仪器分析:毛细管电泳法
人卫第七版分析化学第二十章毛细管电泳法

第二十章
毛细管电泳法
仪器分析
常用的阴离子表面活性剂有十二烷基硫酸钠(SDS)、 N-月桂酰-N-甲基牛磺酸钠(LMT)、牛磺脱氧胆酸 钠(STDC)等。 阳离子表面活性剂最常用的是季铵盐,如十二烷基三 甲基溴化铵(DTAB)、十六烷基三甲基溴化铵 (CTAB)等。 非离子型表面活性剂有3-[3-(氯化酰胺基丙基)二甲基 胺基]-1-丙基磺酸酯(CHAPS)等。
3.吸附
产生原因:
(1)阳离子溶质和带负电的管壁的离子相互作用 (2)疏水作用。 对于生物大分子,如碱性蛋白和多肽等,吸附严重时可能导致测不
到信号。因此,生物大分子分析时常需用涂层处理的毛细管柱。
4.进样
5.电泳
(过载)
样品区带与周围电解质溶液间的电导率差,从而导致峰形展宽。
第二十章 五、分离度
另外,还有手性表面活性剂,如胆酸、毛地黄皂苷、 十二烷基-N-L-缬氨酸钠等。
Hale Waihona Puke 第二十章毛细管电泳法
仪器分析
表面活性剂选择时应考虑以下因素:
(1)经济易得 (2)水溶性好 (3)紫外吸收背景越低越好 (4)不与样品发生破坏性作用
(5)所形成的胶束足够稳定
第二十章
毛细管电泳法
仪器分析
碳链较短的阴离子表面活性剂为优先选择对象。SDS易得、紫外
吸收低,最为常用。如经浓度、缓冲溶液及pH优化,分离仍不佳,
再换具有不同碳链长度或结构的其它阴离子表面活性剂。若结果 仍不好,应考虑使用阳离子或中性、两性表面活性剂,如CTAB
第二十章
毛细管电泳法
仪器分析
第三节
毛细管电泳的主要分离模式
毛细管电泳仪核酸分离分析

毛细管电泳仪核酸分离分析毛细管电泳仪核酸分离分析是一种广泛应用于生物技术和生物医学研究领域的分析方法。
它通过将DNA、RNA或其他核酸样品注入到毛细管中,利用电场的作用使核酸在毛细管内迁移,在电泳分离过程中根据核酸分子的大小、电荷和构象差异,实现对核酸样品的分离和定量分析。
本文将从毛细管电泳仪的原理、实验操作和应用领域三个方面展开介绍。
一、毛细管电泳仪的原理毛细管电泳仪是以电泳为基础的仪器设备,主要由高压电源、注射器、分离柱、检测器和数据处理系统等组成。
核酸样品首先通过注射器被导入到毛细管内,然后通过电场力将核酸分子在毛细管内迁移。
毛细管内的分离柱起到了筛选和分离核酸的作用,不同长度或不同带电性质的核酸分子将被分离开来。
分离完成后,检测器会检测样品,根据检测信号进行数据处理和分析。
二、毛细管电泳仪的实验操作1. 样品制备:将待测核酸样品提取并纯化,测定浓度和纯度。
2. 缓冲液的配制:根据实验需要选择合适的缓冲液,调节缓冲液的pH值和离子强度,以优化分离效果。
3. 毛细管的选择:根据样品特性和分离目标,选择合适的毛细管材料、内径和长度。
4. 样品注入:使用专用注射器将核酸样品注入到毛细管中。
5. 分离条件设置:根据样品的性质和实验需要,设置适当的分离电压、电流和温度等条件。
6. 分析与结果解读:根据检测器所得到的信号,进行数据处理和结果解读。
三、毛细管电泳仪的应用领域毛细管电泳仪核酸分离分析广泛应用于生命科学研究、医药领域以及法医学等领域。
具体应用包括但不限于以下几个方面:1. 生物医学研究:在基因工程、遗传学、分子生物学等领域中,毛细管电泳仪被广泛应用于核酸样品的分离、纯化和测序等方面。
2. 临床诊断:毛细管电泳仪可用于检测和分析人体内的基因突变、染色体异常等,对临床疾病的诊断、预测和治疗具有重要意义。
3. 食品安全监测:毛细管电泳仪可以对食品中的转基因成分、有害物质和添加剂等进行快速准确的分析,为食品安全监测提供科学依据。
毛细管电泳法

