(物流、热流或功流)。

Aspen教程-3模块操作

Aspen教程-3模块操作

6
3
混合器例子流程图
进料物流1
下面这是一个混合器的例子,首先建立工艺流程图。 混合器模块的名称为B1
进料物流2
7
输入进料数据
输入进料物流1数据 输入进料物流2数据
注意:进料物流1的压力为101.3KPa,而进料物流2 的压力为200KPa。后面的讲解要用到这两个压力。
物性方法选用NRTL
8
4
B1 - Input – Flash Options
对于物流混合器来说,需要规定出口压力(或压降)以及物 流的有效相态。当混合热流或功流时,不需要任何规定。
如果你规定了压降,混合器确定入口物流压力的最小值, 并采用这个最小入口物流压力计算出口压力。首先规定压 力为0(表示压降为0),结果显示如下页:
9
查看模块结果
可以看到最终的出口物流压力为两股进料 压力中最小的那一个压力,即101.3KPa。
在前面我们选择的是输入泵的出 口压力值,在此我们选择 Pressure ratio,此项表示出口物 流压力与进料压力的比值。当然 我们也可已选择其他的选项。
35
查看物流结果
出口物流压力与进料压力的比值为2
36
18
混合器 / 分流器模块 压力变送器模块(Compr模块) 换热器模块 塔模块 反应器模块
HeatX
两物流换热器
两股物流的换热器
MHeatX
多物流换热器
任何数量物流的换热 器 管壳式换热器的设计 和模拟 空冷器的设计和模拟
Hetran*
BJAC Hetran 程 序界面 BJAC Aerotran 程序界面
Aerotran*
具有多种结构的空冷器. 用于模拟 节煤器和加热炉的对流段.

ASPEN软件进行精馏塔设计

ASPEN软件进行精馏塔设计

1引言1.1ASPEN PLUS概述Aspen Plus是大型通用流程模拟系统,源于美国能源部七十年代后期在麻省理工学院(MIT)组织的会战,开发新型第三代流程模拟软件。

该项目称为“过程工程的先进系统”(Advanced System for Process Engineering,简称ASPEN),并于1981年底完成。

1982年为了将其商品化,成立了AspenTech公司,并称之为Aspen Plus。

该软件经过20多年来不断地改进、扩充和提高,已先后推出了十多个版本,成为举世公认的标准大型流程模拟软件,应用案例数以百万计。

全球各大化工、石化、炼油等过程工业制造企业及著名的工程公司都是Aspen Plus 的用户。

1.2精馏塔概述精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。

有板式塔与填料塔两种主要类型。

根据操作方式又可分为连续精馏塔与间歇精馏塔。

蒸气由塔底进入。

蒸发出的气相与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向气相中转移,气相中的难挥发(高沸点)组分不断地向下降液中转移,气相愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,从而达到组分分离的目的。

由塔顶上升的气相进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。

塔底流出的液体,其中的一部分送入再沸器,加热蒸发成气相返回塔中,另一部分液体作为釜残液取出。

1.2.1 精馏塔的分类气-液传质设备主要分为板式塔和填料塔两大类。

精馏操作既可采用板式塔,也可采用填料塔,填料塔的设计将在其他分册中作详细介绍,故本书将只介绍板式塔。

板式塔为逐级接触型气-液传质设备,其种类繁多,根据塔板上气-液接触元件的不同,可分为泡罩塔、浮阀塔、筛板塔、穿流多孔板塔、舌形塔、浮动舌形塔和浮动喷射塔等多种。

板式塔在工业上最早使用的是泡罩塔(1813年)、筛板塔(1832年),其后,特别是在本世纪五十年代以后,随着石油、化学工业生产的迅速发展,相继出现了大批新型塔板,如S型板、浮阀塔板、多降液管筛板、舌形塔板、穿流式波纹塔板、浮动喷射塔板及角钢塔板等。

