金属材料基本知识

金属材料基本知识
金属材料基本知识

金属材料基本知识

The Standardization Office was revised on the afternoon of December 13, 2020

金属材料基本知识

1 钢铁材料及其生产

在人们生活中所用的、遇到的材料分为金属材料和非金属材料。

金属材料是现代工业、农业、国防以及科学技术各个领域应用最广泛的工程材料。这不仅是由于其来源丰富、生产工艺简单、成熟,而且还具有优良的性能。

金属材料又有钢铁(黑色金属)和有色金属等,如碳钢、合金钢、有色金属、铸铁及其合金等。钢与生铁由于碳含量不同,性能和用途也不同。

生铁的含碳量一般有,按其用途分为炼钢生铁(含碳4%左右,是炼钢的主要原料)和铸造生铁(铸铁)。最终炼出来的钢碳含量一般都小于%,除少数直接铸成各种形状的铸件外,绝大多数先铸成钢锭,再经轧制或锻压成各种钢件和锻件,然后供进一步加工使用。

其中应用最为广泛的是碳钢和合金钢。如将钢按用途来划分,有结构钢(建筑及工程用钢或结构用钢,如锅炉中的钢结构等)、工具钢(各种量具、刃具、模具钢等)和特殊性能钢(耐热钢、不锈耐酸钢及电工用钢);按质量来划分则有普通钢、优质钢和高级优质钢三类;按冶炼方法、钢液脱氧程度和铸锭工艺的不同来划分则有沸腾钢、镇静钢(脱氧完全的钢,化学成分和力学性能均匀、焊接性能和抗腐蚀性好,一般用来做较重要的部件;受压元件用钢即是)和半镇静钢三类;此外还有其余种类的如按金相组织分类方法。

电站锅炉所耗用的金属材料数量大、品种规格多,除少量有色金属和铸铁外,绝大多数为钢材。其中有钢管、钢板、棒材、工字钢、槽钢、角钢以及铸锻件等。一部分钢材为普通钢,用来制作锅炉的普通结构件,性能要求并不高(主要是一些普通钢结构,是从国家标准中所引用的一些钢号)。另一部分则用来制作高温、高压(或承受高应力)条件下或处于腐蚀性介质中长期工作的元件。这些锅炉钢是综合性能要求很高的材料。

从20世纪50年代起,我国冶金部门、锅炉制造行业和电力部门的科研、生产单位在锅炉钢合金化、冶金生产、焊接和热处理工艺、性能测试、寿命分析诸方面开展了大量的应用研究,形成了我国独特的锅炉用钢体系,有利地保证了火电设备向大容量、高参数的不断发展。从80年代以来,随着我国锅炉制造业与国外的不断交流,也引进了不少国外的优质锅炉钢种进入我国的标准体系。

钢铁的冶炼

1.1.1铁的冶炼

炼铁的主要设备是高炉,高炉炼铁的原料主要是铁矿石、焦炭和熔剂(如石灰石等)。铁的冶炼过程,实质就是将铁矿石中的氧化铁还原成铁的过程。高炉中焦炭本身的碳及其燃烧反应的产物一氧化碳都对氧化铁起还原作用。

1.1.2钢的冶炼

钢与生铁的最主要区别就是碳含量不同,将生铁进行精炼以大幅度降低碳量(和各种杂质)就得到符合要求的钢。精炼所依托的原理主要含有脱碳反应(FeO+C=Fe+CO)、硅锰的氧化反应(2Fe0+Si=2Fe+ SiO

2

,Fe0+Mn=Fe+MnO)、去磷硫过程(去磷反应

2Fe

2P+5FeO=P

2

O

5

+9Fe,P

2

O

5

+4CaO=4 ,去硫反应FeS+CaO=CaS+FeO)、脱氧反应(沉淀脱氧:

将含有Si、Mn、Al等元素的脱氧剂直接加入钢液中,使在钢中的FeO还原,生成不溶于钢液的氧化物,然后上浮排除;扩散脱氧:是向炉渣中加入铝粉、炭粉和硅钙粉等脱氧剂,降

低渣中FeO含量,破坏渣、钢间的FeO的平衡,使钢液中的FeO转入渣中而脱氧,这种方法得到的钢质好)。

炼钢的方法

主要有转炉炼钢法,平炉炼钢法,电炉炼钢法和电渣重熔法四种。不同的炼钢方法的工艺不同,但最终结果是:当钢液的成分和温度均达到规定的要求,炉渣流动性良好时,就可出钢浇注。

钢锭组织

钢锭表面到心部,依次为细小的等轴晶粒、柱状晶粒和粗大的等轴晶粒组成。根据钢中的含氧量和凝固时放出的一氧化碳的程度,可将钢锭分为镇静钢、沸腾钢和半镇静钢。

1.3.1镇静钢

钢液在浇注前用锰铁、硅铁和铝进行充分脱氧,使所含氧量不超过%,以至于钢液在凝固时不析出一氧化碳,得到成分比较均匀,组织比较致密的钢锭,称为镇静钢。受压部件所使用的钢必须是镇静钢。

1.3.2沸腾钢

在冶炼末期,钢液仅进行了轻度脱氧,而使得相当数量的氧(%以上)留在钢中,则钢液注入锭模后,钢中的氧会与碳发生化学反应,析出大量的一氧化碳,引起钢液沸腾,称之。其成分偏析大、组织不致密,性能不均匀,冲击韧性低。

钢的加工

冶炼成的钢锭,除一部分用于大型锻件、铸件外,大部分要通过轧制(金属在转动的轧辊间借助磨擦力的作用,使得坯料得以连续地进入轧辊而变形,即截面变小和长度增加)、挤压(通过对在压模内的材料进行挤压,使材料按压模出口形状而形成)、锻造(自由锻和模型锻造两种)、拉丝等方法制成型材、板材、管材和线材等,供各部门使用。

中厚钢板全是热轧产品,薄板有冷轧和热轧两种。无缝钢管有热轧(或挤压)、也有冷拔和冷轧。

型钢轧制所采用的轧辊是带有型槽的轧辊,其中凹入的部分称轧槽,两个轧辊的轧槽合起来称为孔型,钢坯就是经过一系列的孔型而轧成型材的。

2 对金属材料性能的要求

金属材料至少应具有材料技术条件规定的性能要求(标准要求的性能)、设计用的性能数据(使用性能)以及制造运行要求的性能资料(工艺性能)。这三方面的性能加上经济可行性是选用金属材料钢的依据。

材料技术条件规定的性能

金属材料技术条件规定的性能是材料研制与评定时做过大量试验的基础上,结合生产和应用条件提炼出来的。对供货钢材检测这些性能可对钢材质量是否符合元件制造要求做出评估。

主要是指化学成分、力学性能、冲击性能、金相组织、工艺性能、成品实物等方面的特性。

2.1.1 化学成分

技术条件规定的化学成分包含合金元素(C、Cr、Ni、Mo、W、V、Nb、Ti、B、Re,以及含量>%的Si、>%Mn称之,其决定钢的耐热性和物理性能、力学性能、抗腐蚀性能和工艺性能)、残存元素(质量分数%或更少的Cr、Ni、Mo、W、Cu和微量V、Nb、B等,是

炼钢时从炉料带入钢中的。有时对保证金属材料用钢的性能有利,但含量高时会使钢的工艺性能变差)和有害元素(H、O、N、P、S、Pb、As、Sn、Bi、Sb、Se等,是炼钢时从炉料或环境介质带入钢中的。其对金属材料钢的塑性、韧性、热强性、工艺性能都有不良影响)。