此外,还有一类基于芯片的二维分离系统主要应用于蛋白质酶解物的分离分析。
除上述分离模式外,芯片自由流电泳也是芯片电泳分离蛋白质的重要方法。芯片自由流电泳是指在芯片中通 过外加电场使样品随缓冲液连续流动的同时沿电场方向进行电迁移,从而按照电泳淌度不同实现分离的电泳分离 模式。Raymond等采用芯片自由流电泳模式分离了人血清蛋白、缓激肽和核糖核酸酶A,其分离长度为3.1 cm,流 出时间为62 S。Kobayashi等采用自由流电泳的分离模式在一个体积为56.5 mm×35 mm×30 mm的微分离室 (60uL)中实现了持续的蛋白质分离,并用羟丙基甲基纤维素涂覆来抑制蛋白质吸附,在25 min内有效分离了细胞 色素C和肌红蛋白。最近,Kohl.heyer等H 3。制作了一种自由流等电聚焦分离蛋白质的玻璃芯片,成功地将人 血清白蛋白(pI=4.4)与等电聚焦标记物(pH 3和9)分离。
仪器要求
所用的仪器为毛细管电泳仪。正文中凡采用毛细管电泳法测定的品种,其所规定的测定参数,除分析模式、 检测方法(如紫外光吸收或荧光检测器的波长、电化学检测器的外加电位等)应按照该品种项下的规定外,其他参 数如毛细管内径、长度、缓冲液的pH值、浓度、改性剂添加量、运行电压或电流的大小、运行的时间长短、毛细 管的温度等,均可参考该品种项下规定的数据,根据所用仪器的条件和预试验的结果,进行必要的调整。
检测方法
毛细管电泳通常用到的检测方法有吸收光谱,荧光光谱,热镜,拉曼光谱,质谱和电化学方法。
毛细管电泳法的使用方法

毛细管电泳法的使用方法毛细管电泳法是一种分离和分析化学物质的常用方法,它基于物质在电场中的运动速度差异而实现分离。
适用于各种复杂样品的分析,包括生物样品、环境样品和食品样品等。
本文将介绍毛细管电泳法的使用方法。
一、实验准备1. 仪器准备:毛细管电泳仪和电泳装置是进行毛细管电泳分析的关键设备。
确保仪器完好无损,并根据仪器的使用说明进行正确操作和维护。
2. 毛细管准备:选择适当的毛细管,一般为无机硅玻璃或石英毛细管。
根据分析需求,选择不同内径和长度的毛细管。
3. 缓冲溶液准备:根据分析的目标物质的性质,选择合适的缓冲溶液。
常用的缓冲溶液包括磷酸盐缓冲液、乙酸缓冲液等。
根据需要,可以添加其他辅助剂来改善分离效果。
二、样品制备1. 样品处理:根据分析目标,选择合适的处理方法。
常见的样品处理方法包括离心、过滤、稀释、萃取等。
2. 样品溶解:将处理后的样品溶解于适当的溶剂中,并进行必要的稀释。
保证样品的浓度范围适合毛细管电泳的检测方法。
3. 样品准备:将样品注入样品瓶中,并保持封闭状态,以防止污染和样品损失。
三、实验操作1. 建立分析方法:根据样品性质和目标物质的不同,确定最适合的毛细管电泳分析方法。
包括电泳条件的选择、运行缓冲溶液的优化以及检测参数的设置等。
2. 毛细管填充:在进行毛细管电泳之前,需要将毛细管填充成电泳缓冲液中的一种或多种成分。
常用的填充方法包括静态填充法、动态填充法和电泳填充法。
3. 毛细管电泳条件的设定:根据样品的性质和分析目标的要求,设定合适的毛细管电泳条件,包括电压、电流、温度、电泳缓冲液的浓度和pH值等。
4. 样品注入和分析:将样品通过母液喷射装置或静态注射装置注入到填充好的毛细管中,然后开启电源,进行电泳分析。
5. 检测和数据分析:通过检测器对分离后的化合物进行检测,并记录峰的峰高和峰面积等参数。
利用这些数据进行数据分析和结果解释。
四、实验注意事项1. 仪器操作:严格按照仪器的使用说明进行操作,保证实验安全和设备的长期稳定性。
毛细管电泳法

