共价键理论简介
路易斯共价键
共谱“路易斯共价键”这一好听的乐章
共价键,也称共价键合,是化学中最常见的一种化学键。
在分子
化学中,共价键是分子中原子之间通过共用一对电子而形成的一种化
学键,化学键的本质就是共用电子对。
路易斯共价键理论是描述共价
键形成的一种理论,由美国化学家路易斯提出。
路易斯共价键理论揭
示了大量分子的组成原理,为化学行业的发展做出了巨大的贡献。
路易斯共价键理论的主要思想是,分子中的原子愿意共享电子,
以形成稳定的化学键。
原子的外层电子,也称为价电子,决定了原子
在化学反应中的化学性质。
原子愿意共享价电子,以便形成稳定的化
学键。
共价键的数量由原子价电子数目决定。
路易斯共价键理论提出,共价键可以通过符号来表示,原子之间的电子以小圆点表示,共用的
电子以横杠表示,电子对朝向分子中心表示共价键的极性。
路易斯共价键理论是化学中最为重要的理论之一,可以帮助化学
家了解分子的构成和特性。
通过理解共价键的形成和特性,人们可以
更好地理解化学反应的本质,为发展新的化学合成方法提供有力的理
论支持。
路易斯共价键理论是现代分子化学的基础之一,它的发明和
发展为化学行业作出了重要的贡献。
一、共价键理论
一、共价键理论1.1、价键理论价键的形成是原子轨道的重叠或电子配对的结果,如果两个原子都有未成键电子,并且自旋方向相反,就能配对形成共价键。
例如:碳原子可与四个氢原子形成四个C—H键而生成甲烷。
HH..*.C4HHH*HHC+**.*HH由一对电子形成的共价键叫做单键,用一条短直线表示,如果两个原子各用两个或三个未成键电子构成的共价键,则构成的共价键为双键或三键CCCC双键三键共价键形成的基本要点:(1)成键电子自旋方向必需相反;(2)共价键的饱和性;(3)共价键的方向性——成键时,两个电子的原子的轨道发生重叠,而P电子的原子轨道具有一定的空间取向,只有当它从某一方向互相接近时才能使原子轨道得到最大的重叠,生成的分子的能量得到最大程度的降低,才能形成稳定的反之。
重叠最大H稳定结合Cl(1)H重叠较小 + 不稳定结合Cl (2)H(1s)Cl(2p)H不能结合(3)ClS 和P电子原子轨道的三种重叠情况1.2、分子轨道理论分子轨道理论是1932年提出了来的,它是从分子的整体出发去研究分子中每一个电子的运动壮态,认为形成的化学键的电子是在整个分子中运动的。
通过薛定谔方程的解,可以求出描述分子中的电子运动状态的波函数ψ,ψ称为分子轨道,每一个分子轨道ψ有一个相应的能量E, E近似的表示在这个轨道上的电子的电离能。
基本观点:(1)当任何数目的原子轨道重叠时,就可形成同样数目的分子轨道。
例如:两个原子轨道可以线性的组合成两个分子轨道,其中一个比原来的原子轨道的能量低,叫成键轨道(由符号相同的两个原子轨道的波函数相加而成),另一个是由符号不同的两个原子轨道的波函数相减而成,其能量比两个原子轨道的能量高,这中种分子轨道叫做反键轨道。
-=ψ(反键轨道)ψψ2ψA 2B能ψψ(原子轨道) AB量+=ψ1ψψ(成键轨道)1ψBA分子轨道能级图(2)和原子轨道一样,每一个分子轨道只能容纳两个自旋相反的电子,电子总是优先进入能量低的分子轨道,在依次进入能量较高的轨道。
共价键理论
Hybridize
Tetrahedral, all orbital bond angles are 109.5o.
SP2 Hybridization
1s22s22px12py12pz0 basic state Energy 1s22s12px12py1 2pz1 excited state 1s
杂化轨道(hybrid orbital ):杂化后所形 成的新轨道(都是一头大一头小的形态, 有利于轨道重叠)。
(2)hybrid orbital theory
先杂化再成键
(轨道形态优化,单电子数增 多,利于成键)
杂化前后轨道数不变 杂化轨道间尽量在空间取最大夹角
SP3 Hybridization
1s22(sp2)12(sp2)1 2 (sp2)1 2pz1
1s
2s
2p
2s
2p
2p 1s
hybridized state
3 sp2 hybrid orbital
SP2 Hybridization
杂化
CH2=CH2
乙 烯 分 子 的 形 成
头碰头重叠形成C—Cσ键
肩并肩重叠形成C—C 键
SP Hybridization
C C
C C
C C
特殊形式:配位键
2、杂化轨道理论
(1). hybrid orbital theory
(2). S P hybridization
(1)Hybridization hybrid orbital
杂化(Hybridization):原子在形成分 子时,原子中能量相近的轨道可以重新 组合形成新的轨道的过程.