AspenPlus应用基础-塔设备单元

AspenPlus应用基础-塔设备单元

DSTWU 简捷精馏(设计)
DSTWU 模块用Winn-UnderwoodGilliland捷算法进行精馏塔的设计,根 据给定的加料条件和分离要求计算最 小回流比、最小理论板数、给定回流 比下的理论板数和加料板位置。
DSTWU —— 连接
DSTWU 模型的连接图如下:
DSTWU — 模型参数
4、冷凝器设定 ( Condenser DSTWU模型有四组模型设定参数: specifications) (1) 全凝器(Total 2、关键组分回收率 condenser) ( Key component recoveries ) (2) 带汽相馏出物的部 (1)轻关键组分在馏出物中的回收率 分冷凝器 馏出物中的轻关键组分/进料中的轻关键组分 (Partial condenser (2)重关键组分在馏出物中的回收率 with vapor distillate) 馏出物中的重关键组分/进料中的重关键组分 (3) 带汽、液相馏出物
RadFrac—— 连接
RadFrac模型的连接图如下:
RadFrac——模型设定
RadFrac 模型具有以下设定表:
1、配置(Configuration) 2、流股(Streams) 3、压力(Pressure) 4、冷凝器(Condenser) 5、再沸器(Reboiler) 6、三相(3-Phase)
5 种典型的规整填料:
1、带孔板波填料(MELLAPAK) RadFrac — 填料设计 2、带孔网波填料(CY) 3、带缝板波填料(RALU-PAK) 4、陶瓷板波填料(KERAPAK) 5、格栅规整填料(FLEXIGRID)
填料设计(Pack sizing)计算选 用某种填料时的塔径,共有40种填 料供选用,在此仅介绍 5 种典型的 散堆填料和 5 种典型的规整填料:

aspen塔设备解析

aspen塔设备解析

RadFrac — 应用示例 (2)
如将示例(1)的塔压调到0.01 MPa,全塔压降0.005 MPa,试求满足分 离要求所需的回流比和馏出物流量。
RadFrac — 塔板效率
RadFrac模型可以设定实际塔板的 板效率(Efficiencies)。用户可选用蒸 发效率(Vaporization Efficiencies) 或 墨弗里效率(Murphree Efficiencies), 并选择指定单块板的效率,单个组分 的效率,或者塔段的效率。
RadFrac —— 冷凝器
冷凝器设定有两组参数:
12 、冷凝器指标 (Condenser 、过冷态(Subcooling ) Specification)
仅仅应用于部分冷凝器。只需指定冷凝温 1)过冷选项(Subcooling option) 度(Temperature)和蒸汽分率(Vapor 二选一:回流物和馏出物都过冷 /仅仅回 Fraction )两个参数之一。 流物过冷。 2)过冷指标(Subcooling specification) 二选一:过冷物温度/过冷度
4、冷凝器设定 ( Condenser specifications) 3、压力 ( Pressure) 1 、 塔设定 ( Total Column specifications) ( 1 ) 全凝器( condenser) 2 、 关键组分回收率 1) 冷凝器(Condenser) (( 2Key ) 带汽相馏出物的部分冷凝器 ( component recoveries ) stages) ( 1 ) 塔板数( Number of ( Partial condenser with vapor distillate) ( 1 )轻关键组分在馏出物中的回收率 (2) 再沸器(Reboiler) (( 3) 带汽、液相馏出物的部分冷凝器 馏出物中的轻关键组分 2) 回流比(Reflux/进料中的轻关键组分 ratio) ( Partial condenser with vapor and ( 2)重关键组分在馏出物中的回收率 liquid distillate) /进料中的重关键组分 馏出物中的重关键组分

Aspen-Plus应用塔设备设计课件 (一)

Aspen-Plus应用塔设备设计课件 (一)

