齿轮传动设计

合集下载

机械基础之齿轮传动的设计

机械基础之齿轮传动的设计

机械基础之齿轮传动的设计齿轮传动是机械传动的一种常见形式,广泛应用于冶金、化工、轻工等领域。

正确的齿轮传动设计可以保证机器设备的正常运行,提高传动效率和可靠性。

一、齿轮传动的基本原理齿轮传动是利用齿轮间的啮合来实现传动的。

齿轮传动的优点有传动可靠性高、传递效率高,并且在传递扭矩大的情况下具有优势。

齿轮传动由传动齿轮和被动齿轮组成,传动齿轮将传递力矩传递给被动齿轮,并将其旋转。

传动齿轮和被动齿轮要求相互啮合,且在相互运转时还必须平稳和具有足够的承载能力。

二、齿轮传动的设计要点齿轮传动的设计要点主要包括齿轮尺寸计算、齿轮耐用性、传动精度计算等。

其中齿轮尺寸计算是齿轮传动设计中的重要环节。

1. 齿轮尺寸计算齿轮尺寸计算是指通过计算齿轮参数来确定齿轮的尺寸,主要包括模数、压力角、齿数和齿轮转动半径等参数。

齿轮尺寸的计算要考虑被动齿轮的载荷、啮合角、轴向力和齿轮材料强度等因素。

2. 齿轮材料选择齿轮材料应选用高强度、高硬度、高耐磨性和高精度的材料,例如合金钢、硬化钢、钛合金等。

选择齿轮材料时,还应考虑到齿轮使用环境的特点和齿轮的耐用性。

3. 传动误差控制齿轮传动的传动误差包括齿轮啮合误差、轴向误差和径向误差。

在齿轮传动设计中,要通过合理的设计和加工来控制传动误差,从而提高齿轮传动的传动精度和可靠性。

三、齿轮传动的安装和调试齿轮传动的安装和调试是确保齿轮传动正常运行的关键环节。

在齿轮传动安装前,需要检查齿轮的尺寸精度、齿轮材料和齿轮的表面质量。

同时,齿轮的安装也需要注意各种参数的匹配,例如齿轮啮合间隙和传动轴心的误差等。

在齿轮传动调试时,需要进行实际运转试验,检查传动效率和齿轮传动噪声等因素。

如果发现问题,需要及时调整齿轮传动的参数或者重新设计齿轮传动。

四、结论齿轮传动是机械传动的常见形式,其设计要点包括齿轮尺寸计算、齿轮耐用性、传动精度计算等。

正确的齿轮传动设计可以保证机器设备的正常运行,提高传动效率和可靠性。

第十一章齿轮传动设计(分析“齿轮”文档)共81张PPT

第十一章齿轮传动设计(分析“齿轮”文档)共81张PPT

●三种硬度单位之比较: HV(维氏) ≈ HBS(布氏);HRC(洛氏)×10 ≈ HBS
●当要求按有限寿命计算时,齿轮的循环次数N计算式为:
N = 60 n a t n——齿轮转速,r/min; a——齿轮每转一转时,轮齿同侧齿面啮合次数,
单向传动a=1,双向传动a=2; t——齿轮总工作时间,h。
——扩展性点蚀
开式传动:无点蚀(∵v磨损>v点蚀) 改善措施:
1)HBS↑——σHP ↑ 2)↑ρ(综合曲率半径)(↑d1) 3)↓表面粗糙度,↑加工精度
4)↑润滑油粘度
↑接触强度
3.齿面磨粒磨损
常发生于开式齿轮传动。 现象:金属表面材料不断减小 原因:相对滑动+硬颗粒(灰尘、金属屑末等)
润滑不良+表面粗糙。 后果:正确齿形被破坏、传动不平稳, 齿厚减薄、
斜齿轮: 接触线倾斜
——整体折断
——载荷集中
在齿一端
——局部折断
改善措施:
1)d一定时,z↓,m↑;
2)正变位;
齿根厚度↑ ↑抗弯强度
3)提高齿面硬度(HBS↑)→σFP ↑;
4)↑齿根过渡圆角半径; 5)↓表面粗糙度,↓加工损伤;
↓应力集中
6)↑轮齿精度;
7)↑支承刚度。
改善载荷分布
2.齿面点蚀
两轮轮齿
Fn1 = - Fn2
n2 O2
上各力之
间关系
Ft1 = - Ft2
Fr1 = - Fr2
Fn1
db2
T2 d2
N2 Fr 1
α′= α
Ft 2
各力方向判定
Ft 1
主 动 轮 — 受 阻 力 , Ft1
与力作用点线速度的方

齿轮传动设计PPT课件

齿轮传动设计PPT课件
一、渐开线的形成和特性 二、渐开线齿廓满足定角速比要求
17
一、渐开线的形成和特性
发生线
K
1、渐开线的形成:
一直线在一个圆周上做 纯滚动时,直线上任意一点 的轨迹称为渐开线。
AK曲线称为渐开线。 BK直线称为发生线。 这个圆称为基圆。
k 称渐开线A K的展角
B
rb
基圆
A
k
O
18
2、渐开线特性:
(1)BK = A B 发生线沿基圆滚
标准齿轮
分度圆上齿厚与齿槽宽相等,且模数、压力 角、齿顶高系数及顶隙系数均为标准值的齿轮称 为标准齿轮。
33
三、齿条的基本参数:
齿条的主要特点是:
1.齿条同侧齿廓为平行的直 线,齿廓上各点具有相同的 压力角,即为其齿形角,它 等于齿轮分度圆压力角。
2.齿廓在不同高度上,具有 相同的齿距。但齿厚和槽宽各不相同.
为使前后两轮齿能同时 在啮合线上接触,必须使法 向齿距K1K'1 = K2K'2,否 则 若K1K'1 > K2K'2 ,传动中断。
若K1K'1 < K2K'2 ,两轮可能卡住。
38
Pn1 Pn2
Pn1 Pn2
Pn1 Pn2
39
pb
db
z
d
z
db d
p cos
m cos
pb1 m1 cos 1 ; pb2 m2 cos 2
5
外啮合 内啮合
齿轮齿条
6
斜齿轮
人字 齿轮
直齿 圆锥 齿轮
海拔
齿轮
7
蜗轮蜗杆
交错轴斜齿轮 (旧称螺旋齿轮)
8

机械设计基础中的齿轮传动设计

机械设计基础中的齿轮传动设计

机械设计基础中的齿轮传动设计齿轮传动是机械设计中常见的一种传动方式,广泛应用于各种机械装置中。

在机械设计基础中,了解齿轮传动的设计原理和方法对于设计出高效可靠的机械装置具有重要意义。

本文将介绍齿轮传动设计的基本知识和注意事项。

一、齿轮传动的基本原理齿轮传动是利用齿轮间的啮合来传递动力和运动的一种机械传动方式。

它由主动齿轮和从动齿轮组成,通过不同大小的齿轮啮合,实现运动和力的传递。

在齿轮传动设计中,需要考虑的基本参数有模数、齿数、压力角、齿轮间隙等。

模数是齿轮齿数与齿轮直径的比值,用来表示齿轮的尺寸大小;齿数是指齿轮上的齿的数量,决定了传动的速比;压力角是齿轮齿面与轴线之间的夹角,对齿轮的强度和传动性能有影响;齿轮间隙则是齿轮啮合时齿与齿之间的间隙,影响传动的精度和噪声。