什么是共价键理论
什么是共价键理论
共价键理论是一种描述化学键的理论,主要内容如下:
1. 共价键的本质是电性的,共价键的结合力是两个原子核外共用电子对形成负电区域的吸引力,而不是正、负离子的之间的库伦作用力。
2. 如果A、B两个原子各有一个未成对的电子,若两个单电子所在轨道对称性一致则可以互相重叠,电子以自旋相反的方式成对,两原子形成共价单键,体系的能量降低。
3. 共用电子对也可由其中一个原子提供,称为共价配键。
4. 共价键具有方向性和饱和性。
方向性成因是原子轨道分布具有方向性,饱和性成因是原子价层的单电子数有限。
5. 共价键的特征可以用键能、键长、键角等几个物理量来描述,键角决定几何构型。
以上是共价键理论的主要内容,此理论主要解决H2分子成键实质的问题。
如需了解更多信息,建议查阅化学领域相关书籍文献或咨询化学领域专业人士。
1.2 共价键理论
共价键理论(1)共价键两种常见的化学键:离子键——电子得失共价键——共用电子对原子的电子配对成键,形成稳定的8电子构型。
4 H + CH C H HH H C H HH路易斯式凯库勒式共价键理论(VB,valence bond theory)杂化轨道理论(hybrid orbital theory)价键理论原子轨道重叠共价键的形成定域性:自旋反平行的两个电子绕核做高速运动,属于成键原子共有。
电子对在两核之间出现的几率最大。
方向性:相连原子轨道重叠成键要满足最大重叠条件。
饱和性:一个电子和另一个电子配对以后,就不能和其他电子配对,原子中的成单电子数决定成键总数。
杂化轨道理论1931年,鲍林(Pauling L)提出轨道杂化理论。
碳原子化合价应该为2,最外层电子排布碳原子的电子排布实际上CH 4中碳原子为4价?1.碳原子的杂化6杂化:成键原子的几种能量相近的原子轨道混合起来,重新组合成一组新轨道的过程。
所形成的新轨道称为杂化轨道。
2p x 2p y 2p z2s基态2p x 2p y 2p z2s激发态激发s p 3杂化杂化轨道理论(2)孤立的原子不发生杂化,只有形成分子的过程中才发生。
(3)条件不同,杂化轨道类型可能不同。
(4)碳原子的杂化:sp3 sp2sp7杂化的三种类型sp 杂化——1个s 轨道+1个p 轨道,生成2个sp 杂化轨道。
sp 2杂化——1个s 轨道+2个p 轨道,生成3个sp 2杂化轨道。
sp 3杂化——1个s 轨道+3个p 轨道,生成4个sp 3杂化轨道。
杂化轨道的空间结构正四面体形轨道夹角109.50甲烷分子89杂化轨道理论SP 3杂化杂化的三种类型sp 杂化——1个s 轨道+1个p 轨道,生成2个sp 杂化轨道。
sp 2杂化——1个s 轨道+2个p 轨道,生成3个sp 2杂化轨道。
sp 3杂化——1个s 轨道+3个p 轨道,生成4个sp 3杂化轨道。
杂化轨道的空间结构平面三角形轨道夹角1200正四面体形轨道夹角109.50甲烷分子1011杂化轨道理论SP 2杂化杂化的三种类型sp 杂化——1个s 轨道+1个p 轨道,生成2个sp 杂化轨道。
共价键理论
共价键
5、键参数
价键理论
键能表征键的强弱,用键长、键角描述分子的 空间构型,用元素的电负性差值衡量键的极性 键能 键能越大,键越牢固 解离能 双原子分子 多原子分子?