毛细管电泳法分离水杨酸、苯甲酸及阿司匹林中的含量测定毛细管电泳法分离水杨酸、苯甲酸及阿司匹林中的含量测定毛细管电泳又称高效毛细管电泳( High Performance Capillary Electrophoresis, HPCE) 是一种仪器分析方法。
通过施加10-40kV 的高电压于充有缓冲液的极细毛细管,对液体中离子或荷电粒子进行高效、快速的分离。
现在,HPCE 已广泛应用于氨基酸、蛋白质、多肽、低聚核苷酸、DNA 等生物分子分离分析,药物分析,临床分析,无机离子分析,有机分子分析,糖和低聚糖分析及高聚物和粒子的分离分析。
人类基因组工程中DNA 的分离是用毛细管电泳仪进行的。
毛细管电泳较高效液相色谱有较多的优点。
其中之一是仪器结构 简单(见图1)。
它包括一个高电压源,一根毛细管,紫外检测器及计算机处理数据装置。
另有两个供毛细管两端插入而又可和电源相连的缓冲液池。
high-v oltagepower supply BufferV ialBuffer V ial Detector Recording dev icecapillaryElectrode Electrode图1 CE 仪器组成示意图毛细管中的带电粒子在电场的作用下,一方面发生定向移动的电泳迁移,另一方面,由于电泳过程伴随电渗现象,粒子的运动速度还明显受到溶液电渗流速度的影响。
粒子的实际流速 V 是电泳流速度 Vep 和渗流速度 Veo 的矢量和。
即:V = Vep + Veo (1)电渗流是一种液体相对于带电的管壁移动的现象。
溶液的这一运动是由硅/水表面的Zeta 势引起的。
CE 通常采用的石英毛细管柱表面一般情况下(pH>3)带负电。
当它和溶液接触时,双电层中产生了过剩的阳离子。
高电压下这些水合阳离子向阴极迁移形成一个扁平的塞子流,如图2。
毛细管管壁的带电状态可以进行修饰,管壁吸附阴离子表面活性剂增加电渗流, 管壁吸附阳离子表面活性剂减少电渗流甚至改变电渗流的方向。
毛细管电泳仪的使用(原创)电泳仪的使用方法

毛细管电泳仪的使用(原创)电泳仪的使用方法毛细管电泳仪的使用方法1:介绍毛细管电泳仪是一种常用的分离和分析技术仪器,通过电场驱动样品中的带电分子在毛细管中进行迁移,从而实现对样品的分离和定量分析。
本文档将详细介绍毛细管电泳仪的使用方法。
2:实验前准备2.1 准备样品溶液:根据实验需要,选择适当的溶剂和样品,按照预定的浓度配制样品溶液,并确保样品溶液的pH值符合要求。
2.2 准备电解液:根据不同的样品和实验目的,选择适当的电解液,并按照要求配制。
2.3 准备毛细管:将干净的毛细管插入电泳仪中,并进行有效联接。
调节毛细管位置和电泳仪参数,使其符合实验要求。
3:仪器启动3.1 打开电泳仪电源,并确保仪器正常供电。
3.2 打开电泳仪主控程序,如需连接电脑,进行相应的程序设置。
4:样品进样4.1 将样品溶液用进样器注入毛细管中,确保注入速度均匀。
4.2 根据实验要求选择进样方式,可以选择压力进样或电压进样。
5:电泳条件设置5.1 设置电泳电压:根据样品性质和实验要求,设置适当的电泳电压,并确保电压的稳定性。
5.2 设置电解液流速:根据不同的实验目的和样品要求,设置合适的电解液流速。
5.3 设置毛细管温度:根据样品特性和实验需要,设置适宜的毛细管温度。
5.4 设置波长和检测器灵敏度:根据实验所需的检测范围和精度要求,选择适当的波长和检测器灵敏度。
6:开始电泳6.1 启动电泳按钮,开始进行电泳分离。
6.2 在电泳过程中,及时观察电泳曲线和分离情况,并记录相关数据。
6.3 根据实验目的和要求,确定电泳时间和终止条件。
如需终止电泳,停止电泳按钮。
7:数据分析7.1 对电泳结果进行数据处理和分析。
可以使用专门的数据分析软件进行峰识别、峰面积积分、定量分析等。
7.2 根据实验目的,绘制相关曲线和图表,进行数据展示和结果分析。
8:结束实验8.1 关闭电泳仪电源,断开与电脑的连接。
8.2 清洗毛细管和进样器,并注意安全操作,避免受伤。
毛细管电泳仪原理

毛细管电泳仪原理
毛细管电泳仪是一种利用毛细管中的电泳现象进行物质分离的仪器。
其原理简述如下:
1. 毛细管: 毛细管是一种细长而细腻的玻璃管或石英管,内径通常为10-100微米。
毛细管的内壁具有一定的静电性质,可以吸附带电物质。
2. 缓冲液: 毛细管中填充有一种称为缓冲液的溶液。
缓冲液可以调节溶液的pH值,并提供离子,以保持毛细管内部电荷平衡。
3. 样品注入: 需要分离的样品溶液通过吸管或注射器被注入毛细管中。
4. 应用电场: 在毛细管的两端施加电压,产生电场。
由于毛细管内部具有一定的电导性,电场会导致带电物质在毛细管中移动。
5. 分离过程: 带电物质在电场的作用下,根据其电荷大小和分子大小的不同,会以不同的速度向毛细管两端移动。
带电物质移动的速度与其电荷量和分子大小成反比。
6. 检测: 分离过程中,可以通过光散射、荧光等方法对物质进行检测。
常见的检测方法包括紫外吸收检测和荧光检测。
通过调节电场强度、缓冲液pH值和样品注入量等参数,可以
实现对不同样品的有效分离和检测。
毛细管电泳仪因其高效、高灵敏度和快速的优点,在生化、制药、环境监测等领域有广泛的应用。
毛细管电泳仪操作流程