二、齿轮传动设计的步骤在进行齿轮传动设计时,需要遵循一定的步骤,确保传动装置的性能和可靠性。

1. 确定传动比传动比是指主从动齿轮的齿数比值,决定了传动装置的输出速度和扭矩。

根据所需的输出速度和扭矩,选择合适的齿轮齿数组合,计算得出传动比。

2. 选择模数和齿轮参数根据传动比和要求的齿轮尺寸,选择合适的模数和齿数。

在进行选型时,需要考虑齿轮的强度、噪声和传动精度等要求。

3. 计算齿轮尺寸根据所选的模数和齿数,计算得出齿轮的尺寸和几何参数。

包括齿轮的外径、根圆直径、齿宽等。

4. 进行强度校核根据所选的齿轮尺寸和材料,进行强度校核。

通过计算齿轮的接触应力、弯曲应力和疲劳寿命等参数,判断齿轮的强度是否满足要求。

5. 进行传动效率计算根据齿轮的啮合条件和传动设计参数,计算传动的效率。

传动效率是指输入功率和输出功率之间的比值,可以评估传动装置的能量转换效率。

三、齿轮传动设计的注意事项在进行齿轮传动设计时,需要注意以下几点,以确保传动装置的性能和可靠性。

1. 合理选择齿轮材料齿轮传动中,对材料的选择要满足一定的强度和硬度要求。

常用的齿轮材料有合金钢、碳素钢等。

齿轮传动设计

齿轮传动设计

第十章齿轮传动§10-1 概述§10-2 齿轮传动的失效形式及设计准则§10-3 齿轮的材料及其选择原则§10-4 齿轮传动的计算载荷§10-5 标准直齿圆柱齿轮传动的强度计算§10-6 齿轮传动设计参数、许用应力与精度选择§10-7 标准斜齿圆柱齿轮传动的强度计算§10-8 标准锥齿轮传动的强度计算§10-9 齿轮的结构设计§10-10 齿轮传动的润滑P186齿轮传动概述1一、齿轮传动的主要特点:传动效率高可达99%;结构紧凑;工作可靠,寿命长;传动比稳定;制造及安装精度要求高,价格较贵。

二、齿轮传动的分类齿轮传动概述2按齿轮类型分:直齿圆柱齿轮传动斜齿圆柱齿轮传动锥齿轮传动人字齿轮传动齿轮传动概述2按装置形式分:开式传动、半开式传动、闭式传动。

按齿面硬度分:软齿面齿轮(齿面硬度≤350HBS)硬齿面齿轮(齿面硬度>350HBS)三、本章的主要内容齿轮传动的失效形式及设计准则;齿轮的材料及精度选择;齿轮传动的受力分析;齿轮传动的设计理论及方法;齿轮的结构设计。

齿轮的材料及其选择原则齿轮的材料及其选择原则一、对齿轮材料性能的要求轮齿应有较高的抗折断能力;二、常用的齿轮材料钢:常用材料,可经过热处理改善机械性能铸铁:低速、轻载、不太重要的场合非金属材料:高速、轻载、且要求降低噪声的场合。

四、齿轮材料选用的基本原则❑必须满足如强度、寿命、可靠性、经济性等的要求;❑应考虑齿轮尺寸大小和制造方法及工艺的要求;❑软齿面齿轮,小齿轮的齿面硬度应大于大齿轮的齿面硬度30~50HBS 。

常用材料见表10—1P189-192三、常用的热处理方法软齿面:调质、正火等硬齿面:表面淬火、渗碳、氮化等齿面应有较强的抗点蚀、抗磨损和抗胶合能力。

齿轮传动的计算载荷齿轮传动的计算载荷齿面接触线单位长度上所受的载荷,即:F n —为轮齿所受的法向载荷。

齿轮传动设计

齿轮传动设计

不能无极变速;
精度低时,噪声和振动较大; 不宜用于轴间距离较大的传动。
§3-2 齿轮传动失效形式和设计准则
一、失效形式
1、轮齿折断 ★ ★ 疲劳折断 过载折断
全齿折断—常发生于齿宽较小的直齿轮
局部折断—常发生于齿宽较大的直齿轮 和斜齿轮
措施:增大齿根圆角半径、 提高齿
面精度、正变位、增大模数等
2、齿面疲劳点蚀
各力关系:
F 1 F 2 t t Fr1 Fr 2
各力方向: Ft1与主动轮回转方向相反 Ft2与从动轮回转方向相同 Fr1 、Fr2分别指向各自齿轮的轮 心 例:
n2 n2 Fr2
2 1 Fr1
注意: 各力应画在 啮合点上!
Ft2
Ft1
n1
n1
二、计算载荷Fnc
Fnc = K Fn = K Ft /cosα
非对称布置:ψd = 0.6~1.2 悬臂布置、开式传动:ψd = 0.3~0.4
直齿轮取小 斜齿轮取大 硬齿面降低 50%
HP
H Z E Z H Z
2 KT1 (u 1) 3 d d1 u
模数的大小对接触强度无直接影响
设计式:
d1
3
Z E Z H Z 2 KT1 u 1 u HP d
FP
F limYST
S F min
YN
MPa
σFlim — 试验齿轮的弯曲疲劳极限, 见图3-17 YST — 试验齿轮的应力修正系数, YST = 2 YN — 寿命系数, 无限寿命时YN =1,有限寿命时 YN >1 SFmin — 弯曲强度最小安全系数 一般取 SFmin =1.4~1.5,重要传动SFmin =1.6~3.0

齿轮传动机械设计

齿轮传动机械设计
选择齿数z1,z2=uz1;
选择齿宽系数d
确定主要参数: 中心距a——圆整 模数m——取标准值 反求齿数z1、z2
根据材料硬度确定设计准则 (按?设计;按?校核)
计算小、大齿轮的各许用应力 [σH1]、 [σH2]、 [σF1] 、[σF2]
计算主要尺寸:d1=mz1 (满足设计条件)d2=mz2 …
机械设计 (8)
第八章 齿轮传动
概述 齿轮传动的失效形式和设计准则 标准直齿圆柱齿轮的强度计算 齿轮的材料和许用应力 斜齿圆柱齿轮传动 圆锥齿轮传动
齿轮的结构设计
§8.1 概 述
一、齿轮传动的主要特点:
传动效率高 可达99%。在常用的机械传动中,齿轮传动的效率最高;
结构紧凑 与带传动、链传动相比,在同样的使用条件下,齿轮传动所需
Fn
αF
F2 hF
弯曲力矩: M K Fn cosF hF
30˚ 30˚
危险截面的弯曲截面系数:W
bS
2 F
6
SF rb
弯曲应力:
F
M W
6KFnhF cos F
bS
2 F
O
∵ Fn
Ft
cos
F
6KFt hF cos F
bS
2 F
cos
§8.3 标准直齿圆柱齿轮强度计算
弯曲应力: F
6KFt hF cos F
径向力:Fr
Ft
tan
2T1 d1
tan
d1——小齿轮节圆直径
径向力方向:指向各自轮心
法向力:Fn
Ft
cos
2T1
d1 cos
§8.3 标准直齿圆柱齿轮强度计算
二、轮齿的计算载荷