例: 3(g)-NH
NH2(g)+ H(g) D1=427kJ/mol NH2(g)-- NH(g)+ H(g) D2=375kJ/mol NH(g)-- N(g)+ H(g) D3=365kJ/mol 总:NH3(g)-- N(g)+ 3H(g) D=1158kJ/mol E(N-H)=D/3=386kJ/mol
8
共价键
价键理论
键长——成键原子核间的平衡距离 键长愈短,键愈牢固 单键键长>双键键长>叁键键长
键角——多原子分子中,相邻二化学键间夹角 H2S ,H-S-H 键角为92 CO2,O=C=O 的键角为 180 极性键 键的极性 非极性键 本质:由于成键原子电负性不同,导致 正负电荷重心重合(不重合)
杂化后轨道方向性增强,有利于最大重叠--能量因素
11
共价键
1、能量相近原则
杂化轨道理论
疑问四:如何杂化?— 杂化原则
参与杂化的轨道能量相近,故通常参与杂化的原子 轨道为价层原子轨道。
2、轨道数目守恒原则 3、能量重新分配原则
sp1
sp2
sp3
参与杂化的原子轨道平均分配
4、杂化轨道对称性分布原则
杂化轨道在球形空间中轨道间的键角相等
21
1
配位键
讨论:只有非金属间才能形成共价键
共价键
1、共价键的形成 研究对象:H2的形成 自旋平行,出现斥态, 系统能量高; 自旋相反,出现基态, 引力增强,能量降低 74pm < 2*53pm 说明原子轨道发生了重叠
共价键理论
1927年,Heitler 和London 用量子力学处理氢气分子H2,解决了两个氢原子之间化学键的本质问题,并将对H2 的处理结果推广到其它分子中,形成了以量子力学为基础的共价键理论(V. B. 法)。
1共价键理论2共价键的形成A、B 两原子各有一个成单电子,当A、B 相互接近时,两电子以自旋相反的方式结成电子对,即两个电子所在的原子轨道能相互重叠,则体系能量降低,形成化学键,亦即一对电子则形成一个共价键。
形成的共价键越多,则体系能量越低,形成的分子越稳定。
因此,各原子中的未成对电子尽可能多地形成共价键。
配位键形成条件:一种原子中有孤对电子,而另一原子中有可与孤对电子所在轨道相互重叠的空轨道。
在配位化合物中,经常见到配位键。
、3共价键的特征——饱和性、方向性饱和性:几个未成对电子(包括原有的和激发而生成的),最多形成几个共价键。
例如:O 有两个单电子,H有一个单电子,所以结合成水分子,只能形成2个共价键;C最多能与H 形成4个共价键。
方向性:各原子轨道在空间分布是固定的,为了满足轨道的最大重叠,原子间成共价键时,当然要具有方向性。
1940年Sidgwick 提出价层电子对互斥理论,用以判断分子的几何构型. 分子ABn 中,A 为中心,B 为配体,B均与A有键联关系. 本节讨论的ABn 型分子中,A为主族元素的原子.4理论要点ABn 型分子的几何构型取决于中心 A 的价层中电子对的排斥作用. 分子的构型总是采取电子对排斥力平衡的形式.1)中心价层电子对总数和对数a)中心原子价层电子总数等于中心A 的价电子数(s + p)加上配体在成键过程中提供的电子数,如CCl4 4 + 1×4 = 8b)氧族元素的氧族做中心时:价电子数为6,如H2O,H2S;做配体时:提供电子数为0,如在CO2中.c)处理离子体系时,要加减离子价d)总数除以2 ,得电子对数:总数为奇数时,对数进1,例如:总数为9,对数为5 2)电子对和电子对空间构型的关系电子对相互排斥,在空间达到平衡取向. 3)分子的几何构型与电子对构型的关系若配体数和电子对数相一致,各电子对均为成键电对,则分子构型和电子对构型一致。
共价键
主要特点
饱和性
方向性
在共价键的形成过程中,因为每个原子所能提供的未成对电子数是一定的,一个原子的一个未成对电子与其 他原子的未成对电子配对后,就不能再与其它电子配对,即,每个原子能形成的共价键总数是一定的,这就是共 价键的饱和性。
共价键的饱和性决定了各种原子形成分子时相互结合的数量关系 ,是定比定律(law of definite proportion)的内在原因之一。