Aspen-Plus应用塔设备设计课件 (一)Aspen-Plus应用塔设备设计课件是针对化工专业的一门课程,由美国斯坦福大学开发并推广。

该课程主要讲解了Aspen-Plus软件的基本操作和应用以及塔设备设计的基本知识点。

下面我们来分别介绍。

Aspen-Plus软件是一款流程模拟软件,它可以模拟化工过程的各种反应、传质、传热等现象,以及调整反应条件、优化生产过程等。

通过使用Aspen-Plus软件,工程师可以更好地理解化工过程和产品,同时对实验进行预测和模拟。

这款软件广泛应用于石油、化工、能源等各个行业,是工程师必备的工具之一。

在Aspen-Plus应用塔设备设计课件中,学生将学习如何正确使用Aspen-Plus进行塔设备的设计。

在这个过程中,学生需要掌握如何运用软件模拟不同类型的塔,如提取塔、精馏塔、萃取塔和吸附塔等等。

为此,学生还需要掌握和了解一些化工工艺原理和塔设备的设计方法。

在这门课程中,学生将学习到以下基本的知识点:1.反向追踪法(反演法):这是一种求解化工过程的方法,旨在寻找完美的动态模型。

2.材料平衡原理和动态模型:通过学习材料平衡原理,学生可以更好地理解化工过程中的物质变换和传输。

此外,学生还将学习如何使用Aspen-Plus软件建立动态模型,以预测化工过程的性能和优化生产过程。

3.塔设备的设计:塔设备是化工过程中重要的组成部分,对生产过程的稳定和效率影响很大。

在这个课程中,学生将学习如何在Aspen-Plus软件中进行塔设备的设计和优化,以提高生产效率。

总的来说,Aspen-Plus应用塔设备设计课件不仅可以帮助学生更好地掌握Aspen-Plus软件的基本操作和应用,还可以让学生了解化工工艺和塔设备的设计和方法,为将来从事化工行业提供了有力的保障。

同时,这门课程对于工程师和专业人士也有一定的参考价值,可以帮助他们更好地应用Aspen-Plus软件进行化工过程的优化、建模和模拟。

Aspen Plus精馏模拟(塔设计)

Aspen Plus精馏模拟(塔设计)

Aspen plus精馏模拟实例教程1. Aspen Plus 简介进入Aspen Plus后,出现图1所示的Aspen Plus软件操作界面.图1操作界面构成·标题条:在该栏目中显示运行标识. 在你给出运行名字之前,Simulation1是缺省的标识. ·拉式菜单:Aspen Plus的功能菜单. 这些下拉式菜单与Windows的标准菜单类似.·工艺流程窗口:在该窗口中可以建立及连接所要模拟的工艺流程.·模式选择按钮:按下此按钮你可以关闭插入对象的插入模式,并返回到选择模式.·模型库:在这里列出建立模型可用的任何单元操作的模型..·状态域:显示当前有关运行的状态信息.·快速访问按钮:快速执行Aspen Plus相应的命令。

这些快捷按钮与其它Windows程序的快速访问按钮类似.·Next按钮(N->):设计过程的任意时刻点击它,系统都会自动跳转到当前应当进行的工作位置,这为我们输入数据提供了极大的方便.2 Aspen Plus模拟精馏简介(1)塔模型分类做塔新流程模拟分析必须先进行简捷塔计算--- 塔的初步设计. 计算结果为理论板数、进料位置、最小回流比、塔顶/釜热负荷. 然后进行塔精确模拟分析,简捷塔计算结果做为精确计算的输入依据. 本文以甲醇-水混合物系分离为例,首先介绍初步设计方法,然后介绍复杂塔模拟计算。

