章末第四章电磁感应

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学案10章末总结

一、对楞次定律的理解与应用

楞次定律反映这样一个物理规律:原磁通量变化时产生感应电流,感应电流的磁场(方向由右手螺旋定则判定)阻碍原磁通量的变化.

1.感应电流的磁场不一定与原磁场方向相反,只在磁通量增大时两者才相反,而在磁通量减少时两者是同向的.

2.“阻碍”并不是“阻止”,而是“延缓”,电路中的磁通量还是在变化,只不过变化得慢了.

3.“阻碍”的表现:增反减同、增缩减扩、增离减靠、来拒去留.

1圆形导体线圈a平放在水平桌面上,在a的正上方固定一竖直螺线管b,二者轴线重合,螺线管与电源和滑动变阻器连接成如图1所示的电路.若将滑动变阻器的滑片P向下滑动,下列表述正确的是() A.线圈a中将产生俯视顺时针方向的感应电流

B.穿过线圈a的磁通量变小

C.线圈a有扩张的趋势

D.线圈a对水平桌面的压力F N将增大

二、电磁感应中的图象问题

1.图象问题的类型:一是给出电磁感应过程,选出或画出正确图象;二是由给定的有关图象分析电磁感应过程,求解相应的物理量.

2.应用的规律:(1)利用法拉第电磁感应定律计算感应电动势大小.(2)利用楞次定律或右手定则判定感应电流的方向.(3)应用公式F=BIL(和左手定则计算或判断安培力的大小或方向).

2将一段导线绕成图2甲所示的闭合电路,并固定在纸面内,回路的ab边置于垂直纸面向里的匀强磁场Ⅰ中.回路的圆环区域内有垂直纸面的磁场Ⅱ,以向里为磁场Ⅱ的正方向,其磁感应强度B随时间t变化的图象如图乙所示.用F表示ab边受到的安培力,以水平向右为F的正方向,能正确反映F随时间t变化的图象是()

图2

三、电磁感应中的电路问题

1.首先要找到哪一部分导体相当于电源,分清内外电路.

处于磁通量变化的磁场中的线圈或切割磁感线的导体相当于电源,该部分导体的电阻相当于内电阻;而其余部分的电路则是外电路.

2.路端电压、感应电动势和某段导体两端的电压三者的区别:

(1)某段导体作为电阻时,它两端的电压等于电流与其电阻的乘积;

(2)某段导体作为电源时,它两端的电压就是路端电压,等于电流与外电阻的乘积,或等于电动势减去内电压;

(3)某段导体作为电源时,电路断路时导体两端的电压等于感应电动势.

3如图3所示,光滑金属导轨PN与

QM相距1 m,电阻不计,两端分别接有电阻R1和R2,且R1=6 Ω,R2=3 Ω,ab导体棒的电阻为2 Ω.垂直穿过导轨平面的匀强磁场的磁感应强度为1 T.现使ab以恒定速度v=3 m/s匀速向右移动,求:

(1)导体棒上产生的感应电动势E.

(2)R1与R2消耗的电功率分别为多少?

(3)拉ab棒的水平向右的外力F为多大?

解析

四、电磁感应中的动力学问题

解决这类问题的关键在于通过运动状态的分析来寻找过程中的临界状态,如速度、加速度取最大值或最小值的条件等.

1.做好受力情况、运动情况的动态分析:导体运动产生感应电动势―→感应电流―→通电导体受安培力―→合外力变化―→加速度变化―→速度变化―→感应电动势变化.周而复始循环,最终加速度等于零,导体达到稳定运动状态.

2.利用好导体达到稳定状态时的平衡方程,往往是解答该类问题的突破口.

4 如图4所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻R ,匀强磁场垂直于导轨平面,磁感应强度为B .将质量为m 的导体棒由静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率恒为P ,导体棒最终以2v 的速度匀速运动.导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g .下列选项正确的是 ( )

A .P =2mg v sin θ

B .P =3mg v sin θ

C .当导体棒速度达到v 2时加速度大小为g 2

sin θ D .在导体棒速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力所做的功 解析

五、电磁感应中的能量问题

1.能量观点分析

(1)电磁感应现象中产生感应电流的过程,实质上是能量的转化过程.

(2)电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功.此过程中,其他形式的能转化为电能.“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能.

2.求解思路

(1)若回路中电流恒定,可以利用电路结构及W =UIt 或Q =I 2Rt 直接进行计算.

(2)若电流变化,则:①利用克服安培力做的功求解:电磁感应中产生的电能等于克服安培力所做的功;②利用能量守恒求解:若只有电能与机械能的转化,则机械能的减少量等于产生的电能.

5如图5所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距l=0.5 m,左端接有阻值R=0.3 Ω的电阻.一质量m =0.1 kg、电阻r=0.1 Ω的金属棒MN放置在导轨上,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度B=0.4 T.金属棒在水平向右的外力作用下,由静止开始以a =2 m/s2的加速度做匀加速运动,当金属棒的位移x=9 m时撤去外力,金属棒继续运

动一段距离后停下来,已知撤去外力前、后回路中产生的焦耳热之比Q1∶Q2=2∶1.导轨足够长且电阻不计,金属棒在运动过程中始终与导轨垂直且两端与导轨保持良好接触.求:

(1)金属棒在匀加速运动过程中,通过电阻R的电荷量q;

(2)撤去外力后回路中产生的焦耳热Q2;

(3)外力做的功W F.

解析

1.(对楞次定律的理解与应用)如图6所示,竖直放置的螺线管与导线abcd构成回路,导线所在区域内有一垂直纸面向里的变化的匀强磁场,螺线管下方水平桌面上有一导体圆环,导线abcd所围区域内磁场的磁感应强度按下列哪一图线所表示的方式随时间变化时,导体圆环将受到向上的磁场作用力()

2.(电磁感应中的图象问题)如图7所示,磁场垂直于纸面向外,磁场的磁感应强度随x 按B=B0+kx(x>0,B0、k为常量)的规律均匀增大.位于纸面内的正方形导线框abcd处于磁场中,在外力作用下始终保持dc边与x轴平行向右匀速运动.若规定电流沿abcda 的方向为正方向,则从t=0到t=t1的时间间隔内,关于该导线框中产生的电流i随时间t变化的图象正确的是()

图7

3.(电磁感应中的电路问题)如图8所示,由均匀导线制成的半径为R的圆环,以速度v 匀速进入一磁感应强度大小为B的有界匀强磁场,边界如图中虚线所示.当圆环运动到图示位置(∠aOb=90°)时,a、b两点的电势差为()

图8

A.2BR v

B.

2

2BR v

C.

2

4BR v D.

32

4BR v

4.(电磁感应中的能量问题)如图9所示,一粗糙的平行金属轨道平面与水平面成θ角,两轨道上端用一电阻R相连,该装置处于匀强磁场中,磁场方向垂直轨道平面向上.质量为m的金属杆ab以初速度v0从轨道底端向上滑行,滑行到某高度h后又返回到底端.若运动过程中金属杆始终保持与导轨垂直且接触良好,轨道与金属杆的电阻均忽略不计.则下列说法正确的是()

相关文档
最新文档