2、配位共价键(coordinate covalent bond)
配位共价键简称“配位键”是指两原子的成键电子全部由一个原子提供所形成的共价键,其中,提供所有成 键电子的称“配位体(简称配体)”、提供空轨道接纳电子的称“受体”。常见的配体有:氨气(氮原子)、一 氧化碳(碳原子)、氰根离子(碳原子)、水(氧原子)、氢氧根(氧原子);受体是多种多样的:有氢离子、 以三氟化硼(硼原子)为代表的缺电子化合物、还有大量过渡金属元素。对配位化合物的研究已经发展为一门专 门的学科,配位化学。
历史
早期历史
近代史
图1在古希腊,化学还没有从自然哲学中分离的时代,原子论者对化学键有了最原始的设想,恩培多克勒 (Empedocles)认为,世界由“气、水、土、火”这四种元素组成,这四种元素在“爱”和“恨”的作用下分裂 并以新的排列重新组合时,物质就发生了质的变化。这种作用力可以被看成是最早的化学键思想。
2、非极性共价键(non-polar bond)
由同种元素的原子间形成的共价键,叫做非极性共价键。同种原子吸引共用电子对的能力相等,成键电子对 匀称地分布在两核之间,不偏向任何一个原子,成键的原子都不显电性。 非极性共价键存在于单质中,也存在 于某些化合物中,完全由非极性键构成的分子一定是非极性分子(但有的非极性分子中含有极性键)。
共价键理论
共价键理论
一个原子含有几个未成对电子,就可以和几个自旋量 子数不同的电子配对成键,或者说,原子能形成共价键的数 目是受原子中未成对电子数目限制的,这就是共价键的饱和 性。例如,H原子只有一个未成对电子,它只能形成H2而不 能形成H3;N原子有三个未成对电子,N和H只能形成NH3, 而不能形成NH4。由此可知,一些元素的原子(如N、O、F 等)的共价键数等于其原子的未成对电子数。
共价键理论
图2-7 CH4分子的形成
共价键理论
C原子的1个s轨道与3个p轨道经杂化形成4个sp3杂化轨道 ,每一个sp3新轨道一端膨胀一端缩小,C原子和H原子成键时 从较大的一端进行轨道重叠,4个sp3杂化轨道间的夹角为 109.5°。可见,原子轨道杂化的原因是杂化后轨道形状发生改 变(一端显得突出而肥大),便于最大重叠;轨道方向改变,使 成键电子距离最远,斥力最小,能量降低。总之,杂化后能 增大轨道重叠区域,增强成键能力,使分子更稳定。
共价键理论
(2)π键。 原子轨道以“肩并肩”的方式 发生重叠,轨道重叠部分对通过
一个键轴的平面具有能面反对称性,这 种键称为π键,如pzpz、pypy轨道重叠形成π 键,如图2-5(b)所示。
共价键理论
图2-5 σ键和π键形成示意图
共价键理论
有些分子中既有σ键, 也有π键。例如,N2分子的 结构中有一个σ键和两个π键。 N原子的电子层结 ,而pypy、pz-pz分别沿y轴和z轴 相互平行或以“肩并肩”的 方式重叠形成π键,如图2-6 所示。
含有配位键的化合物称为配位化合物,这类化合物将在以后 的章节中讨论。
共价键理论
π键
H C C H H H = H H H C CH H C O = H H H
π键
C O
sp杂化(VSEPR模型AY2) sp杂化(VSEPR模型AY 杂化 模型
杂化轨道 杂化轨道 轨道夹 杂化轨道 成键 类型 数目 含量 角 构型 2 分子 构型 实例 BeCl2 C2H2 CO2
1 s、1 p 180° 直线形 σ键 直线形 180° 2 2 杂化类型
三、价层电子对互斥理论
要点:在AXm型分子中,分子的立体构型 是价层电子对相互排斥的结果,价层电子 对指包括成键电子对和未成键的孤对电子 对,分子的几何构型总是采取电子对相互 排斥最小的那种结构。
三、价层电子对互斥理论 1. 通式AXnEm表示所有只含一个中心原子的分子或离子组成, 通式AX 表示所有只含一个中心原子的分子或离子组成,
两个氢原子悄悄地靠近
共价键的定义:通过电子云(原子轨道)的重叠( 共价键的定义:通过电子云(原子轨道)的重叠(共用电 子对) 子对)形成的化学键 共价键的本质:电性作用。原子核对重叠负电区域的吸引, 共价键的本质:电性作用。原子核对重叠负电区域的吸引, 使成键两原子相互接近。 使成键两原子相互接近。