毛细管电泳仪操作流程毛细管电泳(Capillary Electrophoresis,CE)作为一种高效而准确的分离和分析技术,已经广泛应用于生命科学、环境监测、化学分析等领域。
本文将为您介绍毛细管电泳仪的操作流程。
一、仪器准备1. 确保毛细管电泳仪处于正常工作状态,检查仪器的所有外部连接是否牢固。
2. 根据待测样品的特性选择合适的电泳缓冲液,并准备好所需的电泳缓冲液。
二、打开电泳仪1. 打开电泳仪的电源开关,等待一段时间以确保仪器达到稳定工作温度。
2. 启动电泳仪上的控制软件,并连接电泳仪与电脑。
三、样品处理1. 准备待测样品,并标记好每个样品的相关信息,如样品编号、浓度等。
2. 根据样品特性选择适当的预处理方法,比如蛋白质样品可能需要进行还原、热变性等处理。
四、样品注射1. 取一根胶管,并将其一端插入装有待测样品的样品瓶中,另一端插入电泳仪的样品槽中。
2. 打开电泳仪软件上的样品注射选项,并设置注射时间和注射电压。
3. 确保胶管中没有气泡,控制好注射速度,使样品缓慢注入到毛细管中。
五、电泳1. 设置所需的电泳参数,包括电压、电流、电泳温度等。
2. 在电泳仪软件上选择相应的电泳方法,并输入相关参数。
3. 点击开始电泳按钮,启动电泳过程。
六、数据收集与分析1. 在电泳过程中,观察样品的迁移情况,确保样品在毛细管中顺利迁移。
2. 根据实验需求,在电泳仪软件上选择合适的检测器,并设置相关参数。
3. 点击数据采集按钮,开始采集电泳数据。
4. 采集完毕后,保存数据并进行相应的数据分析和解读。
七、仪器关闭与清洗1. 结束实验后,关闭电泳仪软件和电源开关。
2. 移除使用过的毛细管,并将其丢弃或进行清洗。
3. 使用适当的清洗液清洗电泳槽和其他相关部件,确保仪器干净整洁。
4. 关闭电泳仪的电源,并进行日常维护和保养。
总结:以上便是毛细管电泳仪的操作流程。
在操作过程中,注意仪器的准备、样品处理、样品注射、电泳、数据采集与分析等步骤,确保实验顺利进行。
毛细管电泳法

物质的分离
毛细管电泳法特点
与传统电泳技术相比:
分离效率高:解决了因提高电压带来的焦耳热问题
分离模式多:由电渗流和电泳流共同作用结果,故有多种分类 应用范围广:有机、无机小分子,多肽、蛋白质大分子
带电离子,中性分子
最小检出限低 分析成本低:毛细管本身成本低,溶剂和试剂消耗量少
样品用量少:仅为纳升级(10-9L)
CE-MS构造
电喷雾电离(ESI)接口技术于1984年在MS中提出,溶液在高 场中毛细管端以1-10ul/min的流速喷射进入MS检测器。接着, whitehouse等人[8]的LC不能直接由CE-MS加以利用,主要原因有两个:一是 CE流量小、流速慢(大多为10~100nl/min),不能满足各种接口 对流速的要求(2~10ul/min);二是由于毛细管端不存在缓冲液 中,所以必须解决CE操作中的电接触问题,保证提供分离电流 回路。不过基于whitehouse等人的LC-MS接口理论,smith等[9] 将CE分离毛细管的出口端作喷射源,首先实现了CE-ESI-MS的 在线偶合。电喷雾(ESI)接口作为最早出现的在线联用接口技 术,使得被分析物带上多电荷后采用质谱仪可以检测相对分子质 量达几万甚至十几万的生物大分子。由于ESI自身的优势以及 CE-ESI-MS接口技术的日益趋于成熟, 使CE-ESI-MS已成为CEMS联用技术中占主导地位的方法。CE-ESI-MS接口主要分为鞘 液接口和无鞘液接口两种。
目录
毛细管电泳法基本原理 毛细管电泳法仪器构造 毛细管电泳法类型
毛细管电泳法特点 CE-MS构造
毛细管电泳法基本原理
•CE统指以高压电场为驱动力,以毛细管为分离通道, 依据样品中各组分之间淌度和分配行为上的差异而实现 分离的一类液相分离技术。 •通常采用25~74μm内径、长38~80cm的弹性石英毛细 管,使用10~30kV直流电压,形成高强度电场。由于细 管径的毛细管电阻率大、电流小,有效地抑制了焦耳热 效应,而且具有较大的散热比表面积,也限制了电泳过 程中溶液温度升高,使得分离柱效高,分离速度快。
毛细管电泳仪的原理