2.1.2拉力性能

金属材料常用金属材料的常规力学性能主要有以下几种:强度(是指金属材料抵抗变形和破坏的能力,工程上金属材料的主要强度性能指标是屈服强度和抗拉强度。钢材的屈强比

过高,如σ

s /σ

b

>,对受压元件不利,因为弯管后回弹严重,难以冷校正,而热校又影响热

强性,特别是对102类钢);塑性(断后伸长率和断面收缩率表示,对塑性相同的材料采用不同标距时,其试验值也不相同,在数值上ASME标准规定的是50mm标长δ>δ5>δ10。采用低合金钢板制作受压元件的国家,在金属材料强度计算标准中均规定了受压元件用钢板必须具有的最小δ5值,各标准并不一样,GB9222规定的是18%。ψ是表征金属塑性的一个较为真实的指标,为了防止焊接时的层状撕裂,锅筒和大梁用的特厚板厚度方向的ψ值应高一些)。

2.1.3冲击韧性

金属材料抵抗瞬间冲击载荷的能力,一般用摆锤弯曲冲击试验来确定;其很大程度上反应了钢的冶金质量和成品热处理的质量,是材料的强度和塑性的综合表现。金属材料元件设计选材时,不能忽视钢材的冲击韧性。

2.1.4钢管和钢板的工艺性能

压扁试验用来模拟受热面和管道弯管工况,同时也可暴露表面检查时不易发现的钢管表面折叠、重皮等缺陷。扩口试验用来模拟胀管工况,但有时还不足以表征胀管所要求的材料特性。钢板冷弯试验用来表征钢板冲压、卷板时的塑性,也可暴露钢板的某些缺陷。

2.1.5金相组织

金属材料的显微组织类型、实际晶粒度、表面脱碳、夹杂物等级等,是钢材冶金质量和成品热处理质量的直接反映,并从根本上决定了金属材料的力学性能和工艺性能。

显微组织类型:GB5310规定的组织类型是根据组织与热强性能之间的关系制定的。如12Cr2MoWVTiB、12Cr3MoVSiTiB钢管中出现自由铁素体将明显降低持久强度;12Cr1MoV 的贝氏体或珠光体过少也会降低持久强度;15CrMo、12Cr1MoV若出现不完全相变产物将明显降低热强性。

实际晶粒度:实际晶粒度的级别差不能过大,否则也会降低热强性。

表面脱碳:受热面管的脱碳将明显降低钢管的热强性能。

夹杂物等级:级别高也一样地降低热强性能。

2.1.6成品状态

钢板、钢管成品表面和内部存在的缺陷可能成为开裂源,须通过适当的无损和表面检测手段进行控制。成品表面的防护涂层、标记对钢材的验收和金属材料元件的制造均有影响,应严格按有关规定执行。

2.1.7探伤

对于高温高压及重大结构用钢材,对其进行必要的探伤是控制材料质量是非常重要不可替代的,由于破坏性试验总是在实物上取部分材料来进行试验,以代表该材料的性能,总是有局限性的,而采用探伤的手段对材料进行整体的检查可以对材料全面的进行检查,能够找出存在的缺陷,是否超出标准规定,是检验材料整体连续性的有效手段。

根据钢铁材料的不同形状,用途和标准要求,采用不同的探伤方法,主要的探伤方法有:水压,超声波,涡流,磁粉,着色,渗透,漏磁等,每一种方法都有其偏重的检查范

围,对于重要的材料,往往不是一种方法就可以达到要求,而是采用其中的几种方法,以达到全面检验的目的,根据需要可以采用不同的标准,方法和合格的级别来控制产品的质量。

2.1.8其它特殊性能要求

部分材料由于使用的部位及运行环境等比较特殊,很可能会提出超出一般技术要求的特殊性能要求,比如:锅炉材料中的汽包用钢板和吊杆用料,由于压力大,又处于高温下,部件本身重量大等等原因,材料必须要保证高温瞬时拉伸性能,原材料必须超声波探伤合格。随着核电材料的应用,很可能会提出较一般技术要求高得多的特殊性能要求,比如:硬度,侧向膨胀量,铁素体含量,线彭胀系数等等。

设计用的性能

金属材料元件设计与寿命估算用的材料性能数据,是根据材料研制和评定的试验结果以及正式供货后大量的试验结果统计得出的。所推荐的金属材料性能数据会不断修正。

这实际上是使用性能:设计时为了保证机械零件、设备、结构件等能正常工作,材料应具备的性能,主要有力学性能(强度、硬度、刚度、塑性、韧性等,与温度还有关系),物理性能(密度、比热容、热导率、热扩散率、线膨胀系数、电阻率、弹性模量、泊松比等),化学性能(抗氧化性、抗腐蚀性、热稳定性等)。使用性能决定了材料的应用范围、使用安全可靠性和使用寿命。

2.2.1 短时强度

锅筒、大梁以及一部分受热面元件和管道的强度计算时需要钢的短时强度保证值(是指室温和中温下的抗拉强度和屈服强度的统计下限值),这是因为工作温度未在材料的蠕变温区。

2.2.2持久强度和蠕变强度

锅炉受热面、集箱、高温吊杆等元件在强度计算时需要持久强度(在高温和应力长期作

表用下抵抗断裂的能力,是指在一定温度和规定持续时间内引起断裂的最大应力值,以σT

t 示,其中T示温度℃,t示时间h)统计平均值,运行监督时需要蠕变强度(材料在一定温度下、在规定的持续时间之内,产生一定蠕变变形量或引起规定的蠕变速度,此时所能承受的最大应力)性能值。二者均为热强性能指标。

2.2.3抗氧化性(耐热性)

金属材料抵抗高温氧化的能力称之,为高温元件强度计算要求的一个重要性能指标。

锅炉高温受热面管件的外壁与高温烟气接触、内壁与蒸汽接触,受热面固定装置、吹灰器喷管或喷头、燃烧器喷嘴等与高温烟气接触,烟气与蒸汽介质会对金属表面产生高温氧化作用,形成氧化物,使元件壁厚逐渐减薄,应力增大,同时氧化物的附着使受热面壁温升高,严重时导致元件失效。

提高钢的高温抗氧化性能的基本方法是合金化;对加入钢的中的合金元素应满足下列要求:(1)能在钢的表面形成一层稳定的合金氧化膜,以阻止铁与氧结合,为此合金元素的的离子应比铁离子小,比铁更容易氧化,(2)合金氧化膜应与铁基体结合紧密,不容易剥落。Al、 Si 、Cr三种元素均可满足上述要求。

Al、 Si的过多加入会影响钢的组织稳定性,故目前主要加入Cr来提高钢的抗氧化性能。要使钢具有足够的抗氧化性,温度越高,则所要加入的Cr量越多:在600-650℃间,约要5%的Cr;800℃时,约要12%的Cr;950℃时,约要20%的Cr;1100℃时,要28%的Cr。但大多数情况下一般不单独加Cr,应同时加入Cr和Al,Cr和 Si或Cr、Al、Si,这样一方面可以降低Cr的使用量,另一方面还可提高钢的热强性能。

2.2.4低周应变疲劳性能

大型火电机组特别调峰机组的锅筒、集箱等元件,在强度计算和寿命估算时需要材料的

低周疲劳性能数据。这是因为元件承受的周期性能交变载荷使某些应力集中部位(如锅筒的接管开孔处)的应力远远超过钢材的屈服强度,会引起塑性变形。循环周次在100000次之内、且伴有塑性变形的疲劳为低周应变疲劳。