中心原子, 配位原子(端位原子) A:中心原子,X:配位原子(端位原子),下标n:配位原 子的个数, 中心原子上的孤对电子对, 子的个数,E:中心原子上的孤对电子对, m:孤电子对 数。
的数目称为价层电子对数,VSEPR模 2. AXnEm中(n + m)的数目称为价层电子对数,VSEPR模
型认为,分子中的价层电子对总是尽可能地互斥, 型认为,分子中的价层电子对总是尽可能地互斥,均匀地 分布在分子中,因此, 分布在分子中,因此,m+n的数目决定了分子或离子中的
理论有机化学第一章共价键概述
共价键是有机物最为基本的一种键,是化学反应以及有机化学反应的重点。 在本章中将从多个方面对共价键进行详细介绍,以便更好地理解有机化学反 应。
共价键的成键原理
价电子结构
介绍原子的价电子相关结构以及 价电子种类。
分子轨道理论
介绍分子轨道理论形成的原理和 特点。
杂化理论
详细介绍杂化理论形成的原理和 种类。
介绍共价键的键长定义以及如何计算键长。
键能的定义与计算公式
详细解释共价键键能的计算公式和其原理。
主要影响键长和键能的因素
探讨影响共价键长度和能量的因素。
共价键的键级与键极性
1
键级的概念和种类
介绍共价键的键级概念和种类,如单键,双键和三键。
2
键级的计算和代表
解释如何计算共价键的键级,并给出一些代表性的有机物。
3
键极性的概念和影响
探究共价键的极性产生原因和对化学反应的影响。
共价键的构造规则
Lewis结构法则
讲解Lewis结构法则,以确保正 确精确地表示化学物质的共价键 和成键结构。
价键理论法则
详细解释价键理论法则,以便深 入理解共价键的形成过程。
共振结构法则
探索共振结构法则对共价键长和 键能的影响以及共振等离子体的 形成条件。
共价键的示例与应用
碳氢键的示例和特点
介绍碳氢键最为经典的共价键类型的示例和特点。
环状共价键的应用
探索环状共价键在航空航天、石油化工和新能源开发中的应用。
多双键有机物的产生和应用
详细解释多双键有机物的产生过程和应用领域。
轨道重叠
探索共价键成键过程中轨道重叠 的原理和影响。
共价键的性质与特点
共价键理论
共价键理论一、经典共价键理论− Lewis Structure (八电子规则)1916年,美国化学家路易斯(G.N.Lewis )提出:分子中每个原子应具有稳定的稀有气体原子的电子层结构。
这种稳定结构通过原子间共用一对或若干对电子来实现。
这种分子中原子间通过共用电子对结合而成的化学键称为共价键。
1.基本思想:当n s 、n p 原子轨道充满电子,成为八电子构型,该电子构型稳定,所以在共价分子中,每个原子都希望成为八电子构型(H 原子为2电子构型)。
2.共价分子中成键数和孤电子对数的计算:计算步骤:a .令n o − 共价分子中,所有原子形成八电子构型(H 为2电子构型)所需要的电子总数b .令n v − 共价分子中,所有原子的价电子数总和阴离子的价电子总数:各原子的价电子数之和加负电荷数 阳离子的价电子总数:各原子的价电子数之和减正电荷数 c .令n s − 共价分子中,所有原子之间共用电子总数n s = n o - n v ,n s /2 = (n o - n v ) / 2 = 成键电子对数(成键数) d .令n l − 共价分子中,存在的孤电子数。
(或称未成键电子数) n l = n v - n s ,n l /2 = (n v - n s )/2 = 孤对电子对数例如:P 4S 3、HN 3、N +5、H 2CN 2(重氮甲烷)、NO -33.Lewis 结构式的书写 例如:P 4S 3H N 3H N N N H N N N HNNNN 5+,,,N N N NN N N N N N N N N NN NN N N NCH 2N 2(重氮甲烷),HC HNNC HN N(有时,孤对电子省略不写。
