锂离子电池及动力电池包的生产工艺PPT精选文档

合集下载

锂电池生产工艺流程通用课件

锂电池生产工艺流程通用课件
负极材料的质量对锂电池的电化学性能也有着重要影响。负极材料的选择同样需要根据电池的电压、容量、安全性能等要求进行优化。此外,负极材料的制备工艺也需要不断改进,以提高生产效率和降低成本。
电解液是锂电池中的重要组成部分,其质量对电池的电化学性能和安全性有着重要影响。电解液的制备主要包括溶剂的精制、添加剂的合成和电解液的配制等步骤。在溶剂的精制过程中,需要去除杂质和水分,以提高电解液的纯度和稳定性。添加剂的合成则是为了提高电解液的电导率和稳定性等性能。电解液的配制则是将溶剂和添加剂按照一定比例混合均匀,形成电解液。
锂电池生产工艺流程通用课件
目录
锂电池简介锂电池生产工艺流程锂电池生产设备与辅助材料锂电池生产质量控制与安全防护锂电池回收再利用技术
01
CHAPTER
锂电池简介
手机、平板电脑、数码相机等。
消费电子
电动汽车
储能领域
电动汽车、混合动力汽车等。
家庭储能、数据中心、电网储能等。
03
02
01
随着消费电子、电动汽车和储能领域的发展,锂电池市场需求持续增长,市场竞争激烈。
各国政府对锂电池回收再利用制定了相关政策法规,要求生产商、销售商和使用者承担相应的回收责任,推动锂电池回收再利用的可持续发展。
环保要求
随着环保意识的提高,对锂电池回收再利用的环保要求也越来越严格,需要采取有效的环保措施和技术,减少对环境的负面影响。
THANKS
感谢您的观看。
电解液的质量对锂电池的性能和安全性有着重要影响。电解液的浓度、纯度、稳定性等参数需要严格控制,以确保电池的性能和安全性。此外,电解液的制备工艺也需要不断改进,以提高生产效率和降低成本。
电池组装工艺是锂电池生产中的最后一个环节,主要包括电极片的制作、电池壳的装配、电解液的注入等步骤。在电极片的制作过程中,需要将正负极片和隔膜按照一定的顺序和方向装配在一起,形成电极组件。电池壳的装配则是将电极组件和电池壳体按照一定的要求装配在一起,形成完整的电池结构。电解液的注入则是将电解液通过注液孔注入电池壳体中,使电极组件完全浸渍在电解液中。

锂离子电池生产工艺流程课程课件

锂离子电池生产工艺流程课程课件

同样是一份六十页,四十张左右图片 的文件 ,一个 是4M左 右,一 个却近 50M, 这是怎 么回事 呢?经 仔细检 查,原 来是因 为一个 用BMP 图片, 一个用J PG格 式的图 片。在 该文件 中,由 于原图 片较大 (A3纸 大小) ,存成BMP格 式的作 者,看 一个文 件就4M 左右, 就将其 在图片 编辑器 中缩了 15倍( 长宽各 为原来 的25% ),结 果BMP 文件仅 为200K 左右。 而用JPG 格式的 作者, 看每个 图片文 件只不 过120K 左右, 就直接 在文件 中插入 ,结果 一个PowerPoi nt文件 中存一 个BMP 图片, 其大小 就变成 了4.7M 。所以 用大小 适中的BMP图 片,可 以使你 做的文 件不至 于太大LHJ+FHX 。
策划的要求:
1. 策划的现场文件(作业指导书、工艺文件、检验文件)应
明确产品加工的质量目标和技术要求。
策划的结果(工艺流程图、设
2. 应针对具体的产品明确所需的文件(记录)、资源的要求
计开发书、策划表等)必须与
(人员、设备、模具、量具),均应在控制计划中体现。
本 公 司 Q M S ( 质 量 管 理 体 系 ) 各 车 间 、 检 验 站 应 得 到 与 产 品 一 致 的 现 场 文 件 。 同样是一份六十页,四十张左右图片的文件,一个是4M左右,一个却近50M,这是怎么回事呢?经仔细检查,原来是因为一个用BMP图片,一个用JPG格式的图片。在该文件中,由于原图片较大(A3纸大小),存成BMP格式的作者,看一个文件就4M左右,就将其在图片编辑器中缩了15倍(长宽各为原来的25%),结果BMP文件仅为200K左右。而用JPG格式的作者,看每个图片文件只不过120K左右,就直接在文件中插入,结果一个PowerPoint文件中存一个BMP图片,其大小就变成了4.7M。所以用大小适中的BMP图片,可以使你做的文件不至于太大LHJ+FHX。