毛细管电泳仪的原理
毛细管电泳仪(Capillary Electrophoresis, CE)是一种高效分离和分析生物分子的技术,它利用电泳原理在毛细管中进行分离。
毛细管电泳仪的原理涉及电泳、毛细管和检测三个关键部分。
首先,让我们来了解一下电泳原理。
电泳是利用物质在电场中的迁移速度差异进行分离的一种技术。
当物质带有电荷时,置于电场中会受到电场力的作用而产生迁移。
根据迁移速度的不同,可以实现物质的分离。
毛细管电泳仪利用电泳原理,将带有电荷的生物分子在毛细管中进行分离。
其次,毛细管是毛细管电泳仪中的关键组件。
毛细管通常由石英或玻璃制成,具有非常小的内径,通常在25至100微米之间。
毛细管内壁经过特殊处理,可以带有不同的表面电荷,从而影响生物分子在毛细管中的迁移速度。
毛细管的小内径和表面电荷的特性使得毛细管电泳具有高效分离的特点。
最后,检测是毛细管电泳仪中的最后一步。
毛细管电泳仪通常配备不同类型的检测器,如紫外检测器、荧光检测器等。
这些检测器可以实时监测毛细管中生物分子的迁移情况,并将信号转换为电信号进行记录和分析。
通过检测器的信号,可以获取生物分子的浓度、迁移时间等信息,从而实现对样品的分析和定量。
综上所述,毛细管电泳仪的原理涉及电泳、毛细管和检测三个关键部分。
通过电泳原理,利用毛细管的特性进行高效分离,最后通过检测器对生物分子进行分析和定量。
毛细管电泳仪在生物分析领域具有广泛的应用,例如蛋白质分析、核酸分析等,其原理的深入理解对于技术的应用和发展具有重要意义。
毛细管电泳分析技术的使用方法

毛细管电泳分析技术的使用方法毛细管电泳(Capillary Electrophoresis,CE)是一种基于电场作用在毛细管中对溶液中带电分子进行分析和分离的方法。
这种分析技术广泛应用于药学、食品安全、环境检测等领域。
本文将介绍毛细管电泳分析技术的使用方法,包括样品准备、背景电解质的选择、操作步骤、结果解读等方面。
一、样品准备在进行毛细管电泳分析之前,需要对样品进行准备。
首先,要保证样品的纯度和浓度。
若样品存在杂质,可能影响电泳分析的准确性。
其次,要选择合适的溶剂来溶解样品,避免样品组分的析出或溶解度的不足。
最后,需要对样品进行过滤处理,去除悬浮颗粒和固体杂质,以避免堵塞毛细管。
二、背景电解质的选择背景电解质(Buffer)在毛细管电泳中起到平衡电荷、调节pH值和提供可控电导率的作用。
选择一个适当的背景电解质对于保持稳定的电泳性能非常重要。
常用的背景电解质有磷酸盐缓冲液、甘氨酸缓冲液等。
选择时应考虑样品的特性,如酸碱性、离子强度等。
三、操作步骤1. 准备毛细管:首先要选择合适的毛细管,通常为多孔硅毛细管或厌氧硅毛细管,其内径一般在25-100 μm之间。
将毛细管切割至适当长度,并使用电泳缓冲液填充。
2. 运行条件设定:设置电压,通常为10-30 kV,电压过高或过低都可能影响分离效果。
调节温度,电泳分析通常在20-30℃进行,可根据具体分析物的特性进行调整。
3. 样品注射:将样品通过毛细管的一端注入,在电场的作用下,样品被迫进入毛细管。
4. 运行分析:开启电源,启动电泳分析。
分析过程中要注意检测信号的稳定性和峰形,判断分离情况。
四、结果解读在毛细管电泳分析完成后,需要对结果进行解读。
主要通过对峰面积、峰高度、电泳时间等参数进行分析,以获得所需的定性或定量信息。
同时,可以通过与标准物质进行比较来确认分析物的存在、纯度和浓度。
在解读结果时,需要注意以下几个方面:1. 峰的形状:正常情况下,峰应呈现尖峰形状,表示分离良好。
仪器分析实验 毛细管电泳仪分离测定雪碧中的苯甲酸钠