)练习:下列各Lewis 结构式中,能正确表示出NO 3-离子的Lewis 结构式是A. NO O B. NO O C. NO O OD. NO OO当Lewis 结构式不只一种形式时,如何来判断这些Lewis 结构式的稳定性呢?4.Lewis 结构式稳定性的判据 −− 形式电荷Q F (1) Q F 的由来: 以CO 为例n o = 2 ⨯ 8 = 16 n v = 4 + 6 =10 n s / 2 = (16 - 10) / 2 = 3 n l / 2 = (10 - 6) / 2 = 2为了形成三对平等的共价键,可以看作O 原子上的一个价电子转移给C 原子,即:,所以氧原子的Q F 为+1,碳原子的Q F 为-1。
共价键理论
共价键理论一.路易斯理论1916年,美国的 Lewis 提出共价键理论. 认为分子中的原子都有形成稀有气体电子结构的趋势,求得本身的稳定. 而达到这种结构,并非通过电子转移形成离子键来完成, 而是通过共用电子对来实现.通过共用一对电子, 每个H均成为 He 的电子构型, 形成共价键. 又如:Lewis的贡献在于提出了一种不同于离子键的新的键型, 解释了X 比较小的元素之间原子的成键事实. 但Lewis没有说明这种键的实质, 适应性不强. 在解释BCl3, PCl5等未达到稀有气体结构的分子时, 遇到困难:二价键理论(Valence Bond Theory)1927年, Heitler 和 London 用量子力学处理氢气分子H2, 解决了两个氢原子之间化学键的本质问题, 使共价键理论从典型的Lewis理论发展到今天的现代共价键理论.1. 氢分子中的化学键量子力学计算表明, 两个具有电子构型的H 彼此靠近, 两个 1s 电子以自旋相反的方式形成电子对, 使体系的能量降低.H < 0, 表示由 2H 形成 H2时, 放出热量. 相反过2. 价键理论将对 H2的处理结果推广到其它分子中, 形成了以量子力学为基础的价键理论(V. B. 法)1) 共价键的形成A, B 两原子各有一个成单电子,当 A, B 相互接近时, 两电子以自旋相反的方式结成电子对, 即两个电子所在的原子轨道能相互重叠, 则体系能量降低, 形成化学键, 亦即一对电子则形成一个共价键.形成的共价键越多, 则体系能量越低, 形成的分子越稳定. 因此, 各原子中的未成对电子尽可能多地形成共价键.例如:H2中, 可形成一个共价键. HCl 分子中, 也形成一个共价键. N2分子怎样呢? 已知 N 原子的电子结构:程:吸热,即破坏 H2的键要吸热(吸收能量), 此热量 D 的大小与 H2分子中的键能有关.计算还表明, 若两个 1s 电子保持以相同自旋的方式, 则 r 越小, V 越大. 此时, 不形成化学键. 如图中上方红色曲线所示, 能量不降低.H2中的化学键可以认为是电子自旋相反成对, 使体系的能量降低. 从电子云角度考虑, 可认为 H 的 1s轨道在两核间重叠, 使电子在两核间出现的几率大, 形成负电区, 两核吸引核间负电区, 使 H 结合在一起. 如图: 每个N原子有三个单电子, 所以形成 N2 分子, N 与N 原子之间可形成三个共价键. 写成:形成 CO 分子时, 与 N2相仿, 同样用了三对电子, 形成三个共价键. 不同之处是, 其中一对电子在形成共价键时具有特殊性: C 和 O各出一个 2p 轨道, 重叠, 而其中的电子是由 O 单独提供的。
共价键理论
2、中心原子上有孤对电子:孤对电子也要占据中心原子周围的空间,三、杂化轨道理论1、杂化的概念:在形成多原子分子的过程中,中心原子的若干能量相近的原子轨道重新组合,形成一组新的轨道,这个过程叫做轨道的杂化,产生的新轨道叫杂化轨道。
(1)sp3杂化:1个s轨道和3个p轨道会发生混杂,得到4个相同的轨道,夹角109°28′,称为sp3杂化轨道。
(2)sp杂化:夹角为180°的直线形杂化轨道,sp2杂化:三个夹角为120°的平面三角形杂化轨道。
四、配位键1、“电子对给予—接受键”被称为配位键。
一方提供孤对电子;一方有空轨道,接受孤对电子。
如:[Cu(H20)2+]、NH4+中存在配位键。
表示:A B电子对给予体电子对接受体条件:其中一个原子必须提供孤对电子。