齿轮传动的设计步骤

齿轮传动的设计步骤

齿轮传动的设计步骤一、齿轮传动的概述齿轮传动是机械传动中常用的一种方式,其特点是具有高效率、大扭矩、稳定性好等优点。

齿轮传动可以将旋转运动转化为线性运动或者将低速高扭矩的运动转换为高速低扭矩的运动,广泛应用于各种机械设备中。

二、齿轮传动的设计步骤1. 确定传递功率和转速比在进行齿轮传动设计之前,需要明确所需传递功率和转速比。

根据机械设备的工作条件和要求确定合适的参数,并结合实际情况进行调整。

2. 选择合适的齿轮类型根据所需功率和转速比,选择合适的齿轮类型。

常见的齿轮类型包括圆柱齿轮、斜齿轮、蜗杆和蜗轮等。

不同类型的齿轮具有不同的特点,需要根据实际情况进行选择。

3. 计算模数和齿数根据所选用的齿轮类型以及所需功率和转速比,计算出合适的模数和齿数。

模数是齿轮设计中的重要参数,其大小决定了齿轮的尺寸和齿数。

同时,需要注意齿数不能过小或过大,否则会影响传动效率和稳定性。

4. 计算齿轮几何参数根据所选用的齿轮类型、模数和齿数,计算出齿轮的几何参数。

包括齿顶高、齿根高、压力角等参数。

这些参数对于保证传动效率和稳定性具有重要作用。

5. 进行强度计算在确定了齿轮的几何参数之后,需要进行强度计算。

通过计算得到所选用材料能够承受的最大载荷,并比较实际载荷与最大载荷之间的差距,以确定所选用材料是否适合。

6. 进行装配设计在完成单个齿轮设计之后,需要进行装配设计。

包括确定两个或多个齿轮之间的配合关系、确定传动方式等。

同时还需要考虑安装方式、润滑方式等因素。

7. 进行检查和测试在完成设计之后,需要进行检查和测试以确保设计符合实际要求,并满足相关标准和规范。

需要进行的测试包括强度测试、噪声测试、振动测试等。

三、齿轮传动设计的注意事项1. 齿轮传动设计需要考虑多种因素,包括功率、转速比、齿轮类型、材料选择等。

需要综合考虑各种因素,以确保设计符合实际要求。

2. 齿轮传动设计中需要注意齿数不能过小或过大,同时还需要注意齿轮几何参数和强度计算。

试述齿轮传动的设计准则

试述齿轮传动的设计准则

齿轮传动的设计准则引言齿轮传动是一种常见的机械传动形式,其优点包括高效、承载能力大和传动精度高等。

在进行齿轮传动的设计过程中,需要遵循一系列的设计准则,以确保传动系统的可靠性和性能。

1. 齿轮的几何参数设计齿轮传动的几何参数设计是齿轮传动设计中最基本的一步。

它包括确定齿轮的模数、压力角、齿轮的齿数等几个重要参数。

几何参数的设计应考虑以下准则:1.1 强度要求齿轮的几何参数应满足一定的强度要求,以保证传动系统在工作过程中不会发生弹性变形或破坏。

强度要求可以通过计算齿轮的模数和面宽来确定。

1.2 齿轮的传动比齿轮的传动比是指输入轴和输出轴的转速之比。

在确定齿轮的齿数时,应根据所需的传动比来选择合适的齿数组合。

通常情况下,齿轮的齿数要求是整数或接近整数的。

1.3 齿轮的圆整度和制造公差齿轮的圆整度和制造公差对齿轮传动的性能有重要影响。

合理选择齿轮的圆整度和制造公差可以减小齿轮传动的啮合噪声和寿命损失。

2. 齿轮传动的强度计算齿轮传动的强度计算是齿轮传动设计中的关键一步,它用于评估齿轮传动系统的抗弯强度、承载能力和传动效率等。

齿轮传动的强度计算应考虑以下准则:2.1 抗弯强度和寿命齿轮的抗弯强度和寿命是齿轮传动设计中最为关键的指标。

计算齿轮的抗弯强度和寿命时,需要考虑齿轮的材料、几何参数和工作条件等因素。

2.2 接触疲劳强度和寿命齿轮传动在工作过程中会受到周期性的载荷作用,因此接触疲劳强度和寿命也是考虑的重要因素之一。

计算齿轮的接触疲劳强度和寿命时,需要考虑齿轮的材料、几何参数和工作条件等因素。

2.3 轴向载荷和接触应力在齿轮传动设计中,还需要考虑齿轮的轴向载荷和接触应力。

轴向载荷和接触应力的计算可以通过应力分析和有限元分析等方法进行。

3. 齿轮传动的结构设计齿轮传动的结构设计是指确定齿轮传动系统的齿轮布局、轴承选型和传动装置的设计等。

齿轮传动的结构设计应考虑以下准则:3.1 齿轮的布局和轴距齿轮的布局和轴距对齿轮传动的性能有重要影响。

机械设计中的齿轮传动设计

机械设计中的齿轮传动设计

机械设计中的齿轮传动设计齿轮传动作为机械设计中常用的传动方式之一,广泛应用于各种机械设备中。

它通过齿轮的啮合传递动力和运动,实现不同部件之间的转动。

在机械设计中,齿轮传动设计至关重要,它不仅关系到机械设备的运行效率和可靠性,还影响到整个系统的性能和寿命。

一、齿轮传动的基本原理齿轮传动是利用齿轮进行动力传递的一种机构。

它由一个或多个齿轮组成,其中一个齿轮被称为主动轮,另一个齿轮被称为从动轮。

主动轮通过齿轮齿面的啮合将动力传递给从动轮,从而实现不同轴之间的转动。

齿轮传动的基本工作原理是根据齿轮的啮合关系,当主动轮旋转时,从动轮也会随之旋转。

根据齿轮的齿数和模数,可以确定齿轮传动的传动比。

传动比是齿轮传动中主动轮齿数与从动轮齿数之比,可以用来调节输出轴的转速和扭矩。

二、齿轮传动的设计步骤在机械设计中,齿轮传动的设计是一个复杂而严谨的过程,需要经过以下几个步骤:1. 确定传动类型:根据实际需求和机械结构,确定齿轮传动的类型,如平行轴齿轮传动、直径轴齿轮传动等。