毛细管电泳仪分离测定雪碧中的苯甲酸钠开课实验室:环境资源楼310【实验目的】1、了解毛细管电泳分离的基本原理;2、了解毛细管电泳仪(以安捷伦7100为例)的结构及基本操作;3、掌握毛细管电泳的基本定性、外标法、标准曲线定量方法。
【基本原理】•原理概述:本实验通过使用毛细管电泳法,通过外标法绘制工作曲线,对饮料中苯甲酸钠含量进行定性定量测量,得出饮料中苯甲酸钠的含量。
•电泳:定义:带电粒子在电场作用下在缓冲溶液中作定向运动的现象;分类:自由电泳、区带电泳(将样品加于载体上,并加一个电场,在电场作用下,得到良好的分离)。
•电渗:液体相对于带电的管壁移动的现象。
由于毛细管材料通常为熔融硅胶,其中的硅醇基团,是构成氢键吸附并使毛细管内电介质产生电渗流的重要原因。
在常用缓冲液pH值下,毛细管壁带负电,于是在贴近管壁的液体表面形成了一个和管壁电荷异号的偶电层。
在毛细管电泳中,电渗是指高电场作用下,偶电层中水和阳离子或质子引起流体朝负极方向运动。
电渗是毛细管电泳中最重要和最有趣的性质之一。
•粒子的运动速度:由于同时存在着泳流和渗流,粒子在毛细管电介质中的运动速度应当是这两种速度的矢量和,其迁移速率是电泳和电渗力的函数:正离子:运动方向和电渗一致,应当最先流出;中性离子:泳流速度为0,将随电渗而行;负离子:因其运动方向和电渗相反,在电渗速度大于电泳速度时,它将在中性离子之后流出;图1 不同粒子在毛细管电介质中的运动•毛细管电泳:特点:它的电泳过程在散热效率极高的毛细管内进行,故能够引入高的电场强度,从而全面改善分离质量。
优点:使用细柱子,一是减小电流,因此减少自热;二是增大散热面积(侧面积与截面积之比),加快散热;缺点:进样和检测等技术方面的麻烦与困难;检测:电泳毛细管的直径极小,产生的溶质谱带体积也极小。
通常采用的检测方法是电泳的柱上检测。
此时峰宽对迁移时间将有一定的依赖性。
移动较快的组分通过检测窗所需的时间较短,反之则较长。
毛细管电泳法检测操作规程

毛细管电泳法检测操作规程1. 引言本操作规程旨在准确地描述毛细管电泳法的检测操作步骤,以确保结果的可靠性和一致性。
毛细管电泳法是一种常用的分析方法,可以用于分离、鉴定和定量分析各种样品中的化合物。
2. 设备和试剂2.1 设备- 毛细管电泳仪:确保仪器的正常运行状态和正确的参数设置。
- 注射器:用于将样品注入到毛细管中。
- 毛细管柱:选择适合样品分析的合适柱型。
- 检测器:确保检测器的正常工作状态和灵敏度。
2.2 试剂- 母液:根据需要选择合适的母液,例如缓冲溶液。
- 样品:按照实验要求准备样品。
3. 操作步骤3.1 准备工作- 打开毛细管电泳仪电源,并确保仪器的正常启动。
- 检查仪器的参数设置,包括电压、注射时间和检测器灵敏度等。
- 准备所需的母液,并将其装入毛细管柱中。
3.2 样品处理- 准备样品,并进行必要的预处理,例如稀释或离心。
- 使用注射器将样品注入到毛细管柱中。
- 确保样品注射量的准确性和一致性。
3.3 进行电泳- 启动电泳仪,并将电压设置为合适的数值。
- 开始记录检测器的响应信号,并将其连接到数据记录设备。
- 监控电泳过程中的实时数据,并确保结果的准确性和稳定性。
3.4 数据分析- 对电泳结束后的数据进行分析和解读。
- 鉴定样品中的化合物,并计算其峰面积或峰高度。
- 根据实验需求,进行定量分析或比较分析。
4. 结论本操作规程详细描述了毛细管电泳法的检测操作步骤。
在实际操作过程中,应根据具体的实验要求进行调整和优化。
同时,在操作过程中应注意安全和仪器的正确使用,以保证结果的准确性和可靠性。
生化仪器分析之“毛细管电泳”