另一原子必须能接受孤对电子轨道。
2、通常把金属离子(或原子)与某些分子或离子(称为配体)以配位键结合形成的化合物称为配位化合物。
3、配合物的形成Cu2++2NH3·H2O=Cu(OH)2↓+2NH4+Cu(OH)2+4 NH3·H2O=[Cu(NH3)4]2++2OH-+4H2O([Cu (NH3)4]2+深蓝色)五、键的极性和分子的极性1、极性键:由不同原子形成的共价键。
吸电子能力较强一方呈正电性(δ+),另一个呈负电性(δ一)。
六、氢键及范德华力及其对物质的影响范德华力:分子之间存在着相互作用力。
范德华力很弱,约比化学键能小l一2数量级。
相对分子质量越大,范德华力越大;分子的极性越大,范德华力也越大。
氢键:是由已经与电负性很强的原子形成共价键的氢原子(如水分子中的氢)与另一个分子中电负性很强的原子(如水分子中的氧)之间的作用力。
氢键普遍存在于已经与N、O、F等电负性很大的原子形成共价键的氢原子与另外的N、O、F等电负性很大的原子之间。
例如,不仅氟化氢分子之间以及氨分子之间存在氢键,而且它们跟水分子之间也存在氢键。
大学课程共价键资料
sp3d 杂化轨道的取向 基态 P 的外层电子组态为 3s23p3 , 在形成 PF5 时 , 在 F 的影响下 , P 用一个 3s 轨道、三个 3p轨 道和一个 3d 轨道进行 sp3d 杂化 , 形成五个杂化轨 道 , 每个杂化轨道中都各有一个未成对电子 。P 用 五个杂化轨道分别与五个F 中含有未成对电子的 2p 轨道重叠 , 形成五个。键 。 由于 P 提供的五个杂化 轨道的构型为三角双锥形 , 因此 PF5 的几何构型为 三角双锥形。
(二) π键
原子轨道垂直于键轴以 “肩并肩 ” 方式重叠 所形成的共价化学键称为π键 。形成π键时 , 原 子轨道的重叠部分对等地分布在包括 键轴在 内的 平面上、下两侧 , 形状相同 , 符号相反 , 呈镜面
反对称。
从原子轨道重叠程度来看 , π键的重叠程 度比σ键的重叠程度小 , π键的键能小于σ键的 键能 , 所以π键的稳定性低于σ键 , 它是化学反 应的积极参与者。 两个原子形成共价单键时 , 原子轨道总是 沿键轴方向达到最大程度的重叠 , 所以单键都是 σ键; 形成共价双键时 , 有一个σ键和一个π键; 形成共价三键时 , 有一个σ键和两个π键 。
基态 N 的外层电子组态为 2s22p3 , 在 H 影响 下 , N 的一个 2s 轨道和三个 2p轨道进行 sp3 不等 性杂化 , 形成四个不等同的 sp3 杂化轨道 。其中三 个 sp3 成键杂化轨道的能量相等 , 每个杂化轨道含 0.226 s 轨道成分和 0.774 p轨道成分; sp3 非键 杂化中含 0.322 s轨道成分和 0.678 p轨道成分。 N 用三个各含一个未成对电子的 sp3 成键杂化轨道 分别与三个 H 的 1s 轨道重叠 , 形成三个 键 , 孤对电子则占据 s 成分较高的 sp3 非键杂化轨道。 因此 NH3 的几何构型为三角锥形。
《共价键理论》课件
配位共价键是指一方提供空轨道,另一方提供孤对电子来形成的共价键。这种类型的共价键常见于过渡金属元素和配位体之间。
过渡金属元素常见的成键方式
过渡金属元素具有可利用的空轨道,容易与配位体形成配位共价键,这种成键方式在过渡金属的化合物中非常常见。
形成稳定的络合物
通过配位共价键,过渡金属元素可以与多个配位体形成络合物,这些络合物通常具有特定的结构和稳定性。
详细描述
在极性共价键中,电子不完全由成键的两个原子共有,而是偏向某一成键原子,产生电偶极矩,形成极性分子。
总结词
分子具有偶极矩
总结词
存在于不同电负性的原子之间
详细描述
由于极性共价键的存在,分子具有偶极矩,使得分子在空间中产生电场,影响其他分子或离子的取向和结合。
总结词
详细描述
总结词
详细描述
总结词
详细描述
详细描述
正常共价键主要存在于非金属元素之间,例如碳、氧、氮、硫等,它们通过共享电子来形成稳定的化合物。
总结词
最常见的共价键类型
总结词
电子完全由成键原子共有
总结词