2.2.5断裂韧性和疲劳裂纹扩展速率

锅筒、大梁、集箱等厚壁元件用钢,难免在冶金生产和元件成形、焊接、热处理等制造过程中产生某种缺陷或者微裂纹,在外力和环境作用下可能形成宏观裂纹并扩展,最终导致低应力脆性断裂。分析和估算承受载荷时裂纹扩展至断裂的寿命,需要材料的断裂韧性和疲劳裂纹扩展速率的数据。断裂韧性:A)平面应变断裂韧性K IC是抵抗裂纹发生扩展的能力,由GB4161规定的断裂韧性试验来确定,主要用于评定较脆的材料;B)裂纹尖端张开位移临界值δC;和C)临界J积分,J IC按GB2038规定的方法来确定。B和C专用于评定塑性较好的材料的断裂韧性。

疲劳裂纹扩展速率:是有裂纹元件在交变载荷作用下裂纹是否会失稳扩展导致材料发生断裂的性能判据。

2.2.6物理性能

金属材料元件设计、强度计算和寿命估算时需要材料的某些物理参数,如密度、比热容、热导率、热扩散率、线膨胀系数、电阻率、弹性模量、泊松比等。这些参数是由材料的物理性能试验测出,化学成分相近的材料,其物理参数也基本相近,基本上不受加工的影响。

制造和运行要求的性能

制造时所要求的性能主要就是指工艺性能,即材料在被制成机械零件、设备、结构件等的过程中能否承受各种冷热加工的性能,如铸造、焊接、热处理、压力加工、切削加工等方面的性能。工艺性能对制造成本、生产效率和产品质量有重大影响。

2.3.1 变形能力

热弯成形的管件和用钢板热卷成形的锅筒、集箱,应取钢材强度低、塑性好的温度为最佳成形温度。

而冷弯成形的受热面管件和用薄板冲压成形的空气预热器波形板,可用原材料验收时的塑性指标、硬度、冷弯试验结果来评定冷变形能力。

2.3.2焊接性

根据经验和必要的性能测试对钢的焊接性能作出评定。这种评定主要着眼于被焊钢材在一定的焊接方法、焊接材料、工艺参数和结构形式的条件下,考察热影响区抗冷裂纹(主要取决于钢材的淬硬性,这与碳当量有关)和抗热裂纹(焊后去应力处理时,在热影响区的粗晶区产生晶间开裂,与铬铜钼钒铌钛等有关)的能力,以及焊接头的力学性能、耐蚀性是否满足要求。

2.3.3无塑性转变温度NDT

是指在落锤试验时,材料刚好发生断裂的最高温度,由落锤试验来确定。该温度可用来确定金属材料受压元件的水压试验的温度,主要为防止受压元件水压试验时发生脆性破裂。

2.3.4耐蚀性

高温下金属材料元件用钢除了受到氧化外,还可能受到其它气体,如SO2 、SO3、H2S、H2等的作用,产生诸如:1)硫腐蚀(水冷壁管、过热器管、再热器管,铬镍奥氏体钢管抗高温硫腐蚀的能力不及铁素体、球光体、马氏体型钢管)、2)氢腐蚀(蒸汽与温度于400℃的铁接触会产生氢原子,若不能很快被蒸汽带走,将溶入钢中,向内部扩散滞于晶界处,与钢中的碳形成CH4,产生极大的内应力,使晶界开裂,严重时造成爆管),3)尾部受热面的硫酸露点腐蚀(金属材料燃用含硫量高的燃料时,硫可形成SO3,使烟气露点提

高,易结露形成硫酸造成露点腐蚀),以及4)奥氏体钢氯离子腐蚀(空气和水中的氯离子会造成奥氏体钢的氯离子应力腐蚀)等金属腐蚀现象。提高钢材抗高温腐蚀性能的措施仍是加入Cr、Al、Si等合金元素最为有效,这些元素加入后一方面形成致密氧化膜起保护作用,另一方面可提高钢的电极电位,使Fe离子不容易被拉走,材料也不易被腐蚀。如加入% Cr,钢的电极电位就由负变成正,所以一般的不锈钢的含Cr量为12-13%。

2.3.5组织稳定性

2.3.5.1耐热钢在高温时的组织变化

在室温时,钢的组织一般是稳定的。但在高温及应力的长期作用下,由于原子扩散过程的加剧,钢的组织将逐渐发生变化,从而引起钢的性能发生改变,特别是对钢的高温强度及塑性产生不利的影响。

耐热钢在高温时表现出来的组织变化有以下四种:珠光体组织球化和碳化物聚集、碳化物结构石墨化、合金元素在固溶体和碳化物之间重新分配、时效并产生新相。

(A)珠光体组织球化和碳化物聚集:珠光体球化是指钢材经高温长期运行后,珠光体组织中的渗碳体由片状逐渐变成球状,并聚集长大。20碳钢、15CrMo、12Cr1MoV等珠光体耐热钢,其原始组织一般为铁素体加珠光体,所以它们在高温下最普遍的组织不稳定性就是珠光体球化。发生球化的原因是:球状渗碳体比片状的更为稳定;因前者的表面积比同体积的球状渗碳体的大,总表面能较高;在高温下,由于原子得到能量,活动能力增强,将自发从高能量状态向低能量的状态转变。珠光体球化会使钢的室温和高温强度降低,尤其使蠕变极限和持久强度下降,从而加速了高温部件在运行过程中的蠕变速度,导致破坏加速。如对12Cr1MoV钢的试验表明:完全球化后,该钢的持久强度比未球化的降低约1/3;含Mo量%的钢在538℃下使用20年后,蠕变极限下降77%。在火电厂中,引起爆管事故的重要原因往往就是珠光体发生严重球化,因而要对金属材料钢管等设备的材料进行珠光体球化程度监督,定期检查其发展情况。影响珠光体球化的因素主要是温度、时间及钢的化学成分。温度高、时间长,则球化严重;钢中加入Cr、Mo、V、Nb、Ti等到合金元素能阻止碳在固溶体中的扩散或形成稳定的碳化物,所以能阻碍或减缓渗碳体向球状转变和聚集。但钢中加入铝Al会加速球化过程。

(B)石墨化:钢中的Fe3C在高温和应力作用下会发生分解,从而析出游离态的C(石墨),这一组织转变称为石墨化。石墨化是球化的继续与发展,是碳钢和珠光体钼钢组织不稳定的一种最危险形式。碳钢在450℃、钼钢在485℃以上,经几万h运行后,就会出现石墨化,使钢材的性能恶化,造成脆性爆管事故。石墨化不仅很大程度上消除了碳化物对钢的强化作用,而且由于石墨本身的强度和塑性极低,相当于在钢中出现了裂纹或孔隙,危害极大。钢中的化学成分对其石墨化倾向有决定性的影响:Al、Si、Ni是促进石墨化的元素,故热力设备用的碳钢和钼钢应尽可能不用Al、Si 脱氧,而加入碳化物形成元素Cr、V、Ti、Nb等形成稳定性更高的碳化物,可使渗碳体的稳定性提高,从而能有效地阻止石墨化过程。高温蒸汽管道经过冷变形和焊接,也会促进石墨化进程,特别是在焊接热影响区中,最易出现链状石墨化石墨,使管子破裂,对焊缝采用退火或正火后回火等措施,可大大减少石墨化倾向。

(C)合金元素在固溶体和碳化物之间重新分配:钢的组织,在高温和应力长期作用下,固溶体中的合金元素逐渐减少,碳化物中的合金元素逐渐增多,使固溶体中的合金元素逐渐贫化。对耐热钢来说,固溶体中的合金元素的贫化主要是指Mo、Cr贫化。这样重新分配的结果,使钢的强度、蠕变极限和持久强度下降,对高温部件的运行构成威胁。