2. 计算传动比:根据所需的输出转速和扭矩,结合齿轮的齿数,计算合适的传动比。

传动比的选择要考虑到工作条件、负荷特性和传动效率等因素。

3. 选择齿轮模数:根据所需传动比和旋转速度,选择适当的齿轮模数。

齿轮模数是齿轮传动中齿轮齿数与齿轮模组之比,它决定了齿轮的齿轮参数和外形尺寸。

4. 进行齿轮设计计算:根据所选齿轮模数和传动比,进行齿轮设计计算,包括齿数、模数、齿宽等参数的计算。

齿轮设计计算要遵循齿面接触和齿面强度等要求,确保齿轮传动的可靠性和寿命。

5. 检查齿轮传动的干涉和轴向间隙:进行齿轮传动的干涉检查和轴向间隙的计算,确保齿轮的啮合良好,同时避免因不当尺寸而产生卡死或轴向游隙过大等问题。

6. 最后进行齿轮传动的装配和调试:按照设计要求,进行齿轮传动的装配和调试。

在装配过程中,要注意齿轮轴的配合和对中,保证齿轮传动工作平稳、噪音小。

三、齿轮传动设计的注意事项在进行齿轮传动设计时,需要注意以下几个方面:1. 齿轮的材料选择:根据实际工作条件和负荷特性,选择适当的齿轮材料。

齿轮传动的设计步骤

齿轮传动的设计步骤

齿轮传动的设计步骤齿轮传动的设计步骤齿轮传动是一种常见且重要的机械传动方式,广泛应用于机械设备和工业机械中。

其作用是通过两个或多个齿轮之间的啮合,将动力或运动传递给其他零件或机械系统。

齿轮传动设计的核心在于确定合适的齿轮参数,以满足传动系统的要求。

下面,我们将介绍齿轮传动的设计步骤。

第一步:确定传动比和传动功率在开始齿轮传动的设计前,需要明确传动系统所需的传动比和传动功率。

传动比是指输入轴的转速与输出轴的转速之间的比值。

传动功率则是指传递给输出轴的功率大小。

根据具体应用需求,我们可以确定传动比和传动功率的数值。

第二步:计算齿轮的模数在传动比和传动功率确定后,接下来需要计算齿轮的模数。

齿轮的模数是指齿轮齿数与齿轮模的比值,用来描述齿轮齿数和齿轮大小的关系。

一般来说,根据传动功率和转速来计算齿轮的模数,以满足传动的要求。

第三步:选择合适的齿轮材料齿轮传动的设计过程中,选择合适的齿轮材料十分重要。

齿轮材料应具有良好的耐磨性、耐蚀性、强度和刚度,以确保传动系统的可靠性和寿命。

常用的齿轮材料包括钢、铸铁、铜合金等。

根据具体的应用需求和工作环境选择合适的齿轮材料。

第四步:确定齿轮的齿数和齿形根据传动比和齿轮模数,确定齿轮的齿数。

齿数的确定需要考虑到齿轮啮合条件的要求,如齿面接触、齿轮强度等。

齿形的设计也是十分重要的一步,合理的齿形设计可以提高齿轮传动的效率和传动能力。

常见的齿形有直齿、斜齿、渐开线齿等。

第五步:计算齿轮的几何参数在确定齿数和齿形后,需要计算齿轮的几何参数。

包括齿轮的分度圆直径、齿顶圆直径、齿根圆直径、齿隙等。

这些参数直接影响着齿轮的传动特性,如传动比、啮合条件等。

通过计算这些几何参数,可以确保齿轮传动的可靠性和稳定性。

第六步:计算齿轮的强度在齿轮传动设计的过程中,还需要计算齿轮的强度。

齿轮的强度是指齿轮在工作过程中能够承受的最大载荷。

通过计算齿轮的强度,可以判断齿轮是否能够满足工作条件下的要求。

机械设计中的齿轮传动系统设计

机械设计中的齿轮传动系统设计

机械设计中的齿轮传动系统设计齿轮传动系统在机械设计中扮演着重要的角色。

本文将探讨齿轮传动系统的设计原理、关键要素以及常用的设计方法。

一、设计原理齿轮传动系统是通过齿轮之间的啮合来传递动力和扭矩的机械传动系统。

它的设计原理基于以下几个关键概念:1. 齿轮的模数(Module):模数是齿轮设计中的重要参数,它表示单位齿数所占的直径。

模数的选择应考虑到所需的传动比、扭矩和转速要求等。

2. 齿轮的齿数:齿数决定了齿轮的啮合速比。

根据传动比的要求和齿轮的载荷要求,可以确定齿数。

3. 齿轮的啮合角:啮合角是指齿轮齿廓的锐角和啮合线的夹角。

合适的啮合角可以提高传动效率和传动性能。

4. 齿轮齿廓的修形:通过对齿轮齿廓进行修正,可以改善啮合过程的运动性能和传动效率。

二、设计要素在进行齿轮传动系统的设计时,需考虑以下几个重要的要素:1. 传动比和转速:根据机械系统的需求,确定合适的传动比和转速比,从而满足所需的输出扭矩和转速要求。

2. 动力传递和承载能力:根据工作条件和载荷要求,选择合适的齿轮材料和热处理工艺,确保齿轮传动系统能承受所需的载荷和传递所需的动力。

3. 齿轮啮合的几何要求:通过几何参数的选择,确保齿轮啮合过程的顺利进行,同时避免齿轮齿面的过度磨损和损坏。

4. 齿轮传动的噪声和振动控制:通过合理的齿轮设计和优化,减少齿轮传动过程中产生的噪声和振动,提高传动系统的运行平稳性和寿命。

三、设计方法在实际的齿轮传动系统设计过程中,可以采用以下几种常用的设计方法:1. 标准化设计:根据已有的标准齿轮模型和参数,选择合适的齿轮尺寸和几何参数,简化设计过程,提高效率。