主要存在于非金属元素之间
01
02
03
04
05
06
总结词
电子偏向某一成键原子
详细描述
极性共价键主要存在于不同电负性的原子之间,例如氢和氯、氧和氟等,它们的电负性差异导致电子偏向某一原子,形成极性分子。
在共价键理论框架内,引入非共价相互作用的描述,提高理论对分子间相互作用的解释能力。
01
量子力学与共价键理论的结合
利用量子力学的高精度描述,改进共价键理论,使其能够更好地处理复杂分子结构和特殊元素行为。
分子结构和共价键理论
分子结构和共价键理论分子结构是指分子中原子之间的几何排列和相对位置。
分子结构的确定对于理解分子的性质和反应机制至关重要。
根据分子结构的不同,分子可以分为线性、平面三角形、正四面体、平面四边形、平面五边形、八面体等各种类型。
而共价键是指通过共用电子对来连接原子的一种化学键。
共价键的形成是原子间电子的重叠和共享,通过共享电子形成的共价键的强度与原子间的距离和电子云的重叠程度有关。
根据电子对的数量和形式,共价键又可分为单键、双键、三键等不同类型。
共价键理论是用来解释共价键形成和分子结构的理论体系。
共价键理论最初由路易斯在1916年提出,由于其简单和直观的描述方式,被广泛接受和应用。
根据共价键理论,原子通过共享电子对来完成对外层电子的填充,以达到稳定的电子结构。
共价键的形成遵循八个原则,即凯库勒原则,也被称为共价键的“八个原则”。
凯库勒原则的具体内容有:1.原子通过共享电子对来完成稳定的电子结构。
2.原子中的电子仅能拥有共价键所需的电子对数。
3.每个电子对对应一个共价键。
4.共价键通常与共价键的长度成正比,共价键越长,键能越小。
5.共价键的长度与原子半径和离子半径有关。
6.共价键的强度与键能成正比,共价键越紧密,键能越大。
7.共价键的强度与电子云的重叠程度有关,重叠程度越大,共价键越强。
8.共价键的强度与原子质量有关。
根据共价键理论,可以解释分子的稳定性、电荷分布、偶极矩和分子极性等性质。
分子的稳定性与共价键的强度和长度有关,共价键越紧密、越短,分子越稳定。
分子的电荷分布与原子间电子的共享程度有关,共价键的形成使得电子密度在分子中产生偏移,形成电荷云的分布。
分子的偶极矩和分子极性与分子中原子的电负性差有关,原子对电子的吸引能力差异越大,分子的偶极矩越大。
除了凯库勒原则,还有一些额外的因素可以影响共价键的形成和分子结构的稳定性,如共振、键角张力和立体位阻等。
共振是指分子中的双键或三键的位置可以在不同原子之间变化,形成多个共振结构,增加了分子的稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
共价键理论简介
共价键的本质问题一直是化学键理论中的重大研究课题。
主要有两种理论:一是现代价键理论,二是分子轨道理论。
本教材中介绍的基本是现代价键理论。
现代价键理论简称VB法,又称电子配对法。
其主要论点有:原子在未化合前有未成对电子,这些未成对的电子,如果自旋方向相反的话,则可两两结合成电子对,这时原子轨道发生重叠,电子在两核间出现机会较多,电子云密度较大,体系的能量降低,就能生成一个共价键;一个电子与另一个电子配对后就不能再与第三个电子配对;如果原子轨道重叠越多,所形成的共价键就越稳定,等等。
分子轨道理论,简称MO法,它是现代价键理论的完善和发展,其主要论点有:能量相近的原子轨道可以组合成分子轨道;由原子轨道组成分子轨道的数目不变,而轨道能量改变;能量低于原子轨道的分子轨道为成键轨道,反之为反键轨道,能量等于原子轨道的分子轨道为非键轨道;分子中的电子在一定的“分子轨道”上运动;在不违背每一个分子轨道只容纳两个自旋方向相反的电子的原则下,分子中的电子将优先占据能量最低的分子轨道,并尽可能分占不同的轨道,且自旋方向相同;在成键时,原子轨道重叠越多,所生成的键越稳定;分子轨道中电子的排布也遵循原子轨道电子排布的原则,即堡里不相容原理、能量最低原理、洪特规则和轨道最大重叠原理;等等。
(参考《无机化学》上册,北师大等编)Sorry,请升级您的浏览器Sorry,请升级您的浏览器。