合金再分配的过程随温度升高和时间延长而加强。钢中含碳量的升高也会加速这一过程。特别是温度接近于钢材的使用温度上限时,合金元素迁移的速度更快。

钢的化学成分对合金元素的再分配有决定性的影响。由于合金元素的再分配与扩散过程有关,因此钢中加入能延缓扩散过程的元素将有利于固溶体的稳定。如在铬钼钢中加入V

元素,则可减慢Mo、Cr的迁移过程,所以Mo、Cr、V钢较 Mo、Cr钢时的使用温度更高。

(D)时效和新相的形成:耐热钢在高温应力下工作,随时间的推移,从过饱和固溶体中分解出高度弥散的强化相粒子(新相),使钢的性能随之变化。时效前期强化相的粒子细小而弥散,钢的强度、硬度升高,而韧性、塑性降低,即表现出弥散沉淀强化;随时间延续,新相粒子聚集长大,强化效果渐渐消失,钢的室温和高温强度都显著下降。钢在时效过程中的析出的新相主要是碳化物,另外有一些氮化物和金属间化合物。奥氏体和马氏体等高合金耐热钢时效的倾向较大,而低合金的珠光体耐热钢的时效倾向较小。

3 耐热钢的强化和分类

热电站用钢多数是耐热钢,无论是普通的热电厂还是核电厂,材料使用的环境均需要耐高温。

耐热钢的强化原理

钢中加入合金元素,即通过合金化来提高钢的热强性,是耐热钢的主要强化措施。合金对钢的强化作用主要表现在强化固溶体、强化晶界、强化渗碳体及沉沉淀强化。

3.1.1固溶强化

耐热钢是以固溶体为基体的,固溶强化是耐热钢的重要手段之一,加入合金元素能强化基体的主要原因是:合金元素增强了固溶体原子间的结合力(这主要是因为加入Cr、Mo、W、Mn、Nb等元素能增加金属原子间键合的电子数,键合电子数越多,原子间结合力越强。只有V、Ni会降低α固溶体的结合力);合金元素引起晶格畸变(合金元素的原子半径与铁原子半径大小不同,大多数合金原子的半径比铁原子的大,原子半径相差愈大,引起的晶格畸变也愈大,晶格常数的改变就大。合金元素使晶格常数增加的次序为:Co、Cr、Ni、Mn、Mo、V、W、Al、Ti、Nb);合金元素提高固溶体的再结晶温度,延缓再结晶过程(如Co、Ni、Si、Mn、Cr、Mo、W等提高再结晶温度的能力依次递增,可有效地提高钢的热强性);合金元素提高铁原子的自扩散激活能,并阻止碳与合金元素在固溶体中扩散,使组织更加稳定。如加入Mo、W、 Ni、V等能阻碍扩散过程的进行。特别是当多种合金元素共同加入后,它们的交互作用对固溶强化的效应更明显,也更主要)。

3.1.2强化晶界

由于晶界处原子排列不规则,存在大量缺陷和空位,原子沿晶界扩散速度就比晶内扩散速度大得多;而且钢中的硫、磷及其它低熔点的杂质易于在晶界聚集,并往往与基体金属形成易熔共晶组织。因此,高温下晶界强度较低,有利于蠕变的进行和蠕变裂纹的产生。故在高温长期应力作用下,钢的断裂形式也往往是晶间断裂,所以强化晶界对提高钢的热强性具有十分重要的意义。合金元素对晶界的强化作用主要表现在如下几个方面:纯化晶界(S、P 等杂质元素在晶界聚集形成的脆性,可通过加入Mn、B、Re和碱金属等化学性极活泼的元素,使之与上述杂质在冶金过程中发生反应生成稳定难熔的化合物而加以消除);填充晶界空位(B原子的直径介于一般间隙原子如N、C等和置换原子之间,钢中加入微量的B,无论其处于置换态还是处于间隙态,都能稳定有效地填充晶界空位,使有利于原子扩散的空位大大减少,晶界就处于较为稳定的状态);强化相沉淀(合金形成的碳化物在晶界上沉淀出不连续的强化相,可使裂纹沿晶界的发展受阻)。

3.1.3渗碳体强化和沉淀强化

合金元素一部分溶入铁素体基体进行固溶强化,一部分溶入渗碳体使之成为合金渗碳体,如(Fe、Cr)3C等,合金渗碳体比渗碳体具有更高的稳定性和强度。同时,合金元素还可在过饱和固溶体中沉淀出第二相(或更多相)颗粒,如碳化物、氮化物、硼化物等到难熔化合物,对晶体位错的运动起阻碍作用,因而钢得到强化。这些沉淀相成分和结构越复杂、与基体差别越大,它就越稳定,多元合金化可得到这种复杂的碳化物。形成的V4C3、NbC、TiC、Cr7C3、Mo2C等合金化合物在高温下较稳定,且弥散分布不易聚集长大,从而提高基体的热强性。

耐热钢中碳及合金元素的作用

3.2.1碳的作用

钢的热强性是随含碳量的增加而降低的(增加含碳量,在高温长期使用过程中,从固溶体中析出的碳化物必然增多,夺走了固溶体中的合金元素,加速碳化物的长大,使钢的抗蠕变性能下降;增加含碳量,钢中的石墨化加剧、钢的焊接性能、冷变形工艺性能也随之变坏,当钢的含碳量大于%时,焊接就易出现裂纹);但增加含碳量,可降低钢的时效敏感性;故其碳含量也不能过低,而应控制在一定的范围内。热力设备的耐热钢含碳量一般在。

3.2.2铬的作用

是耐热钢中不可缺少的元素,可以多方面提高钢的性能,其主要表现在:提高抗氧化性、耐腐蚀性(在钢的表面形成Cr2O3保护膜,阻止钢被继续氧化;Cr含量超过%后,钢的电极电位由负变正,提高了抗电化学腐蚀性能);提高钢的持久强度和蠕变抗力;阻止石墨化过程;阻止珠光体球化过程;提高钢的淬透性;但会引起材料的热脆性和降低钢的可焊性。

3.2.3钼、钨的作用

主要表现在:提高热强性(其固溶强化作用显著,并能提高再结晶温度);消除钢的回火脆性,降低热脆性;提高钢的抗蒸汽腐蚀能力(这对锅炉用钢具有特别的意义);阻止珠光体球化。当这两种元素复合加入时,其作用更为显著(我国的12Cr2MoWVTiB等钢上得到了广泛应用)。

3.2.4钒的作用

沉淀强化(V与碳形成的碳化物VC或V4C3,在较高温度下也难于聚集,在钢中基本上是均匀弥散分布);降低合金元素的再分配速度(因V是强碳化物形成元素,其形成VC或V4C3的能力比Cr、Mo强,能使Cr、Mo尽可能地溶入固溶体中);但过量的V反而会使V 的碳化物粗化,因溶入固溶体的V会降低固溶体原子之间的结合力,故耐热钢中的V含量都在%以下。

3.2.5钛、铌(Ti、Nb)的作用

沉淀强化(Ti、Nb为强碳化物形成元素,其能形成高温稳定性比VC还高的TiC、NbC 或Nb3C3,此外还可形成TiFe2、Fe3Nb2等细小弥散的金属间化合物);阻止Cr、Mo在固溶体和碳化物中的再分配,提高再结晶温度, 改善钢的可焊性。但V、Ti、Nb在钢中单独加入效果并不明显,需复合加入。

3.2.6铝、硅(Al、Si)的作用

显著提高抗氧化性。近年来硅的应用较多,铝应用受到限制(Al促进珠光体球化,Al、Si加速石墨化过程)。

3.2.7硼、稀土(B、Re)的作用

微量B和少量Re元素能起到填充晶界空位、强化晶界、消除热脆性等作用。

耐热钢分类

耐热钢按其显微组织不同,大致分为四类:珠光体耐热钢、马氏体耐热钢、铁素体耐热钢和奥氏体耐热钢。

3.3.1珠光体耐热钢或铁素体-珠光体耐热钢(组织为铁素体+球光体或贝氏体)