为初学者提供帮助。

Aspen Plus塔模型分类如下表.模型简捷蒸馏 DSTWU、 Distl 、SCFrac严格蒸馏 RadFrac、 MultiFrac、 PetroFrac、 RateFrac(2)精馏塔的模拟类型精馏塔的模拟类型可以分为设计式和操作式模拟计算. 可以通过定义模型的回流比进行设计型计算,又可以定义塔板数进行操作型计算. 本章我们进行设计计算,在下一章中进行操作型计算.(3)设计实例常压操作连续筛板精馏塔设计,设计参数如下[1]:进料组份:水63.2%、甲醇38.6%(质量分率);处理量:水甲醇混合液55t/h;进料热状态:饱和液相进料;进料压力:125 kPa;操作压力:110 kPa;单板压降:≤0.7 kPa;塔顶馏出液:甲醇量大于99.5 %(质量分率)塔底釜液:水量大于99.5 %;(质量分率).回流比:自选;全塔效率:E T=52%热源:低压饱和水蒸汽;我们通过这个实例学习Aspen Plus精馏模拟应用.3. 精馏塔的简捷计算·设计任务确定理论塔板数 确定合适的回流比·DSTWU 精馏模型简介本例选择DSTWU 简捷精馏计算模型.DSTWU 可对一个带有分凝器或全凝器一股进料和两种产品的蒸馏塔进行简捷精馏 计算. DSTWU 假设恒定的摩尔溢流量和恒定的相对挥发度·DSTWU 规定与估算内容规 定目 的其它结果轻重关键组分的回收率 最小回流比和最小理论级数 理论级数 必需回流比回流比必需理论级数进料位置、冷凝器、再沸器的热负荷·DSTWU 计算结果浏览汇总结果、物料和能量平衡结果、回流比对级数曲线.3.1 定义模拟流程本节任务:·创建精馏塔模型 ·绘制物流·模块和物流命名1)创建精馏塔模块在模型库中选择塔设备column 标签,如图3.1-1.图3.1-1点击该DSTWU 模型的下拉箭头,弹出三个等效的模块,任选其一如图3.1-2所示.图3.1-2在空白流程图上单击,即可绘出一个精馏塔模型如图3.1-3所示.图3.1-32)绘制物流单击流股单元下拉箭头,选择流股类型,在这里我们选择 material 类型. 选择后得到图3.1-4所示.图3.1-4在箭头提示下我们可以根据需要来绘制流股,其中红色箭头表示必须定义的流股,蓝色箭头表示可选定义的流股,不同的模型根据设计任务绘制. 本例一股进料、塔顶和塔底两股出料,如图3.1-5.图3.1-53)模块和物流命名选择中流股/模块(单击流股/模块),点击鼠标右键,在弹出的菜单中选择 rename stream 或 rename block,在对话框中输入改后的名称,即可改变名称.在这里我们将入料改为FEED;塔顶出料改为D;塔底出料改为L;改变名称后的流程图如图3.1-6所示.图3.1-6至此,本节创建模拟流程任务完成,我们将在N-> 快捷键引导下进入下一步操作.3.2 模拟设置单击N-> 快捷键,进入初始化设置页面,如图3.2-1. 用户可以对Aspen Plus做全局设置、定义数据输入输出单位等.·定义数据输入输出单位Aspen plus提供了英制、公斤米秒制、国际单位制三种单位制. 输入数据可以在输入时改变单位,输出报告则按在此选择的单位制输出.系统自身有一套默认的设置。

《AspenPlus应用塔》课件

《AspenPlus应用塔》课件

定义系统中的组分和初始条件。 选择适当的热力学模型,包括状态方程和物性 计算方法。 定义反应器类型和反应物的摩尔比例。 指定模拟计算的时间步长和收敛准则。
AspenPlus输出文件的解析与数据分析
数据分析
使用AspenPlus输出文件进行 数据统计和分析,获得关键参 数。
图表分析
绘制模拟结果的图表,直观展 示化工过程的变化规律。
1 模拟收敛失败
检查初始条件和物料设 定是否正确,调整收敛 准则和时间步长。
2 数据输出错误
审查输入文件和模拟参 数设置,确需求和可靠数 据,选择适合的热力学 模型和反应器类型。
《AspenPlus应用塔》PPT 课件
本课程介绍了如何使用AspenPlus进行化工过程模拟,包括其应用场景、基 础知识回顾和输入文件的构成与编写方式。
AspenPlus应用场景
化工生产
模拟和优化各种化工过程,提 高生产效率和产品质量。
炼油厂
优化炼油流程,降低能耗和环 境污染。
制药研发
快速预测反应结果,优化药物 合成工艺。
敏感性分析
通过改变关键参数,评估其对 模拟结果的影响。
AspenPlus应用案例分析
1
石油裂化
优化裂化装置操作参数,提高石油产
化学反应
2
品的产量和质量。
模拟并改进化学反应过程,减少副反
应和废物生成。
3
生物质转化
研究生物质转化为能源的过程,探索 可持续能源生产方法。
AspenPlus使用中常见问题与解决方法
AspenPlus基础知识回顾
组分
定义化学物质组成,相互之间的摩尔比例。
反应器
模拟反应器类型和反应物之间的化学反应。