2. 计算机辅助设计:借助计算机辅助设计软件,进行齿轮传动系统的三维建模和力学分析,快速得到设计结果。

3. 优化设计:通过设计参数的优化选择,使齿轮传动系统满足最佳的传动性能和经济指标。

4. 实验验证:设计完成后,进行实验验证,测试齿轮传动系统的性能和可靠性,发现潜在问题并进行改进。

齿轮传动的设计方法

齿轮传动的设计方法

齿轮传动的设计方法齿轮传动是一种常见的机械传动形式,广泛应用于各种机械设备中。

它通过齿轮之间的啮合,实现动力的传递和转速的变换。

齿轮传动设计的目标是保证传动的可靠性、寿命和效率,同时满足特定的传动比、转矩和速度需求。

下面将就齿轮传动的设计方法进行详细的讨论。

1.确定传动比:传动比是齿轮传动设计的一个重要参数,决定了输入和输出轴的转速关系。

在设计中,需要根据实际需求确定传动比,以满足所需的转矩和速度输出。

传动比的计算方法一般根据齿轮尺寸和齿数计算,可以利用公式b1/a1 = N2/N1,其中N1和N2分别为传动轴的齿数,b1和a1分别为齿轮轮齿的宽度。

2.选取齿轮类型和材料:根据实际需要和工作条件,选择合适的齿轮类型和材料,以保证传动的可靠性和寿命。

常见的齿轮类型包括圆柱齿轮、斜齿轮、锥齿轮等,它们的传动特性和适用范围有所不同。

对于高速和大转矩的传动,一般选择硬齿面齿轮,如合金钢、硬质合金等材料,以保证齿轮的强度和耐磨性。

3.计算齿轮参数:齿轮传动设计时需要计算齿轮的参数,包括模数、齿轮轮齿数、齿宽和啮合角等。

这些参数的选择和计算直接影响着齿轮传动的性能和寿命。

模数是齿轮设计的基本参数之一,它决定了齿轮的尺寸、齿数和啮合角等。

齿轮的齿数一般根据传动比和工作条件计算,齿宽则取决于传动功率和载荷。

4.计算齿轮的强度和接触强度:在齿轮传动设计中,需要对齿轮的强度和接触强度进行计算,以确保齿轮的可靠工作和寿命。

齿轮的强度指标一般包括齿根弯曲强度和齿面强度两个方面,可以通过计算齿弯曲挠度、齿应力和材料的强度参数来确定。

接触强度则是指齿轮轮齿接触面上的压力分布情况,一般通过计算接触应力和接触疲劳寿命来评估齿轮的接触强度。

5.优化齿轮传动结构:在齿轮传动设计过程中,可以通过改变齿轮的结构和参数,来优化传动的性能和效率。

例如,可以采用增加齿数、增加齿宽、改变齿形和减小齿间间隙等方式,来提高齿轮的强度和传动效率。

此外,可以通过采用齿轮加工和热处理工艺等手段,来提高齿轮表面的硬度和耐磨性。

简述齿轮传动设计准则

简述齿轮传动设计准则

简述齿轮传动设计准则齿轮传动是一种常见的机械传动方式,广泛应用于各种机械设备中。

齿轮传动设计的合理性直接影响着机械设备的运行效率、稳定性和寿命。

本文将从齿轮传动设计的基本原理、设计准则以及注意事项等方面进行全面详细的简述。

一、齿轮传动设计的基本原理1. 齿轮传动的定义齿轮传动是利用两个或多个啮合齿轮之间的转矩和转速比进行能量转换和传递的一种机械传动方式。

2. 齿轮啮合原理齿轮啮合是指两个或多个齿轮之间相互啮合,通过啮合使得一个齿轮转动时另一个齿轮也随之转动。

在实际应用中,通常采用圆柱齿轮或锥形齿轮来实现啮合。

3. 齿轮传动基本参数在进行齿轮传动设计时,需要考虑以下几个基本参数:模数、压力角、法向模数、螺旋角、节圆直径等。

这些参数会直接影响到齿轮传动的传动比、传动效率、噪声等性能。

二、齿轮传动设计准则1. 齿轮的选材齿轮的选材应该考虑到其机械性能、物理性能以及加工性能等因素。

通常采用的齿轮材料有高碳钢、合金钢、铸铁等。

在选择材料时,需要考虑到所需承载力、工作环境温度和湿度等因素。

2. 齿轮的强度计算齿轮的强度计算是齿轮传动设计中非常重要的一步。

在进行强度计算时,需要考虑到齿数、模数、压力角等因素,并根据所需扭矩和转速来确定所需模数和齿数。

同时还需要考虑到齿形修正系数、载荷系数以及安全系数等因素。

3. 齿轮啮合精度在进行齿轮啮合精度设计时,需要考虑到啮合误差和啮合间隙两个方面。

啮合误差是指两个啮合齿轮之间存在的微小偏差,可以通过加工精度来控制;而啮合间隙则是指两个啮合齿轮之间的空隙,可以通过调整齿轮的啮合深度来控制。

4. 齿轮传动的噪声在进行齿轮传动设计时,需要考虑到齿轮传动的噪声问题。

通常采用的方法有减小啮合间隙、提高加工精度、采用渐开线齿形等。

5. 齿轮传动的润滑在进行齿轮传动设计时,需要考虑到齿轮传动的润滑问题。

通常采用的润滑方式有油润滑和脂润滑两种。

在选择润滑方式时需要考虑到工作环境温度、转速和负载等因素。

齿轮传动装置设计与实例

齿轮传动装置设计与实例

齿轮传动装置设计与实例摘要:1.齿轮传动装置的概念与分类2.齿轮传动设计的主要参数与方法3.齿轮传动装置的设计实例4.齿轮传动装置的效率与功率5.结论正文:一、齿轮传动装置的概念与分类齿轮传动装置是一种用于传递动力和运动的机械传动装置,主要由齿轮组成。

根据齿轮的形状、大小和传动方式的不同,齿轮传动装置可以分为多种类型,例如外啮合圆柱齿轮机构、内啮合圆柱齿轮机构、圆锥齿轮机构和蜗杆机构等。

二、齿轮传动设计的主要参数与方法齿轮传动设计的主要参数包括传递功率、转速、传动比、齿面接触疲劳强度等。

在设计过程中,需要根据实际工况和设计要求选择合适的齿轮材料、精度等级、齿面硬度等,以保证齿轮传动装置的可靠性和耐用性。

齿轮传动设计的方法主要包括以下步骤:1.根据传递功率、转速和传动比计算齿轮的大小和齿数;2.根据齿面接触疲劳强度选择合适的齿轮材料和精度等级;3.校核齿轮的强度和刚度,以确保齿轮传动装置的安全性和稳定性;4.考虑齿轮的安装和维护,选择合适的齿轮结构和布局。

三、齿轮传动装置的设计实例以下是一个齿轮传动装置的设计实例:设计要求:传递功率P=7.5kW,小齿轮转速n1=1450r/min,传动比i=2.08,小齿轮相对轴承为不对称布置,两班制,每年工作300 天,使用期限为5 年。