主要加入合金元素是Cr、Mo、V,其总含量较低,一般在5-7%以下,也称为低合金耐热钢。其主要强化元素为Mo,一般在正火+回火温度后使用,其组织为铁素体+碳化物;由于这类钢中的抗氧化合金元素含量不高,故其工作温度范围为350-620℃之间。按其用途不同,可分为锅炉管子用钢、汽包用钢、紧固件用钢和转子用钢。

在热力设备中,合金元素含量较低的铬钼钢主要用于500-510℃以下的蒸汽管道、集箱等零部件及540-550℃以下的锅炉受热面管子;而合金元素较多的中碳铬钼钢和铬钼钒钢则主要用于550℃以下的汽轮机主轴、叶轮、汽缸、隔板及高温紧固件等。由于其含抗氧化元素量不高,铬钼钢和铬钼钒钢在使用温度分别超过550℃和580℃时,其组织稳定性和高温抗氧化性能急剧下降,持久强度大为降低。

我国研制成功的12Cr2MoWVTiB(钢102)、12Cr3MoVSiTiB、12MoVWBSi等新钢种,由于多种元素的复合作用,其使用温度可高达600-620℃。由于钢中的合金元素总量增加,钢的淬透性提高,在正火后也能得到贝氏体组织,所以其具有更高的热强性。此外根据我国资源情况,还研制和使用了20Cr1Mo1VTiB、20Cr1MoVNbB等紧固件用钢。

3.3.2马氏体耐热钢

主要是Cr13型马氏体不锈钢(含Cr12%以上,奥氏体等温转变曲线大大向右移,奥氏体空冷时,也能得到马氏体组织),用于制造汽轮机叶片等,其在高温和应力长期作用下,其铬碳化物会造成钢的组织不稳定。可加入一些Mo、W、V、Nb等合金元素,提高其使用温度(1Cr13、2 Cr13的最高使用温度分别为470和450℃),经淬火+高温回火得到回火索氏体(马氏体)组织,某些钢的应用温度可达580-600℃。在锅炉上应用的目前是91、92、122、E911等钢种。

3.3.3铁素体耐热钢()

钢中加入合金元素是Cr(高铬达17左右)、Al、Si,其总含量相当多,钢具有单一的铁素体组织,在加热和冷却时不发生相变,故不能用淬火来强化。这类钢的特点是:抗氧化和耐腐蚀性(在含硫气氛中)优良,但在高温下有晶粒长大倾向、且脆性较大、热强性能差,故其实际上是抗氧化用钢。这类钢不宜作受冲击载荷的零件、只宜制作各种承受应力不大的炉用构件如过热器吊架、退火炉罩、热交换器等。

3.3.4奥氏体耐热钢

钢中加入含量较高的某些合金元素,奥氏体等温转变曲线大大向右移,还能使Ms点降到室温以下,这样钢在室温下也仍具有奥氏体组织。奥氏体晶格致密度比铁素体高、原子间的结合力大、合金元素在奥氏体中扩散很慢,故其热强性很高、较高的塑韧性和良好的可焊性;加之此类钢中的Cr、Ni含量高,故又有优良的抗氧化性和耐蚀性。但其室温强度低,易产生加工硬化,故加工困难,此外其导热性差、线膨胀系数大。热力设备中常用的奥氏体钢1Cr18Ni9、1Cr19Ni11Nb、1Cr18Ni9Ti、1Cr18Ni12Mo2Ti、4Cr14Ni14W2Mo、

2Cr20Mn9Ni2Si2N、Mn17Cr7MoVNbBZr等,其在600℃左右都有足够的热强性,其抗氧化温度可达700-900℃或更高,锅炉管道、汽轮机阀体等重要部件常用这类钢制造,但成本相当高。

4锅炉元件用材的选择

锅炉用材的选择和应用对确保锅炉元件设计、制造质量和运行可靠至关重要。

锅炉管件用钢

锅炉管件用钢系指水冷壁、过热器、再热器、省煤器、集箱、管道用钢管。

4.1.1选材准则

4.1.1.1高温锅炉管件用热强钢

足够的持久强度,足够的耐热性,足够的组织稳定性。

4.1.1.2对于金属壁温低于350℃的碳钢和低于400℃的合金钢管件

则要求有足够的短时高温强度,大口径管还应有足够的韧性。

4.1.2工艺性能优良

所选用的管材应有良好的冶炼、制管、元件冷热成形、热处理和焊接等工艺性能。

4.1.3管件的具体要求

4.1.3.1锅炉过热器管子和蒸汽管道用钢及其要求

过热器管和蒸汽管道金属有足够高的蠕变强度、持久强度和持久塑性(通常进行过热器管强度计算时,以高温持久强度极限为主要依据,再以蠕变极限来校核),在高温长期运行中组织稳定性好,有良好的工艺性能(特别是要焊接性能好,对过热器管还要求良好的冷加工性能),抗氧化性能高(通常要求过热器管和蒸汽管道金属在运行温度下的氧化速度应小于0.1mm/年)。

过热器管和蒸汽管道用钢选择的主要依据是金属温度。对同一钢号,用于蒸汽管道时所允许的最高使用温度一般要比过热器管低约30-50℃。

4.1.3.2水冷壁管和省煤器管用钢及其要求

A)水冷壁管:对水冷壁管材料的主要要求有:水冷壁管金属具有一定强度(以使得管壁厚度不致于过厚,否则会影响加工与传热),传热效率高,有一定的抗腐蚀性能,工艺性能好(如冷弯、焊接等性能),在某些情况下还要求其热疲劳性能好(如在直流锅炉上)。 B)省煤器管:对省煤器管金属的主要要求有:一定的强度,传热效率高,有一定的抗腐蚀性能和良好的工艺性能,还应考虑其热疲劳性能(以使省煤器管金属在激烈的温度波动条件下不至于因热疲劳而过早破坏)。

4.1.3.3联箱用钢及其要求:联箱用钢也由其工作条件决定,基本上与同参数的蒸汽管道一致。联箱的结构较为复杂,上面有很多插管座。由于联箱和蒸汽管道一旦发生爆炸事故将对人身及设备造成重大危害,因此对同一钢号,用于蒸管道或联箱的材料,其允许的最高金属金属温度比过热器管低30-50℃。所用钢材与同参数的蒸汽管道的材料相同。

4.1.4管件用钢

分为碳钢类(20、I,20G、III, SA210A1、C,SA106B、C,SA178C等)、低合金类(SA209T1、15Mo3, SA209T1a,12型、15CrMo,12Cr2Mo、10CrMo910、22型,

12Cr1MoV,WB36、15NiCuMoNb5-6-4)、多元素贝氏体类(12Cr2MoWVTiB,

12Cr3MoVSiTiB,T23,T24等)、中铬马氏体钢类(91型、92型、122型)、铬镍奥氏体类(1Cr18Ni9、TP304H,1Cr19Ni11Nb、TP347H)以及新开发的管件用钢类(90年代以来,日本和欧洲相继开发了一些管件用钢,它们是在T22的基础上发展起来的T23即

HCM2S,T24即7CrMoVTiB10-10;在T91基础上发展起来的T92即NF616和E911;还有中铬钢T122、HCM12A以及奥氏体钢SUPER304H,TP347HFG,NF709和HR3C等。这些钢由于合金元素配置合理,起到好复合多元强化的作用,不但性能高于老钢号,而且工艺性能也不逊于后者,现已经逐渐在国际电站制造业中推广使用)。