锂离子电池生产工艺流程教材PPT(共 44张)

锂离子电池生产工艺流程教材PPT(共 44张)

已注液流转的电池1
已注液流转的电池
<3.8V
预充
全测电压 >3.8V
压钢珠
NO
NO
第一次分容
第二次分容
已注液流转的电池2
已分容电池
储存期内完成
外观处理
(除胶纸、清洗、 抛光)
点胶
全测外观
储存3天 全检电压 <3.2V >3.2V 单充电
全检电压、内阻 入库
(可即时出货)
单充电
全检电压、 内阻
入库观察1个 月(按相应 程序出货)

10、有些事想开了,你就会明白,在世上,你就是你,你痛痛你自己,你累累你自己,就算有人同情你,那又怎样,最后收拾残局的还是要靠你自己。

11、人生的某些障碍,你是逃不掉的。与其费尽周折绕过去,不如勇敢地攀登,或许这会铸就你人生的高点。

12、有些压力总是得自己扛过去,说出来就成了充满负能量的抱怨。寻求安慰也无济于事,还徒增了别人的烦恼。
相 应 图 片(1)
预充
铝壳预充
已压好钢珠
压钢珠
相 应 图 片(2)
分容设置开关
钢壳分容
电池清洗
铝壳分容
相 应 图 片(3)
抛光
全检外观
全测电压
点胶
相 应 图 片(4)
待单充电电池
上夹单充电
入库全测电压
包装工艺流程图1
不干胶垫 PVC套
开 始
测 内 阻
喷 码



喷 码
贴 不

检 查
干 胶 垫

13、认识到我们的所见所闻都是假象,认识到此生都是虚幻,我们才能真正认识到佛法的真相。钱多了会压死你,你承受得了吗?带,带不走,放,放不下。时时刻刻发悲心,饶益众生为他人。

锂电池制造工艺培训(ppt40张)

锂电池制造工艺培训(ppt40张)
使电池芯叠层紧密,方便套壳
潜在问题
压力过大或过小—压力过大易导致电芯压坏短路,压力过小使
电芯压不到位,影响下步操作
电池培训教材
制程过程控制点—14
贴上下胶纸
避免电池芯和壳体或盖板间的短路
潜在问题
位置不当—在电池受外界震动或碰撞时不能完全避免电池的内
部短路,容易出现安全问题
电池培训教材
制程过程控制点—15
路或安全问题,正极活性物质被贴住会影响容量
电池培训教材
制程过程控制点—10
极片烘烤
除去极片中的水分
潜在问题
①温度过高—极片变脆,引起极片掉粉或电池短路,导致电池 自放电大甚至安全问题
②温度过低—极片除水不净,导致电池容量低、内阻不稳定、 循环差及尺寸异常
电池培训教材
制程过程控制点—11
卷绕
隔膜良好绝缘的基础上正负极良好地叠合
②恒压电压不准
a、电压偏高会导致电池过充,影响电池性能和分容准确度,极 端时可能出现爆炸
b、电压偏低会导致电池充电不足,影响电池分容的准确度
电池培训教材
制程过程控制点—30
储存
检测电池的自放电情况
潜在问题
温度对储存结果有影响
电池培训教材
制程过程控制点—31
抛光
清理电池表面
潜在问题
①抛光不良—影响电池的外观
②注液时与外界隔离效果差—容易导致电池内含水量增加,引
起电池容量低、内阻大、平台低及循环性差等问题
电池培训教材
制程过程控制点—26
储存
使电解液充分渗透
潜在问题
储存时环境控制不好—容易使电池吸水,引电池各项性能异常
电池培训教材
制程过程控制点—27

锂电池生产工艺课件PPT(共 43张)