1.选择齿轮材料及精度等级:考虑到传递功率不大,大、小齿轮都选用软齿面。

小齿轮选用40Cr 调质,齿面硬度为240~260HBS;大齿轮选用45 钢调质,齿面硬度为220HBS。

因是机床用齿轮,由表8.10 选7 精度,要求齿面粗糙度R1.6~3.2m。

2.按齿面接触疲劳强度设计:齿数z 和齿宽系数d 取小齿轮齿轮z1=30,则大齿轮齿数z2=iz1×2.083062.4,圆整z2=62。

z2 实际传动比i0=2.067,传动比误差为0.6%。

由表8.9 取齿数比ui0=2.067。

3.校核齿轮的强度和刚度:根据齿面接触疲劳强度公式KT1u1d176.4332udH,计算有关参数,以确保齿轮传动装置的安全性和稳定性。

齿轮传动设计知识与选型应用

齿轮传动设计知识与选型应用

齿轮传动设计知识与选型应用一、基本概念1.齿轮传动:利用两齿轮间连续相互啮合传递力与运动的机械传动。

在所有的机械传动中,齿轮传动应用广泛,可用来传递相对位置不远的两轴间的运动和动力。

2.齿轮传动的优缺点:优点:(1)传动效率高(普通齿轮0.9 — 0.95)传动转速高传动比稳定(2)刚性好、能够传递很大功率(可达上万千瓦)(3)能够做到消除间隙—传动精度高(4)工作可靠性高、传动负载大(5)结构紧凑,使用寿命长(6)直齿圆柱齿轮单级传动1-8(7)速度高,指圆周速度可达150m/s;更高可达300m/s缺点:(1)制造和安装精度高(2)使用维修成本高精度低时噪音和振动大(3)不宜用于两轴间距较大的传动(有轴传动、带传动、链传动)(4)精度低时噪音和振动大(5)传动有磨损二、齿轮传动的类型:齿轮的种类繁多,其分类方法最通常的是根据齿轮轴性:一般分为平行轴、相交轴及交错轴三种类型。

平行轴齿轮包括正齿轮、斜齿轮、内齿轮、齿条及斜齿条等。

相交轴齿轮有直齿锥齿轮、弧齿锥齿轮、零度齿锥齿轮等。

交错轴齿轮有交错轴斜齿齿轮、蜗杆蜗轮、准双曲面齿轮等。

此外按齿形分可分为:直齿圆柱齿轮:最通用的传动齿轮,方式为啮合入-啮合出-啮合入-啮合出-啮合入...缺点是:有震动、且高速运行的时有噪音、传动不平稳。

斜齿圆柱齿轮(加工复杂):传动平稳、接触面高速运行、负载能力大、有轴向力(推力轴承)可用圆锥滚子轴承来处理圆柱人字齿轮:很好的解决了斜齿轮的存在轴向力、加工非常复杂、用的不多、成本贵伞齿轮、锥齿轮:成90°改变方向直齿圆锥齿轮:加工简单,特点参考圆柱直齿轮螺旋齿锥齿轮 (加工复杂):传动平稳、接触面大增加重叠系数,能够承受更大的冲击、磨损有厉害、高速运行、负载能力大、有轴向力 (推力轴承)准双曲线(面)齿轮:交错轴齿轮、运行更平稳、减速比更大(10:1、60:1、100:1)、重叠系数更大,负载大、加工非常复杂、传动中不仅啮合还有相对滑动,有磨损;有专用润滑油:双曲面齿轮润滑油如越野车后梁已应用、准双曲面硬齿面减速机:大功率、大减速比、冲击载荷、涡轮蜗杆(带重负载)1.运行更平稳2.减速比会更大(10:1、 60:1、 100:1)3.自锁性很难逆转(取决于传动比)4.能自锁效率: 0.5以下不能自锁效率: 0.7-0.9表中所列出的效率为传动效率:不包括轴承及搅拌润滑等的损失。

机械设计-齿轮传动

机械设计-齿轮传动
从动轮 的方向与其转向相同。
径向力 Fr 的方向指向各自的轮心(外齿轮)。
1. 直齿圆柱齿轮
(8-1)
§8-4 圆柱齿轮传动的受力分析和载荷计算
用集中作用于分度圆上齿宽中点处的法向力 代替轮齿所受的分布力,将 分解,得:
啮合传动中,轮齿的受力分析
2. 斜齿圆柱齿轮
切向力:
径向力:
轴向力:
(8-2)
斜齿轮受力
轴向力Fx的方向:用“主动轮左右手法则”判断。
圆柱齿轮传动的受力分析和载荷计算
1 主动
2
1 主动
2
1 主动
2
二级受力分析
练 习
K 为载荷系数
上述Fn 为轮齿所受的名义法向力。实际传动中由于原动机、工作机性能的影响以及制造误差的影响,载荷会有所增大。
轴交角为90º的直齿锥齿轮传动:
§8-8 直齿锥齿轮传动
一、主要参数和尺寸
直齿锥齿轮的大端参数为标准值。
直齿锥齿轮传动的几何参数
令 R = b/R--齿宽系数,设计中常取R =0.25~0.35。
齿数比:
锥距:
C
t
二、轮齿的受力分析
用集中作用于齿宽中点处的法向力 Fn 代替轮齿所受的分布力。 将Fn分解为:切向力Ft,径向力Fr和轴向力Fx。
第八章 齿轮传动
§8-1 概述
§8-2 齿轮传动的失效形式及设计准则
§8-3 齿轮的常用材料
§8-4 圆柱齿轮传动的受力分析和计算载荷
§8-5 直齿圆柱齿轮传动的强度计算
§8-6 齿轮的许用应力
§8-8 直齿锥齿轮传动
§8-10 齿轮的结构
§8-9 齿轮传动的润滑与效率
§8-7 斜齿圆柱齿轮传动的强度计算