锅筒筒体用钢

中低强度钢具有强韧性和焊接性最佳配合的优点,适宜用来制造板焊接结构的锅筒筒体。

4.2.1选材准则

4.2.1.1锅筒筒体

为重要的受压部件,一般由钢板卷成两个半圆或圆筒,两头加上封头焊接而成。汽包处于中温(350℃以下)、高压状态下工作,它除了受较高的内压力外,还受到冲击、疲劳载荷、热应力、水和蒸汽介质的腐蚀作用。其运行时装有大量的有压力的饱和汽水,如果因其破裂而发生爆炸,则会发生厂毁人亡的灾难性事故。所以是极其重要的,它的安全运行与许多因素有关,但材料的性能却是最重要的因素之一。在制造过程中,钢板要经过各种冷热加工工序,如下料、卷板、焊接和热处理等,且汽包所处的温度是饱和蒸汽的温度,因而对钢板有下列要求:

较高的强度,良好的塑性和冷弯性能,较低的缺口敏感性,良好的焊接性能,良好的冶金质量。

汽包用钢均为低碳钢或低合金钢,均属于珠光体钢,这是由汽包的工作温度决定的。为减少汽包钢板的厚度,以适应高参数机组的发展要求,在低碳钢基础上加入少量合金元素如Mn、V、Mo、B、Nb、Re等成为低合金珠光体锅炉钢。

4.2.1.2技术要求

其碳当量首先是碳含量不能高,以保证焊接性能良好;钢中可适量有些锰镍或镍/铜比的铜等扩大奥氏体区的元素,有利于正火后特厚板的力学性能均匀;含有一定量的钼有利于提高中温强度;钒铌元素量过多会增大屈强比,对焊接性能也不利;钢板原始奥氏体晶粒细而均匀,对提高强韧性很有好处,并能明显降低钢材的韧-脆性转变温度。

选用锅筒筒体用的板材或锻件应保证一定的强度的前提下,尽量选用化学成分简单、韧性和工艺性能好、性能对热加工参数不敏感的钢号,确保元件质量的稳定。

4.2.2筒体用钢

分为碳钢类(20g,、P265GH等)、碳锰钢类(16Mng,P355GH,SA299)、低合金钢类(13MnNiMoNbg、BHW35、13MnNiMo54、DIWA353,WB36、DIWA373、

15NiCuMoNb5[碳含量略高于BHW35,Ni、Mo含量高,Mn含量低,强度高,若Ni/Cu比适当,工艺性能不差。德国推荐代替BHW35])。

5锅炉用钢板

目前,按国家标准GB713-1997《锅炉用钢板》,共有7种:20g、22Mng(SA299)、15CrMog、16 Mng、19Mng(19Mn6)、13MnNiCrMoNbg和12Cr1MoVg等。

下面介绍一下比较重要、常用的锅炉板材。

1)20g钢板:是锅炉上最常用的碳钢板。它有适当的强度和良好的塑性,还有良好的冶炼、制板、焊接、热处理和冷热成型等工艺性能。它的用途极广泛,主要用于工作温度≤450℃的中低压锅炉做锅筒及法兰、集箱端盖等件,但在大型锅炉中用量较少,主要用在压力较低的部位。国外相近牌号有德国的HⅡ、日本的SB42和俄罗斯的20K。其化学成分C ≤,,,S≤,P≤;热轧或热处理后的强度水平σs≥185-245,σb≥380-530 MPa;塑性δ≥22-26。

2)19Mn6(P355GH、19Mng)钢板:是DIN17155标准中的钢号,其是在以前的19Mn5的基础上调整了Mn含量,并将一些强化元素控制在较低的水平,以保持力学性能与19Mn5相同,是C-Mn细晶粒低合金钢,其在EN10028中的牌号为P355GH。该钢具有良好的综合力学性能,其在500℃以下的高温力学性能优于碳钢;还具有良好的可焊性以及冷热加工等工艺性能。它主要用于代替22g和16Mng制造高压锅炉的锅筒和封头,在我厂的300MW锅

炉的高压加热器和低压加热器制造中也得到应用;也可用于石油化工设备中的高压容器和其它焊接结构件。相近牌号有中国的GB713中的19Mng、16Mng、美国的SA299、日本的SB49和俄罗斯的16гс。其化学成分,,,S≤,P≤,Al≥,其余有少量限制了上限的合金元素;正回火态下强度水平σs≥300-310,σb≥510-610 MPa;塑性δ≥20。

3)SA299(22Mng)钢板:是ASME规范中的成熟钢号,为一种成分简单的碳-锰-硅钢,其化学成分和强度级别类似于我国的16Mng和德国的19Mn6,但含碳量更高。常温屈服强度不低于275MPa。该钢的力学性能稳定并有良好的塑性、断裂韧性和抗疲劳裂纹扩展的性能,缺口效应不敏感,钢板厚度方向力学性能也较为均匀。它有良好的冶炼、制板、焊接和成型工艺性能。它主要用于制造工作温度不高于400℃的300MW和600MW机组锅炉的汽包、下降管、弯头和下环形集箱。相近牌号有中国的GB713中的22Mng该钢在我厂应用较少,若今后我厂有300MW和600MW机组锅炉订货,要求按ASME规范制造,可选用此钢制造汽包等部件。其化学成分C≤,,,S≤,P≤,其余有少量限制了上限的合金元素;正火态(或轧态)下强度水平σs≥275-290,σb≥515-655 MPa;塑性δ≥20。

4)BHW35钢板:BHW35为德国梯森钢厂的钢号,是德国六十年代研制成功的可焊贝氏体型耐热结构钢;其在EN10028中的牌号为13MnNiMo54;我国将其移植到GB713,牌号为

13MnNiCrMoNb。它是一种添加有镍、铬、钼和微量铌(铌起细化晶粒并强化的作用)的细晶粒低合金钢。该钢有较好的综合力学性能,有较高的高温屈服点和对裂纹不敏感的特性,良好的焊接性能和工艺性能。适用于工作温度不超过400℃的各种焊接件,如锅筒、压力容器等构件。我厂主要用其制造200MW、300MW高压、超高压的锅炉汽包,厚度较厚。其化学成分C≤,,,S≤,P≤,,,,;正回火态下强度水平σs≥380-390,σb≥570-740 MPa;塑性δ≥18。

在七十年代初我国锅炉制造行业就引入了该钢,由于有优良的力学性能、良好的焊接及工艺性能,得到了各大锅炉厂的重视和应用,主要用于制造200MW锅炉汽包、高压加热器和压力容器等产品。83年我厂在300MW锅炉汽包的选材时,对BHW35和SA299钢板的性能进行了对比,采用BHW35可使锅炉汽包壁厚减小1/4(从203mm降为145mm),经制造和运输带来极大好处。多年来,我厂已经用此钢制造了300MW锅炉汽包约50台,对BHW35的焊接性能和工艺性能已经完全掌握,积累了丰富的生产经验,并制定了和种规程,我厂对其母材和焊接头做了大量的性能试验,特别是特殊性能试验。各种试验结果均表明该钢板及焊接头有较好的性能。目前我国国内已经具备生产BHW35厚板的能力。

5)12Cr1MoV钢板:12Cr1MoV为前苏联研制的低合金锅炉用钢,我国五、六十年代引入该钢种,原先一直作为锅炉钢管的主要用钢。该钢具有较好的热强性能和持久塑性,并具有较好的热加工工艺性能和焊接工艺性能,但对热处理较敏感。根据我国电站锅炉制造的要求,我国又研制生产了研制生产了12Cr1MoV钢板。主要用于火电机组锅炉的联箱封头、吊耳,受热面低温段的定位板和吊架支座等部件。其化学成分,,,S≤,P≤,,Cu≤,Ni ≤,,;正回火态下强度水平σs≥235-245,σb≥430-440 MPa;塑性δ≥19。

6锅炉管子用钢

常用管材

按国家标准GB5310-1995《高压锅炉用无缝钢管》,共有14种:20G、20MnG、25 MnG,15MoG、20MoG、12CrMoG、15CrMoG、12Cr2MoG、12Cr1MoVG、