锂电池生产工艺课件PPT(共 43张)
预化流程:
0.02C CC 210min to 3.4V; 0.1C CC 420min to 3.95V
叠片工艺的主要工艺流程 --- Forming
Forming(成型)
工序功能:将电芯外型作最后加工
Baking
高温老化
Degassing
释放化成产生的气体
切边
切去气袋和多余的 侧边
折边
将侧边折起,完成 电芯最终外形
叠片工艺的主要工艺流程 --- Inject
叠片工艺的主要工艺流程 --- Formation
预化
工序功能:通过充放电方式将其内部正负极物质激活,同时在负极表面形 成良好的SEI膜。
原理:锂电芯的化成是电池的初使化,使电芯的活性物质激活,即是一个能量转换的 过程。锂电芯的化成是一个非常复杂的过程,同时也是影响电池性能很重要的一道 工序,因为在Li+第一次充电时,Li+第一次插入到石墨中,会在电池内发生电化学反 应, 在电池首次充电过程中不可避免地要在碳负极与电解液的相界面上、形成覆盖在 碳电极表面的钝化薄层,人们称之为固体电解质相界面或称SEI膜(SOLID ELECTROLYTE INTERFACE)
冷压 (Cold Lam)
注液 ( Inject)
顶封 ( Top sealing)
卷绕 (Winding)
化成 ( Formation)
成型 ( Forming)
测试
裁片分条 ( Slitting
焊接 ( Welding
卷绕工艺的主要工艺流程
---物料形态流程图
卷绕工艺的主要工艺流程 ---Mixing
制造工艺分类
Li离子电芯核心制造工艺分为:
叠片工艺和卷绕工艺

锂电池生产工艺流程 PPT

锂电池生产工艺流程 PPT

检 测 短 路 断 路
盖 板 激 光 焊
铝壳装配工艺流程图4
更改电解液
盖 板 激 光 焊
气 密 性 测
电 池 烘 烤
检 测 短 路 断 路
注 液
相 应 图 片(1)
极片烘烤
烘烤箱
刷粉
刷粉台
相 应 图 片(2)
卷绕-放入正极片
卷绕-放入负极片
卷绕-卷绕体
卷绕-放入正极片
相 应 图 片(3)
捏扁的电芯
锂离子电池生产工艺流程
正极拉浆流程图
双面拉浆
开 始
正 极 配 料
正 极 搅 拌
正 极 拉 浆
量厚 确度 认、 重
正 极 拉 浆 检 查
符号说明:
1 2 3 表示对生产对象进行加工、装配等; 表示品质部负责的专检点; 表示生产对象在工作地有计划地存放;
负极拉浆流程图
双面拉浆
开 始
负 极 配 料
负 极 搅 拌
点片
计数
外观检查
负极片工艺流程图1
收 卷 负 极 片
裁 大 片
刮 粉
刷 粉
对 辊
裁 小 片
符号说明: 1 2 3 4 表示对生产对象进行加工、装配等; 表示品质部负责的专检点; 表示生产对象在工作地有计划地存放; 表示生产对象在工作地附近的临时存放。
负极片工艺流程图2
极耳
裁 小 片
重 量 分 档
气 密 性 测
电 池 烘 烤
检 测 短 路 断 路
电 池 分 档
注 液
电 池 秤 重
铝壳装配工艺流程图1
裁隔膜纸 正 负 极 片 烘 烤
卷 绕 正负极刷粉
卷 绕 检 查