齿轮传动的设计步骤

齿轮传动的设计步骤

齿轮传动的设计步骤一、介绍在机械传动中,齿轮传动是一种常见且重要的传动方式。

它通过齿轮的啮合来传递转矩和运动,具有高效、可靠、精度高等优点。

本文将详细介绍齿轮传动的设计步骤,以帮助读者了解如何进行齿轮传动的设计。

二、齿轮传动的设计步骤齿轮传动的设计步骤可以分为以下几个阶段:2.1 确定传动比和传动类型首先,需要确定所需的传动比和传动类型。

传动比是指输入轴和输出轴的转速之比,可以根据实际需求和设计要求来确定。

传动类型包括平行轴齿轮传动、垂直轴齿轮传动、斜齿轮传动等,根据具体情况选择适合的传动类型。

2.2 计算齿轮参数根据所确定的传动比和传动类型,需要计算齿轮的参数。

主要包括模数、齿数、压力角等。

模数是齿轮齿数与齿轮直径的比值,用于确定齿轮的尺寸。

齿数是齿轮上的齿的数量,也是计算齿轮参数的重要依据。

压力角是齿轮齿廓与径向线之间的夹角,决定了齿轮的啮合性能。

2.3 选择材料和热处理根据齿轮的使用条件和工作环境,选择合适的材料和热处理方式。

常用的齿轮材料包括碳素钢、合金钢、铸铁等,不同的材料具有不同的强度和硬度特性。

热处理可以提高齿轮的强度和耐磨性,常见的热处理方式包括淬火、渗碳等。

2.4 齿轮布局和啮合计算根据齿轮的参数和传动要求,进行齿轮的布局和啮合计算。

齿轮布局是指确定齿轮的位置和相对角度,确保齿轮之间的啮合性能良好。

啮合计算是指计算齿轮的啮合角、啮合点等参数,以保证齿轮传动的稳定性和可靠性。

2.5 强度和耐久性计算通过强度和耐久性计算,评估齿轮传动的强度和寿命。

强度计算是指计算齿轮的弯曲强度和接触强度,以判断齿轮是否能够承受所需的载荷和转矩。

耐久性计算是指根据齿轮的工作条件和使用寿命要求,计算齿轮的寿命和可靠性。

2.6 优化设计和验证根据计算结果和实际要求,进行齿轮传动的优化设计和验证。

优化设计可以通过调整齿轮参数、改变齿轮布局等方式,提高齿轮传动的性能。

验证是指通过实验或模拟仿真,验证齿轮传动的设计是否满足要求,是否能够正常工作。

24个齿轮传动设计方案

24个齿轮传动设计方案

热处理
对粗加工后的齿轮进行热处理,以改善材料的力学 性能和硬度。
精加工
对热处理后的齿轮进行精加工,包括精铣、精车 、精磨等,以获得精确的形状和尺寸。
检验
对加工完成的齿轮进行检验,包括几何尺寸、表面粗糙 度、硬度等方面的检验。
加工设备与工具介绍
01
02
03
04
切削机床
用于齿轮粗加工的切削机床包 括铣床、车床、钻床等。
斜齿轮
总结词
斜齿轮具有重合度高、传动平稳、承载能力强等优点,但会 产生轴向力。
详细描述
斜齿轮的齿廓为螺旋线,轮齿为倾斜的齿面,轮齿的齿顶和 齿根分别与齿槽的齿顶和齿根相对应。斜齿轮适用于中低速 、重载、高精度等场合,如减速器、变速器、螺旋输送机等 机械中。
锥齿轮
总结词
锥齿轮具有可以实现大角度传动、结构紧凑、承载能力强等优点,但需要精确的 加工和安装。
设计要点
设计斜齿圆柱齿轮时,需要考虑模数、齿数、压 力角、螺旋角等参数。
锥齿轮传动系统设计
锥齿轮
锥齿轮具有轴向平行和垂直于轴线的两个齿面,可以改变传动方 向。
适用范围
锥齿轮适用于需要改变传动方向或进行空间传动的场合。
设计要点
设计锥齿轮时,需要考虑模数、齿数、压力角、螺旋角等参数,同 时还需要考虑安装方式和润滑方式。
总结词
高效、高可靠性、抗疲劳寿命长
详细描述
高速重载齿轮传动设计通常采用硬齿面齿轮,选用优质材料和先进的热处理技术,确保齿轮具有较高的强度和耐 磨性,同时注重齿轮的精度和平衡性,以减少振动和噪音,提高齿轮的抗疲劳寿命。在设计过程中,还需考虑润 滑和冷却系统的优化,以确保齿轮在高速重载工况下的稳定运行。
设计案例四:高精度齿轮传动设计
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《机械设计》 §3-2 齿轮传动的失效形式和设计准则
3、齿面胶合 产生机理: 高速重载 摩擦热使油膜破裂 齿面金属直接接触并粘接 齿面相对滑动 较软齿面金属沿滑动方向被撕落
热胶合
低速重载
不易形成油膜
表面膜被刺破而粘着
现象:齿面上相对滑动方向形成伤痕 措施: 采用异种金属、降低齿高、提高齿面硬度
冷胶合
用于中碳或中碳合金钢,如45、40Cr、35SiMn等。因为硬 度不高,故可在热处理后精切齿形,且在使用中易于跑合 能消除内应力、细化晶粒、改善力学性能和切削性能。机 械强度要求不高的齿轮可用中碳钢正火处理。大直径的齿 轮可用铸钢正火处理 用于中碳钢和中碳合金钢,如45、40Cr等。表面淬火后轮 齿变形小,可不磨齿,硬度可达52~56HRC,面硬芯软, 能承受一定冲击载荷 渗碳钢为含碳量0.15 % ~0.25%的低碳钢和低碳合金钢, 如20、20Cr等。齿面硬度达56~62HRC,齿面接触强度高, 耐磨性好,齿芯韧性高。常用于受冲击载荷的重要传动。 通常渗碳淬火后要磨齿
◆ 过载折断 短时过载或严重冲击 静强度不够 全齿折断— 齿宽较小的齿轮 局部折断— 斜齿轮或齿宽较大的直齿轮 措施:增大模数(主要方法)、增大齿根 过渡圆角半径、增加刚度(使载荷分布均 匀)、采用合适的热处理(增加芯部的韧 性)、提高齿面精度、正变位等
《机械设计》
疲劳折断是闭 式硬齿面的主 要失效形式!
§3-2 齿轮传动的失效形式和设计准则
2、疲劳点蚀(Fatigue pitting) 产生机理: 齿面受交变的接触应力 产生初始疲劳裂纹 润滑油进入裂纹并产生挤压 表层金属剥落
注意:
麻点状凹坑
◆ 凹坑先出现在节线附近的齿根表面上,再向其它部位扩展
◆ 其形成与润滑油的存在密切相关 ◆ 常发生于闭式软齿面(HBS≤350)传动中 ◆ 开式传动中一般不会出现点蚀现象 (磨损较快) 措施: 提高齿面硬度和质量、增大直径 (主要方法)等
(配对齿轮采用异种金属时,其抗胶合能力比同种金属强)
《机械设计》 §3-2 齿轮传动的失效形式和设计准则
4、齿面磨损 磨损后齿廓形状破坏,齿厚减薄 是开式传动的主要失效形式 措施:改善润滑和密封条件 5、齿面塑性变形 机理:
若齿面材料较软 且载荷及摩擦力很大
齿面金属会沿摩擦力的方向流动
现象: 主动轮在节线附近形成凹沟;
表面淬火
硬齿面
渗碳淬火
表面氮化
一种化学处理方法。渗氮后齿面硬度可达60~62HRC。氮 化处理温度低,轮齿变形小,适用于难以磨齿的场合,如 内齿轮。材料为:38CrMoAlA.
§3-3 齿轮材料、热处理及精度
《机械设计》