ASPEN-0-6-ASPEN_常压塔

ASPEN-0-6-ASPEN_常压塔

常压系统流程模拟计算
一、工艺流程简述
常减压装置是我国最基本的原油加工的装置之一。

主要包括换热器系统、常压系统、减压系统。

常压系统是原油通过换热网络换热到一定温度后,再进到常压加热炉加热到要求的温度,常压加热炉要求的出口温度与原油的性质,拔出率有关,一般要求常压炉出口汽化率大于常压塔所有侧线产品一定的比例,这个比例叫过汽化率,一般为2~5%(wt)。

常压加热炉出口达到一定温度和汽化率的原油,进到常压塔的进料段,油汽往上走,常压塔侧线抽出,一至四个左右的侧线产品,为控制侧线产品的干点,抽出的侧线产品进到侧线产品汽提塔中汽提,冷却后出装置,常压塔进料产品与出料产品之间的焓差,叫剩余热,为回叫这部份热量,常压塔的各产品段有中段回流抽出,与冷原油换热后返回塔内。

塔底抽出常压重油,为提高拔出率和减少塔底结焦,有塔底还通入一定量的蒸汽。

常压系统分离其工流流程如图1-1所示,所涉及主要模块有原油混合器
(M1)、常压塔(T101)。

图1 常压系统模拟计算流程图
CGAS原油中瓦斯,OIL原油;W塔顶切水,GAS-常顶气,GN常顶油;CP1常一线;S1常一线汽提蒸汽CP2常二线;S2常二线汽提蒸汽;CP3常三线;S3常三线汽提蒸汽;C4常四线产品;SS常底汽提蒸汽;CB常底油
二、需要输入的主要参数
1、装置进料数据
2、单元操作参数
3、设计规定及模拟技巧
3.1原油蒸馏数据的重要性
3.2过汽化率
3.3热平衡与产品分布的密切关系
三、软件版本
ASPEN PLUS软件12.1版本,文件名ERC250-C.APW。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