12Cr2MoWVTiB、12Cr3MoVSiTiB,10Cr9Mo1VNb,1Cr18Ni9和1Cr19Ni11Nb等。

下面介绍一下比较重要、常用的锅炉管材。

1)20G:是GB5310-95的纳标钢号(国外对应牌号:德国的、日本的STB42、美国的

SA106B),为最常用的锅炉钢管用钢,化学成分和力学性能与20板材基本相同。该钢有一定的常温和中高温强度,含碳量较低,有较佳的塑性和韧性,其冷热成型和焊接性能良好。其主要用于制造高压和更高参数的锅炉管件,低温段的过热器、再热器,省煤器及水冷壁等;如小口径管做壁温≤480℃的受热面管子、以及水冷壁管、省煤器管等,大口径管做壁温≤430℃的蒸汽管道、集箱(省煤器、水冷壁、低温过热器和再热器联箱),介质温度≤450℃的管路附件等。由于碳钢在450℃以上长期运行将产生石墨化,因此作为受热面管子的长期最高使用温度最好限制到450℃以下。该钢在这一温度范围,其强度能满足过热器和蒸汽管道的要求、且具有良好的抗氧化性能,塑性韧性、焊接性能等冷热加工性能均很好,应用较广。

2)SA-210C(25MnG):是ASME SA-210标准中的钢号,是锅炉和过热器用碳锰钢小口径管,珠光体型热强钢。我国于1995年将其移植到GB5310,定名为25MnG。其化学成分简单,除碳、锰含量较高外,其余与20G相近,故其屈服强度较20G高约20%左右,而塑、韧性则与20G相当。该钢的生产工艺简单,冷热加工性能好。用其代替20G,可以减薄壁厚,降低材料用量,还可以改善锅炉的传热状况。其使用部位和使用温度与20G基本相同,主要用于工作温度低于500℃的水冷壁、省煤器、低温过热器等部件。

我厂从1989年的利港工程开始使用该钢,为保证焊接性能,订货时对碳含量进行了限制≤,相应地对锰含量提高。使用中工艺性能不比20G差,故在我厂锅炉制造中得到广泛推广应用。一台300MW锅炉,用SA-210C代替20G,可节约钢材100吨。

3)SA-106C:是ASME SA-106标准中的钢号,是高温用大口径锅炉和过热器用碳-锰钢管。其化学成分简单、与20G碳钢类似,但碳、锰含量较高,故其屈服强度较20G高约12%左右,而塑、韧性也并不差。该钢的生产工艺简单,冷热加工性能好。用其代替20G制造集箱(省煤器、水冷壁、低温过热器和再热器联箱),可以减薄壁厚约10%,既可节约材料费用,又可减少焊接工作量,并改善联箱启动时的应力差。

4)15Mo3(15MoG):是DIN17175标准中的钢管,是锅炉和过热器用碳钼钢小口径管,珠光体型热强钢。我国于1995年将其移植到GB5310,定名为15MoG。其化学成分简单,但含有钼,故在保持与碳钢相同的工艺性能的情况下,其热强性能优于碳钢。因其性能良好,价格便宜,得到世界各国的广泛采用。但该钢在高温下长期运行有石墨化倾向,故其使用温度应控制在510℃以下,在冶炼时应限制Al的加入量以控制并延缓其石墨化进程。此钢管主要用于低温过热器和低温再热器,使用壁温温度在510℃以下。其化学成分,,,S ≤,P≤,;正火态强度水平σs≥270-285,σb≥450-600 MPa;塑性δ≥22。

5)SA-209T1a(20MoG):是ASME SA-209标准中的钢号,是锅炉和过热器用碳钼钢小口径管,珠光体型热强钢。我国于1995年将其移植到GB5310,定名为20MoG。其化学成分简单,但含有钼,故在保持与碳钢相同的工艺性能的情况下,其热强性能优于碳钢。但该钢在高温下长期运行也有石墨化倾向,故其使用温度应控制在510℃以下并防止超温,在冶炼时应限制Al的加入量以控制并延缓其石墨化进程。此钢管主要用于水冷壁、过热器和再热器等部件,使用壁温温度在510℃以下。其化学成分,,,S≤,P≤,;正火态强度水平σs ≥220,σb≥415 MPa;塑性δ≥30。

6)15CrMoG:是GB5310-95钢号(对应的是世界各国广泛应用的1Cr-1/2Mo和11/4Cr-

1/2Mo-Si型钢),其铬含量较12CrMo钢高,因此在500-550℃具有较高的热强性。当温度超过550℃时,其热强性显著降低,当其在500-550℃长期运行时,不产生石墨化,但会产生碳化物球化及合金元素的再分配,这些均导致钢的热强性降低,钢在450℃时抗松驰性能好。其制管和焊接等工艺性能良好。主要用作为蒸汽参数550℃以下的高、中压蒸汽导管和联箱、管壁温度560℃以下的过热器管等。其化学成分,,,S≤,P≤,,;正回火态下强度水平σs≥235,σb≥440-640 MPa;塑性δ≥21。

7)T22(P22)、12Cr2MoG:T22(P22)是ASME SA213(SA335)规范材料,我国

GB5310-95将其列入。在Cr-Mo钢系列中,它的热强性能比较高,同一温度下的持久强度和许用应力甚至于比9Cr-1Mo钢还要高,因此其在国外火电、核电和压力容器上都得到广泛的应用。但其技术经济性不如我国的12Cr1MoV,因此在国内的火电锅炉制造中用得较少。只是在用户要求时才给予采用(特别是按ASME规范设计制造时)。该钢对热处理不敏感,有较高的持久塑性和良好的焊接性能。T22小口径管主要用作为金属壁温580℃以下的过热器和再热器等受热面管等,P22大口径管则主要用于金属壁温在不超过565℃的过热器/再热器联箱和主蒸汽管道。其化学成分C≤,Si≤,,S≤,P≤,,;正回火态下强度水平σs≥280,σb≥450-600 MPa;塑性δ≥20。

8)12Cr1MoVG:是GB5310-95的纳标钢,是国内高压、超高压、亚临界电站锅炉过热器、集箱和主蒸汽导管广泛采用的钢种。化学成分和力学性能与12Cr1MoV板材基本相同。其化学成分简单,总合金含量在2%以下,为低碳、低合金的珠光体型热强钢。其中的钒能与碳形成稳定的碳化物VC,可使钢中的铬与钼优先固溶存在于铁素体中,并减慢了铬和钼从铁素体到碳化物的转移速度,使钢在高温下更为稳定。此钢中的合金元素总量只有国外广泛使用的钢的一半,但在580℃、10万h的持久强度比后者却高40%;而且其生产工艺简单,焊接性能良好,只要严格热处理工艺,就能得到满意的综合性能和热强性能。电站实际运行表明:12Cr1MoV主蒸汽管道在540℃安全运行10万h后,仍可继续使用。其大口径管主要用作蒸汽参数565℃以下的集箱、主蒸汽导管等,小口径管用于金属壁温580℃以下的锅炉受热面管等。

使用此钢有较好的经济效益,它是我厂低合金热强钢用量最大的一个钢种。

9)12Cr2MoWVTiB(G102):是GB5310-95中的钢号,为我国60年代自行开发、研制的低碳、低合金(多元少量)的贝氏体型热强钢,从70年代就纳入了冶金部标准YB529-70和现在的国标,1980年底该钢通过了冶金部、一机部和电力部的联合鉴定。该钢具有良好的综合机械性能,其热强性和使用温度超过国外同类钢种,在620℃达到某些铬镍奥氏体钢的水平。这是因为钢中所含合金元素种类较多,且还加入了提高抗氧化性能的元素如Cr、Si 等,故其最高使用温度可达620℃。电站实际运行表明:长期运行后钢管的组织和性能变化不大。主要用作金属温度≤620℃的超高参数锅炉过热器管、再热器管。其化学成分,,,S ≤,P≤,,,,,,;正回火态下强度水平σs≥345,σb≥540-735 MPa;塑性δ≥18。