锂离子电池及动力电池包的生产工艺

锂离子电池及动力电池包的生产工艺
4
钛酸锂电池
钛酸锂电池是一种用作锂离子电池负极材料-钛酸锂,可与锰酸锂、三元材料或磷酸铁锂等正极材料组成 2.4V或1.9V的锂离子二次电池。此外,它还可以用作正极,与金属锂或锂合金负极组成1.5V的锂二次电 池。钛酸锂具有高安全性、高稳定性、长寿命和绿色环保的特点。 优点 采用电动车辆取代燃油车辆是解决城市环境污染的最佳选择,其中锂离子动力电池引起了研究者的广泛关 注.为了满足电动车辆对车载型离子动力电池的要求,研制安全性高、倍率性能好且长寿命的负极材料是 其热点和难点。 商业化的锂离子电池负极主要采用碳材料,但以碳做负极的锂电池在应用上仍存在一些弊端: 1、过充电时易析出锂枝晶,造成电池短路,影响锂电池的安全性能; 2、易形成SEI膜而导致首次充放电效率较低,不可逆容量较大; 3、即碳材料的平台电压较低(接近于金属锂),并且容易引起电解液的分解,从而带来安全隐患。 4、在锂离子嵌入、脱出过程中体积变化较大,循环稳定性差。 与碳材料相比,尖晶石型的Li4Ti5O12具有明显的优势: 1、它为零应变材料,循环性能好; 2、放电电压平稳,而且电解液不致发生分解,提高锂电池安全性能; 3、与炭负极材料相比,钛酸锂具有高的锂离子扩散系数(为2 *10-8cm2/s),可高倍率充放电等。 4、钛酸锂的电势比纯金属锂的高,不易产生锂枝晶,为保障锂电池的安全提供了基础。 缺点 1、相对其他类型的锂离子动力电池能量密度会低一些。 2、胀气问题一直阻碍着钛酸锂电池的应用。 3、相对其他类型的锂离子动力电池价格偏高。 4、电池一致性仍存在差异,随着充放电次数的增加电池一致性差异会逐渐增大。
锂离子电池基础知识 电池包的生产工艺
1
锂电池结构
正极 活性物质(LiCoO2\LiMnO2\LiNixCo1-xO2\ LiXFePO4 ) 导电剂、溶剂、粘合剂、基体
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高温性能差 安全性差 生产技术门槛高
钴价格昂贵
适用于 客车、大巴、混动
高性能电动乘用车
能量密度低 电解质相容性差
3
锂电池的分类及对比
下面就安全性、能量密度、单体标称电压、使用寿命、应用成本、低温衰减能力等方面分析磷酸铁锂电池和三元锂 电池优劣。 安全性: 三元锂电池:三元锂电池如果内部短路或是正极材料遇水,都会有明火产生。所以一般三元锂电池都会有一层钢壳 保护。特斯拉给电池组进行了全方位的保护,但是在极端的碰撞事故中,起火隐患还是有的。 磷酸铁锂电池:磷酸铁锂电池则要稳定许多,电池板就算是穿刺、短路也不会爆炸燃烧,遭到350℃的高温也不会起 火(三元锂电池在180-250℃就扛不住了)。所以在安全性能上,磷酸铁锂电池略胜一筹。 能量密度: 三元锂电池:三元锂电池的能量密度大,电压更高,所以同样重量的电池组电池容量更大,车子跑的距离也就更远, 速度也能更快。 使用寿命: 三元锂电池:三元锂电池的理论寿命是2000次充放电循环,但在实际使用中,当进行900次的充放电循环后,电池 容量就基本衰减到了55%。但如果每次电池充放电都控制在0%-50%或者25%-75%的循环中工作,即使经过3000 次的充放电循环,电池容量基本还能能够保持在70%左右,但这需要非常优秀的电池管理系统。 磷酸铁锂电池:磷酸铁锂电池即便是经过3000次0-100%的充放电使用,容量也才会衰减到80%,所以磷酸铁锂电 池的电池管理系统就没那么复杂,也就进一步降低了整车研发成本。 应用成本: 中国的锂矿、氧化铁磷酸盐储量丰富,制造磷酸铁锂电池有优势。而我国缺乏钴矿,制造必须采用钴元素的三元锂 电池会有些困难。所以,我国许多车企(包括电池企业)发展磷酸铁锂电池是很现实的。 所以,现在市面上采用三元锂电池的电动车,动力电池基本都是国外品牌产品(日本松下,韩国SK等),价格也相 应要比采用磷酸铁锂电池的车型(同级别)贵一些。 低温衰减能力: 三元锂电池在低温时的放电性能要优于磷酸铁锂电池。
2
锂电池的分类及对比
锂离子电池是指正负极采用锂离子化合物的二次电池 锂电池的性能主要取决于正负极材料,常见的正极材料有钴酸锂、锰酸锂、镍酸锂、三元锂、磷酸铁锂。 能量密度、成本、安全性、热稳定性、循环寿命是动力锂电池的5个关键指标
正极材料 能力密度
钴酸锂
150
LCO
磷酸铁锂 15ห้องสมุดไป่ตู้ LFP
电压平台 3.7 3.3
锂离子电池基础知识 电池包的生产工艺
1
锂电池结构
正极 活性物质(LiCoO2\LiMnO2\LiNixCo1-xO2\ LiXFePO4 ) 导电剂、溶剂、粘合剂、基体
负极 活性物质(石墨、MCMB) 粘合剂、溶剂、基体、导电剂
隔膜(PP+PE) 电解液(LiPF6 + DMC/ EC/ EMC) 外壳五金件(钢壳、铝塑膜、铝壳、盖板、极耳、绝缘片等)
4
钛酸锂电池
钛酸锂电池是一种用作锂离子电池负极材料-钛酸锂,可与锰酸锂、三元材料或磷酸铁锂等正极材料组成 2.4V或1.9V的锂离子二次电池。此外,它还可以用作正极,与金属锂或锂合金负极组成1.5V的锂二次电 池。钛酸锂具有高安全性、高稳定性、长寿命和绿色环保的特点。 优点 采用电动车辆取代燃油车辆是解决城市环境污染的最佳选择,其中锂离子动力电池引起了研究者的广泛关 注.为了满足电动车辆对车载型离子动力电池的要求,研制安全性高、倍率性能好且长寿命的负极材料是 其热点和难点。 商业化的锂离子电池负极主要采用碳材料,但以碳做负极的锂电池在应用上仍存在一些弊端: 1、过充电时易析出锂枝晶,造成电池短路,影响锂电池的安全性能; 2、易形成SEI膜而导致首次充放电效率较低,不可逆容量较大; 3、即碳材料的平台电压较低(接近于金属锂),并且容易引起电解液的分解,从而带来安全隐患。 4、在锂离子嵌入、脱出过程中体积变化较大,循环稳定性差。 与碳材料相比,尖晶石型的Li4Ti5O12具有明显的优势: 1、它为零应变材料,循环性能好; 2、放电电压平稳,而且电解液不致发生分解,提高锂电池安全性能; 3、与炭负极材料相比,钛酸锂具有高的锂离子扩散系数(为2 *10-8cm2/s),可高倍率充放电等。 4、钛酸锂的电势比纯金属锂的高,不易产生锂枝晶,为保障锂电池的安全提供了基础。 缺点 1、相对其他类型的锂离子动力电池能量密度会低一些。 2、胀气问题一直阻碍着钛酸锂电池的应用。 3、相对其他类型的锂离子动力电池价格偏高。 4、电池一致性仍存在差异,随着充放电次数的增加电池一致性差异会逐渐增大。
镍钴铝酸 170
3.7