2012-4-19
25
(二)新进展 微型化
• 在硅片上光刻出矩形槽作为毛细管,理论塔板 在硅片上光刻出矩形槽作为毛细管, 数105/m; ;
联用仪器
• CE-MS
阵列毛细管凝胶电泳
• 应用于人类基因 应用于人类基因DNA测序 测序
• 高效毛细管电泳技术概述 • 高效毛细管电泳仪仪器系统 • 高效毛细管电泳理论基础 • 高效毛细管电泳分离模式 • 高效毛细管电泳应用及进展
(二)电渗流 • 毛细管内壁表面的电荷所引起的管内 液体的整体流动,源于外加电场对管 壁溶液双电层的作用
电渗流的作用特点
使液体沿毛细管 壁均匀移动;
使携带不同电性 的分子均向负极 移动,中性分子 也随着电渗流一 起移动
电渗流 方向
样品分子 泳动方向
电渗流的流型特点
电渗流
HPLC
塞流 层流
高效毛细管电泳
加入高于胶束临界浓度的 表面活性剂
胶束电动色谱
• 使毛细管电泳不仅能分离离子化合物,而 且还能分离中性化合物 • 比高效液相色谱更为高效 • 比高效液相色谱更为高速
毛细管凝胶电泳
• 用多孔性的凝胶或其它筛分剂作介质,网 状结构,按分子的大小分离 • 是毛细管自由溶液区带电泳派生出的一种 电泳方式
高效毛细管电泳分离模式
毛细管区带电泳 毛细管胶束电动色谱 毛细管凝胶电泳 毛细管等电聚焦 毛细管等速电泳 毛细管阵列电泳
毛细管区带电泳
• 也称为毛细管自由溶液区带电泳 • 毛细管电泳中最基本的操作模式,应用最 广泛,是其它各种操作模式的母体
胶束电动色谱
• 以胶束为假固定相的一种电动色谱,是电 泳技术和色谱技术的结合
经典电泳技术与现代 微柱分离相结合的产 物。
仪器分析毛细管电泳法-PPT课件