RadFrac —— 配置
1、塔板数(Number of Stages) 2、冷凝器(Condenser) 3、再沸器(Reboiler) 4、有效相态(Valid Phase) 5、收敛方法 (Convergence) 6、操作设定
(Operation Specifications)
RadFrac — 配置(冷凝器)
RadFrac — 填料设计
5 种典填型料的设散规计堆整(P填ac料k s:izing)计算选
用1某、拉带种孔西填板环料波(时填R的A料塔S(C径HM,IEG共L)L有A4P0A种K填) 料2供、鲍带选孔尔用网环,波(在填P此A料仅L(L介)C绍Y)5 种典型的 散3堆、阶带填缝梯料板环和波(5填C种M料典R(型)R的A规LU整-P填A料K):
RadFrac — 应用示例 (4)
在示例(3)的基础上选定 性质选项中的包括水力学参数, 计算后查看结果。
RadFrac — 塔板设计
塔板设计(Tray sizing)计算给定板 间距下的塔径,共有五种塔板供选用: 1、泡罩塔板(Bubble Cap) 2、筛板(Sieve) 3、浮阀塔板(Glistch Ballast) 4、弹性浮阀塔板(Koch Flexitray) 5、条形浮阀塔板(Nutter Float Valve)
1((2((3((、4(((、、12、馏 馏1221)塔213)))(关压)))出 出(冷))设P回力轻塔物物键P凝重再冷a带带全定(a中中流r板关器r(组K沸关t凝汽汽凝ti的的Pl(ia比数eia设键器分q器rl键C、相y器轻重lec(u(oc定s(o组(ci液馏回关关(组soldouRnuNnR键键C(r相出分dmdTem收分dueeCofeio组组)emlnsb馏物pn在unot率t在noia分分sxsodbnlse出的plile馏eedalnr馏r//ceerrna进进te物部eowcretswo出n)in出in)e料料foifs的分iitrdtect)h物s)中中物haerrt部冷aentvs的的vi中gpc中sao分凝aeeo轻重epnprs的co的v冷器s))o关关i)freri回凝回c键键radainei组组t器收d收sisto分分i)率ln率las)te)
4、矩陶瓷鞍板环波(填IN料TX()KERAPAK) 5、超格级栅环规(整S填U料PE(RFRLIENXGIG)RID)
RadFrac — 填料核算
填料核算(Pack rating)计算给 定结构参数的填料的负荷情况,可供 选用的填料类型与“填料设计”中相 同。
“填料设计”与“填料核算”配 合使用,可以完成填料选型和工艺参 数设计。
二选一:过冷物温度/过冷度
RadFrac —— 再沸器
热虹吸再沸器需要进行设定: 1、指定再沸器流量
(Specify reboiler flow rate)
2、指定再沸器出口条件
( Specify reboiler outlet condition)
3、同时指定流量和出口条件
(Specify both flow and outlet condition )
RadFrac — 塔板核算
塔板核算(Tray rating)计算给定 结构参数的塔板的负荷情况,可供选 用的塔板类型与“塔板设计”中相同。
“塔板设计”与“塔板核算”配 合使用,可以完成塔板选型和工艺参 数设计。
RadFrac — 应用示例 (5)
在示例(4)的基础上进行 塔板设计和塔板核算,分别选 用浮阀塔板和弹性浮阀塔板计 算后对比结果。
Distl —— 连接
Distl 模块的连接图如下:
Distl —— 应用示例 (1)
根据DSTWU示例(2)的结果, 选取R=25、NT=61、NF =36 用 Distl 进行核算。再选取NF =20进 行核算。
RadFrac 精密分离模块
RadFrac 模块同时联解物料 平衡、能量平衡和相平衡关系, 用逐板计算方法求解给定塔设备 的操作结果。
RadFrac — 应用示例 (1)
根据DSTWU示例(2)的结果, 选取R=25、NT=61、NF =36 ,用 RadFrac 进行核算。再选取最佳进 料板位置进行核算。
RadFrac — 设计指标
RadFrac 模型带有内部的设计指 标功能,通过Design Specs和Vary两 组参数进行设定。
RadFrac — 配置(操作设定)
操作设定从十个选项中选择:
61、、上回升流蒸比汽(比R(eflBuoxiluRpaRtiaot)io) 72、、上回升流蒸速汽率/进(料Re比flu(xBRoialutep)to Feed Ratio) 83、、馏馏出出物物/进速料率比((DiDstisiltliallateteRtoatFee)ed Ratio) 94、、冷塔凝底器物热速负率荷((BCoottnodmenssReraDteu)ty) 150、上再升沸蒸器汽热速负率荷(BReobilouilperRDauttey))