NCA
镍钴锰酸 160
3.6

NCM
锰酸锂
120
3.8
LMO
优点
充放电稳定 生产工艺简单
价格低 无污染 安全性高 循环寿命长
能量密度高 低温性能好
循环性能好 能量密度高 低温性能好 大倍率充电
锰资源价格便宜 安全性能好
缺点
钴价格昂贵 循环寿命较低
能量密度低/容量低 低温性能差 电压平台太长太平,使得soc估 计变得异常困难
5
固态电池
固态电池是一种使用固体电极和固体电解液的电池。固态电池一般功率密度较低,能量密度较高。由于 固态电池的功率重量比较高,所以它是电动汽车很理想的电池 。 2020年固态电池技术研发有望取得突破性进展,在成本、能量密度和生产过程等方面进一步赶超锂离子 电池技术。 2030年,锂离子电池将不再是电动汽车电池主流,但其在某些电子原件领域仍有一席之地。 传统的液态锂电池又被科学家们形象地称为“摇椅式电池”,摇椅的两端为电池的正负两极,中间为电 解质(液态)。而锂离子就像优秀的运动员,在摇椅的两端来回奔跑,在锂离子从正极到负极再到正极 的运动过程中,电池的充放电过程便完成了。 固态电池的原理与之相同,只不过其电解质为固态,具有的密度以及结构可以让更多带电离子聚集在一 端,传导更大的电流,进而提升电池容量。因此,同样的电量,固态电池体积将变得更小。不仅如此, 固态电池中由于没有电解液,封存将会变得更加容易,在汽车等大型设备上使用时,也不需要再额外增 加冷却管、电子控件等,不仅节约了成本,还能有效减轻重量。 而且固态电池还有另一项优势——在事故中损坏时不易爆炸或起火。要知道的是,在此之前,在新能源 汽车领域与特斯拉同样享有盛名的菲斯科,后来之所以会破产并慢慢销声匿迹,在很大程度上就是因为 其频繁出现的电池起火事件以及其他故障。 现在最具考验的地方在于价格。液态锂电池的成本大约在200~300美元/千瓦时,如果使用现有技术制造 足以为智能手机供电的固态电池,其成本会达到1.5万美元,而足以为汽车供电的固态电池成本更是达到 令人咋舌的9000万美元。
相关文档
最新文档