毛细管电泳技术不仅在基础科学中得到广泛应用,在临床 医学等领域也有较多应用,如临床疾病诊断、临床蛋白分 析、临床药物监测、代谢研究、病理研究、 PCR产物分析、 DNA片段及序列分析等。
传导电流的作用。
t=0
t>0
2. 毛细管等速电泳(CITP)
使用两种电解质:一种为迁移率较高的前导离子 L 电解质, 一种为迁移率较低的尾随离子 T 电解质,被分离组分夹在 L 与 T之间,以同一速度运动,由于迁移率不同而分离。
3. 毛细管等电聚ຫໍສະໝຸດ (CIEF)基本操作步骤:进样、聚焦和迁移,用于生物大分子的分离。
碱 碱
酸 酸
毛细管等电聚焦电泳的运行过程 (a)进样;(b)聚焦;(c)迁移
4. 毛细管电色谱 (CEC) 分为填充柱和开管柱两种方式,可分离离子和中性分子,且 可分离手性分子。
5. 胶束电动毛细管色谱 (MECC) 两相:流动的水相和起固定相作用的胶束相 (准固定相), 被测组分由于在水相和胶束相之间分配系数的差异而分离。
本章要求
⒈ 了解电泳、淌度、电渗的概念
⒉ 了解毛细管电泳仪的结构 ⒊ 了解六种毛细管电泳分离模式
毛细管电泳( capillary electrophoresis , CE )又 称高效毛细管电泳( HPCE ),是以毛细管为分离通道、 以高压直流电场为驱动力的液相分离技术。 CE 实际上包含电泳、色谱及其交叉内容,使分析化 学得以从微升水平进入纳升水平,并使单细胞分析,乃 至单分子分析成为可能。生物大分子如蛋白质的分离分 析也因此有了新的转机。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本原理
HPLC分离原理是基于分配系数的差别, 保留时间不同而分离—色谱行为
CE是在电场作用下离子的大小与电荷数 量、符号不同,电位不同,导致迁移速 度不同而分离—电泳行为。
毛细管电色谱(CEC),则具有电泳及色 谱二种分离行为。
电泳与电泳淌度
电泳速率 uep 荷电质点在电场作用下,在电解质溶液
因此, H =B/u
(2)流型不同 CE
HPLC
毛细管电泳与高效液相色谱的流型与峰型的比较
毛细管电泳的重复性
提高定量重复性,可采用叠加 对比法或内标法,RSD < 4%
提高迁移时间的重复性,可采 用相对保留值RSD < 3%
毛细管电泳法用于中药及生物样品分 析的优点
一、具有柱效高、进样体积小等特点。 二、抗污染能力强。分析中药样品时,前处理 简单,
Kmw
水相
-
+
电渗流的迁移速度ueo和电场强度E 成正比。
电渗淌度μeo 单位场强下的电渗速率为电渗淌度。 μeo= ueo /E = /
缓冲溶液的介电常数 双电层电位 缓冲溶液的粘度
表观淌度
在CE中,离子被观测到的淌度是离子
的电泳淌度(μep)和背景电解质溶液的
电渗淌度(μeo)的矢量和,称为表观淌
分离机制 MEKC是在缓冲溶液中加入 表面活性剂,当表面活性剂的浓度超 过临界胶束浓度(CMC)时,则形成荷 电胶束。在无胶束存在时,所有中性 分子将同时随同电渗流到达检测器, 而不能分离。
在有胶束存在时,带负电荷的胶束在 电场作用下向相反方向(阳极)泳动(但 速度一般小于电渗流的速度,因此也缓慢 跟随电渗流向阴极迁移)。中性分子在胶 束(准固定相)和水相间形成分配平衡, 靠中性分子在胶束中的保留(“溶解”) 能力的不同而分离。
中的迁移速度 电泳淌度μep
荷电质点在单位电场强度下的电泳速率
ep uep / E
电渗和电渗淌度
电渗或电渗流 (electroosmotic flow,EOF)
毛细管内溶液在电场作用下整体朝一 个方向迁移的现象
迁移的速率叫电渗速率ueo
毛细管内壁的Si-OH解离为硅氧基(Si-O-)阴 离子,吸引了溶液中的阳离子,形成双电层。在毛 细管两端加电压时,双电层中的阳离子向阴极移动, 由于离子是溶剂化的,所以带动毛细管中的整体溶 液向阴极移动
分析成本 低
高
CE柱效高的原因
(1)无涡流扩散项与传质阻抗项
柱效用Van Deemter方程式讨论。 H = A + B/u + Cu
在毛细管区带电泳(CZE)中,使用空心 毛细管柱,无涡流扩散项(A=0)。内壁 也不涂渍固定液,消除了组分在固定相 与流动相间的平衡所需要的时间,使传质 阻抗项(Cu)趋近于零。
电泳法 利用电泳现象进行定性、定量的 分离分析方法。
毛细管电泳法 在毛细管中进行的电泳。
毛细管电泳仪的流路
毛细管电泳仪:高压电源、毛细管、背景电解 质贮液槽、检测器及工作站
一根长约50~100cm,内径25~100μm的熔融 毛细管柱,一端由进样装置吸入样品,一端经过 检测器。毛细管两端插入电解质贮液槽中,用高压 电源外加约20kV~30kV的稳定电压。
甚至于勿需前处理。 用于医学诊断、药理研究 的血、尿样等。 三、分析运行成本低。 四、特征性强。 例:用CE分析冬虫夏草获44个峰,很易区别 蛹虫草、人工培养品、伪品、次品等。而用HPLC 法只能获得十几个色谱峰,
CE已成为药典法定方法
2000年版及2005年版中国药典 (附录),已将毛细管电泳法收 载为法定方法。
阳离子 μapp= μeo +μep 中性分子 μapp= μeo(电渗淌度) 阴离子 μapp= μeo –μep
μapp(阳) μeo μapp(阴)
分离后的出峰顺序:
正离子→中性分子→负离子源自毛细管电泳的柱效和分离度(1)理论塔板数n:
n=μappV /2D D为组分的扩散系数,
若不知扩散系数,可由迁移时间与半峰宽求得:
度:
μapp=μep+μeo
正极端进样,负极端检测时:
正离子μapp=μeo+μep
负离子μapp=μeo-μep
中性分子μapp=μeo
电渗流速率是电泳速率的5~7倍
带负电荷的阴离子其电泳方向 指向阳极,与介质的电渗流的方向 相反。
中性分子,跟随介质电渗流向 阴极移动。
表观淌度(μapp )小结
毛细管电泳法的特点
CE
HPLC
柱效
105106/m
104/m
峰容量 1520/min 进样量 10ng10-1g
< 5/min 10g
UV检测限 10-9g/mL
10-10g/mL
(光径) < 100m
1cm(104m)
驱动力 电压(电渗泵) 液压(液压泵)
预处理 一般不需(“脏样品”) 需要(“净”样品)
n=5.54(t /w1/2)2
(2) 分离度
n为平均理论塔板数; u为两组分迁移速度的差值 u为平均迁移速度
R n • u 4u
定量分析方法 叠加对比法
A
A’
AR
A
A A
m m
m
m
A
/
A / AR AR, A
/
AR
分离类型
毛细管区带电泳法(CZE) 胶束电动毛细管色谱法(MEKC) 环糊精电动毛细管色谱法(CDEKC) 凝胶毛细管电泳法(CGE) 等电聚焦毛细管电泳法(IEFCE) 毛细管电色谱法(CEC)
毛细管区带电泳
(capillary zone electrophoresis;CZE)
最常用的电泳法。CZE的分离机制 是基于组分的电泳淌度的差别而分离。 原理已经介绍,不再重复。
胶束电动毛细管色谱 (micellar electro-kinetic capillary
chromatography; MEKC 或MEKCC)
毛细管电泳法
❖ 概述(概念与分类) ❖ 基本原理 ❖ 分离类型与应用实例
概述
毛细管电泳法 (CE,Capillary Electrophoresis)
高效毛细管电泳法 ( HPCE, High Performance Capillary
Electrophoresis )
电泳 带电质点(离子或胶粒)在电解质溶液 中,在电场作用下,向荷电相反的电 极迁移的现象。因带电质点的电荷数 量、电荷符号与质点的大小的差别, 迁移速度不同而分离。