RadFrac 模块用于精确计算 精馏塔、吸收塔(板式塔或填料 塔)的分离能力和设备参数。
RadFrac—— 连接
RadFrac模型的连接图如下:
RadFrac——模型设定
RadFrac 模型具有以下设定表: 1、配置(Configuration) 2、流股(Streams) 3、压力(Pressure) 4、冷凝器(Condenser) 5、再沸器(Reboiler) 6、三相(3-Phase)
Aspen Plus 使用方法
Models for Column Units
塔设备单元模型
塔设备单元模型 — 分类
塔设备(Columns)单元共有9种模 块,其中 RateFrac 和 BatchFrac 需要单 独的许可证,其余7种可直接使用:
1. DSTWU 5. MutiFrac 2. Distl 6. SCFrac 3. RadFrac 7. PetroFrac 4. Extract
RadFrac — 配置(收敛方法)
收敛方法从六个选项中选择一种: 1、标准方法(Standard) 2、石油/宽沸程(Petroleum/Wide-Boiling) 3、强非理想液相(Strongly Non-ideal Liquid) 4、共沸体系(Azeotropic) 5、深度冷冻体系(Cryogenic) 6、用户定义(Custom)
RadFrac — 应用示例 (6)
在示例(2)的基础上进行 填料设计和填料核算,分别选 用MELLPAK和RALU-PAK计算 后对比结果。
RadFrac — 吸收计算
吸收计算的设备参数设置:
1)冷凝器和再沸器类型选“None”; 2)气体进料板设置为“N+1”; 3)在收敛(Convergence)项目中将
RadFrac — 应用示例 (3)
如果示例(2)中的精馏段的 墨弗里效率为0.45,提馏段的墨弗 里效率为0.55,试求满足分离要求 所需的塔板数和加料板位置。
RadFrac — 报告选项
报告(Report)中有一项对塔板设计 非常重要,即性质选项(Property options) 里的包括水力学参数(Include hydraulic parameters)选项。另外剖形选项(Profile options)里包括哪些塔板(Stages to be included in report)也很有用。
DSTWU 简捷精馏(设计)
DSTWU 模块用Winn-UnderwoodGilliland捷算法进行精馏塔的设计,根 据给定的加料条件和分离要求计算最 小回流比、最小理论板数、给定回流 比下的理论板数和加料板位置。
DSTWU —— 连接
DSTWU 模型的连接图如下:
DSTWU设定参数:
可以设定多个指标参数和多个变 化参数,但要注意两者间的依赖关系 和自由度必须吻合,否则不能收敛。
RadFrac — 应用示例 (2)
如将示例(1)的塔压调到0.01 MPa,全塔压降0.005 MPa,试求满 足分离要求所需的回流比和馏出物 流量。
RadFrac — 塔板效率
RadFrac模型可以设定实际塔板的 板效率(Efficiencies)。用户可选用蒸 发效率(Vaporization Efficiencies) 或 墨弗里效率(Murphree Efficiencies), 并选择指定单块板的效率,单个组分 的效率,或者塔段的效率。
DSTWU — 计算选项
DSTWU模型有两个计算选项:
1、生成回流比——理论板数关系表 ( Reflux ratio vs. Number of
theoretical stages )
2、计算等板高度
( Calculate HETP )
DSTWU — 应用示例 (1)
含乙苯30%w、苯乙烯70%w的混合物 (F=1000kg/hr、P=0.12MPa、T=30 °C)用 精馏塔(塔压0.02MPa )分离,要求99.8% 的乙苯从塔顶排出,99.9%的苯乙烯从塔底 排出,采用全凝器。求: Rmin,NTmin,R=1.5 Rmin 时的R、NT和NF。
RadFrac —— 流股
1、进料流股(Feed Streams) 指定每一股进料的加料板位置。
2、产品流股(Product Streams) 指定每一股侧线产品的出料板位
置及产量。
RadFrac —— 压力
塔内压力设定有三种方式(View) 1、塔顶/塔底(Top/Bottom)
指定塔顶压力、冷凝器压降和塔压降。
RadFrac — 配置(有效相态)
有效相态从四个选项中选择一种: 1、汽-液(Vapor-Liquid) 2、汽-液-液(Vapor-Liquid -Liquid ) 3、汽-液- 再沸器游离水 (Vapor-Liquid-FreeWaterCondensor) 4、汽-液- 任意塔板游离水 (Vapor-Liquid-FreeWaterAnyStage)
相关文档
最新文档