特点及应用: 调质、正火处理后的硬度低,HBS ≤ 350,属软齿面,工 艺简单、用于一般传动
《机械设计》
齿轮类型: — 外形及轴线: — 根据装置形式: 开式齿轮
齿轮完全外露,润滑条件差,易磨 损,用于低速简易设备的传动中 齿轮完全封闭,润滑条件好
闭式齿轮
半开式齿轮
有简单的防护罩
《机械设计》
§ 3-1 齿轮传动概述
— 根据齿面硬度(hardness): 硬度:金属抵抗其它更硬物体压入其表面的能力 硬度越高,耐磨性越好 硬度检测方法: 布氏硬度法(HBS) 洛氏硬度法(HRC) 软齿面 硬齿面
考虑工作条件、载荷性质、 经济性、制造方法等
§3-3 齿轮材料、热处理及精度
锻钢
金属 材料 非金属 材料
《机械设计》
中碳合金钢 低碳合金钢
铸钢
ZG310-570、ZG340-640等 HT350、QT600-3等 塑料、夹布胶木等
铸铁
二、热处理(heat treatment)
调 质 软齿面 正 火
Fr1 Ft2 Fr2 Ft1
例: 主视图 左视图
n2
n2
Fr2
Ft2 Ft1பைடு நூலகம்
2 Ft2 1
Fr2 Ft1 Fr1
n1
Fr1
n1
《机械设计》
§3-4 直齿圆柱齿轮传动的强度计算
二、计算载荷
Ft1 名义载荷:Fn cos
载荷系数: K=KAKvKKb
Fnc KFn 计算载荷:
K:载荷系数
§3-5 斜齿圆柱齿轮传动的强度计算
《机械设计》
力的方向: Ft和Fr: 同直齿圆柱齿轮 轴向力Fa: 由齿轮螺旋线旋向和转动方向共同决定 主动轮的Fa1用左右手法则判定 “齿轮左旋用左手,右旋用右手。弯曲四指为转动方向,母 指指向为Fa1方向” 从动轮的Fa2与Fa1方向相反
《机械设计》 §3-4 直齿圆柱齿轮传动的强度计算
§3-5
斜齿圆柱齿轮传动
一、概述 1、斜齿圆柱齿轮的特点 接触线倾斜,同时啮合的齿数多,重合度大,传 动平稳,噪声低,承载能力高 2、斜齿圆柱齿轮的正确啮合条件 mn1=mn2 n1=n2 b1=-b2
《机械设计》 §3-5 斜齿圆柱齿轮传动的强度计算
① KA— 考虑原动机与工作机的工作特性 振动、冲击
KA见表3-1 原动机 电动机 多缸内燃机 单缸内燃机
工作机械的载荷特性
均 匀 1.0 ~ 1.2 1.2 ~ 1.6 1.6 ~ 1.8 中等冲击 1.2 ~ 1.6 1.6 ~ 1.8 1.8 ~ 2.0 较大冲击 1.6 ~ 1.8 1.9 ~ 2.1 2.2 ~ 2.4
《机械设计》
Fr1
Fn1
Ft1
P1 n1
N mm
§3-4 直齿圆柱齿轮传动的强度计算
2、力的方向 圆周力Ft: 沿节点处的圆周方向(即切线方向), 其指向: 主动轮上与其转向相反 从动轮上与其转向相同 径向力Fr: 沿半径方向指向各自轮心 3、力的对应关系 圆周力Ft、径向力Fr各自对应
《机械设计》 §3-4 直齿圆柱齿轮传动的强度计算
设计齿轮——设计确定齿轮的主要参数以及结构形式
主要参数有:模数m、齿数z、螺旋角β以及齿宽b、中心距a、 直径(分度圆、齿顶圆、齿根圆)、变位系数、力的大小 、 压力角20
《机械设计》
§ 3-1 齿轮传动概述
变位齿轮的作用,即为什么要对标准齿轮进行变位。原因有三 个: 1)一对啮合的标准齿轮,由于小齿轮齿根厚度薄,参与啮合的 次数又较多,因此强度较低,容易损坏,影响了齿轮传动的承 载能力。 2)标准齿轮中心距用a表示,若实际需要的中心距(用A表 示)A<a时,就根本无法安装;若A>a,可以安装,却产生大的侧 隙,重合度也降低,都影响了传动的平稳性。 3)若滚齿切制的标准齿轮齿数小于17,则会发生根切现象,影 响实际使用。
从动轮则形成凸棱
措施:提高齿面硬度,采用油性好的润滑油
《机械设计》 §3-2 齿轮传动的失效形式和设计准则
二、齿轮传动的设计准则(design criteria) 主要针对轮齿疲劳折断和齿面疲劳点蚀这两种失效形式
齿轮工作时,要保证足够的齿根弯曲疲劳强度和齿面接触疲劳强度
1、闭式软齿面 主要失效:疲劳点蚀 先按sH≤sHP算出齿轮主要尺寸, 再校核sF≤sFP
若3项精度相同,则记为: 8-FL
《机械设计》 §3-3 齿轮材料、热处理及精度
齿轮副的侧隙:
齿厚上偏差
齿厚下偏差
《机械设计》
§3-3 齿轮材料、热处理及精度
§3-4
一、受力分析
直齿圆柱齿轮传动的强度计算
设为标准齿轮,标准中心距安装,力集中作用 在齿宽中点,忽略摩擦力
b a Fr1 Fn1 Ft1
第 3章
齿轮传动设计
§3-1 概 述
优点:
◆ ◆ ◆ ◆ ◆ 传动效率高 ◆ 工作可靠、寿命长 ◆ 传动比准确 ◆ 结构紧凑 功率和速度适用范围很广
缺点:
制造成本高 精度低时振动和噪声较大 不宜用于轴间距离较大的传动
《机械设计》
§ 3-1 齿轮传动概述
学习本章的目的
本章学习的根本目的是掌握齿轮传动的设计方法,也 就是要能够根据齿轮工作条件的要求,能设计出传动可靠 的齿轮
二、斜齿圆柱齿轮的受力分析 略去齿面间的摩擦力 Ft 2T1 Ff Fn Fn Ff
d1 Fa Ft tan b
n
b
Fa
Fr
Ft Fr tan n cos b
Ft
Ft Fn cos b cos n
b↑
平稳性↑ 轴向力↑
承载能力↑
一般齿轮: b =10°~ 25°
轴系复杂程度↑ 人字齿轮:b =25°~ 40°
《机械设计》
§3-4 直齿圆柱齿轮传动的强度计算
② 动载系数Kv
考虑齿轮副本身的啮合误差,如 制造误差造成两基节不等,齿形 误差,轮齿变形等 附加动载荷
精度↓ Kv↑
速度↑ Kv↑
直齿圆柱齿轮 : Kv =1.05 ~1.4 斜齿圆柱齿轮: Kv =1.02 ~ 1.2
③ 齿间载荷分配系数K
考虑制造误差及轮齿弹性变形,对于同时参与啮合的两对轮齿
◆ 轴的扭转变形:
靠近转矩输入端的齿侧变形大,故受载大
◆ 轴的弯曲、扭转变形的综合影响:
若齿轮靠近转矩输入端布置, 偏载严重 若齿轮远离转矩输入端布置, 偏载减小
《机械设计》 §3-4 直齿圆柱齿轮传动的强度计算
因此,齿轮在轴承间非对称布置时,齿轮应布 置在远离转距输入、输出端!
例:请指出下列两种传动方案有何不同?哪一种更合理?
注意:当大小齿轮都是软齿面时,因小轮齿根薄,弯 曲强度低,故在选材和热处理时,小轮比大轮硬度高: 30~50HBS 表面淬火、渗碳淬火、渗氮处理后齿面硬度高,属硬齿 面。其承载能力高,但一般需要磨齿。常用于结构紧凑 的场合
《机械设计》
§3-3 齿轮材料、热处理及精度
三、齿轮传动的精度(accuracy) GB10095-88将齿轮精度分为三个公差组:
相关文档
最新文档