我厂在200MW、300MW机组中广泛使用此钢,制造的主要部件为屏式过热器、高温过热器和高温再热器。

新近使用及研制开发的管材

对近年国外较为流行的(或新近开发的)、常用锅炉过热器和再热器或联箱用钢管T23(HCM2S)、T91(P91)、T92(NF616)、TP304H、TP347H、T122(HCM12A)、SUP304H、TP347HFG、火SUS310JITB和NF709简要介绍一些情况。

总的说来,这些钢的许用应力和允许的使用温度较高,且在许用运行温度下具有较好的抗氧化性能和热耐蚀性能。根据资料[1]和其它试验数据分析,有如下大致排序。

(1)在其它条件相同时,许用应力的粗略排序(由小到大)如下:

T23——T91——TP304H(T122、T92)——TP347H——TP347HFG——火SUS310JITB ——SUPER304H——NF709

(2)在其它条件相同时,抗氧化性能的粗略排序(由弱到强)如下:

T23——T91(T92)——T122——TP304H——TP347H——SUPER304H(TP347HFG)——NF709(火SUS310JITB)

(3)在其它条件相同时,抗煤灰腐蚀能力的粗略排序(由低到高)如下:

T23——T91(T92)——T122——TP304H——SUPER304H——TP347H(TP347HFG)——火SUS310JITB——NF709

但上述排序与温度、使用位置与环境有关,随他们的变化排序而有所不同。

1)SA-213T91(335P91):是ASME SA-213(335)标准中的钢号。是由美国橡胶岭国家试验室研制开发的、用于核电(也可用于其它方面)高温受压部件的材料,该钢是在T9

(9Cr-1Mo)钢的基础上,在限制碳含量上下限、更加严格控制P和S等残余元素含量的同时,添加了微量的N、以及微量的强碳化物形成元素的V和的Nb,以达到细化晶粒要求,从而形成的新型铁素体型耐热合金钢;其为ASME SA-213列标钢号,我国于1995年将该

钢移植到GB5310标准中,牌号定为10Cr9Mo1VNb;而国际标准ISO/DIS9329-2列为X10 CrMoVNb9-1。

因其含铬量(9%)较高,其抗氧化、抗腐蚀性能、高温强度及非石墨化倾向均优于低合金钢,元素钼(1%)主要提高高温强度,并抑制铬钢的热脆倾向;与T9相比,改善了焊接性能和热疲劳性能、其在600℃的持久强度是后者的三倍,且保持了T9(9Cr-1Mo)钢的优良的抗高温腐蚀性能;与奥氏体不锈钢相比,膨胀系数小、热传导性能好、并有较高的持久强度(如与TP304奥氏体钢比,等到强温度为625℃,等应力温度为607℃)。故其具有较好的综合力学性能、且时效前后的组织和性能稳定,具有良好的焊接性能和工艺性能,较高的持久强度及抗氧化性。主要用于锅炉中金属温度≤650℃的过热器和再热器。其化学成分,,,S≤,P≤,,,,Al≤,,;正回火态下强度水平σs≥415,σb≥585 MPa;塑性δ≥20。

我厂从90年开始引入此钢,做了大量的性能试验和工艺试验,并进行了国产化试制。T91我厂主要用在屏式过热器、高温过热器/再热器等部件上,P91在我厂正式应用于安顺工程开始,至今已大量使用。

2)SA-213 T23(SA-335 P23)

T23(HCM2S)是日本住友金属株式会社在我国G102(12Cr2MoWVTiB)基础上,将碳含量从降至以改进材料的焊接性能,Mo量从降至、W量从升至,并形成以W为主的W-Mo的复合固溶强化,加入微量Nb和N形成碳氮化物(主要为VC、VN,M23C6和M7C3)弥散沉淀强化,而研制成功的低碳低合金贝氏体型耐热钢,近年由ASME Code Case 2199-1确认批准,拟列入ASME SA213,牌号定为T23。该钢的前身、我国的G102

(12Cr2MoWVTiB)在国内的大型电站锅炉上已经得到广泛应用。

T23(HCM2S)钢时效前后的力学性能和金相组织差异小;焊接性能好,优于我国的

G102;耐蚀性较好;室温强度和冲击韧性较G102为佳,其许用应力也基本相同。至少等同于我国的G102、而优于SA213-T22和我国的12Cr1MoV。总的说来,HCM2S的优点较多,由于G012在我国的锅炉中已经成功应用多年,HCM2S钢在国内等同代替G102完全可行。

T23(HCM2S)钢管综合性能良好,其最高使用温度为600℃,可用于制造大型亚临界电站锅炉金属壁温不超过600℃的过热器和再热器;或用作为超临界锅炉的水冷壁材料;此钢的大口径管(P23),可用于制造金属管壁温度≤575℃(较佳使用温度为550℃)高温过热器联箱、高温再热器联箱及主蒸汽管道等。例如,在1997年,我国珠海1、2号锅炉就使用了T23,金属壁温549℃;我国宝山3号锅炉也使用了该钢,金属壁温555℃。由于性能和价格上的优势,T23/P23钢在我国的应用前景相当看好。

3)SA-213 T122(SA-335 P122)

T122(HCM12A)是日本住友金属株式会社以德国X20CrMoV121为基研制的HCM12(在HCM12中,降低了X20CrMoV121的碳含量,在钢中加入1%的W和少量的Nb,形成W-Mo的复合固溶强化和更加稳定的细小碳化铌弥散沉淀强化,提高组织稳定性和高温强度)的基础上,进一步调整成分:提高W含量至2%左右、降低Mo含量至,还加入1%左右的Cu和微量N 、B,形成以W为主的W-Mo复合固溶强化、氮的间隙固溶强化、富铜相和碳氮化物的弥散沉淀强化的多种强化,从而研制而成的12%Cr的低碳合金耐热钢。在正回火状态下钢中的主要沉淀相为VC、VN,M23C6。近年由ASME Code Case 2180-2批准,牌号定为T122。

T122(HCM12A)钢时效前后的力学性能差异很小;金相组织类同母材的原始组织;时效对冲击韧性有一定影响,但经长期时效后仍具有一定的冲击韧性;焊接性能良好;并具有较高的组织稳定性和高温强度、抗氧化性能和抗腐蚀性能。

与T91相比,其在高温650℃时的持久强度、抗氧化性能和抗腐蚀性能更优;与奥氏体不锈钢相比,奥氏体不锈钢在高温下的许用应力和抗氧化性能虽略优于HCM12A,但奥氏体钢的应力腐蚀或晶间腐蚀却是一个难题。用HCM12A无此类问题。

T122(HCM12A)钢管性能优良。该钢的最高使用温度为650℃。可作为先进的超临界锅炉机组的材料,用于制造超(超)临界机组电站锅炉金属壁温不超过650℃的过热器、再热器和主蒸汽管道。如我国珠海电厂1、2号锅炉的再热器就使用了该钢,金属壁温达620℃。若将该钢用在亚临界锅炉上可用其代替TP347H和T91厚壁管,如该钢在600-650℃的锅炉过热器和再热器上可部分代替TP304H和TP347H,具有良好的经济价值。

4)SA-213 Super304H

SUPER304H是由日本住友金属株式会社和三菱重工在TP304H的基础上,通过降低Mn 含量上限,加入约3%的Cu、约%的铌和一定量的N,使该钢在服役期运行时产生非常细小而弥散的富铜相沉淀于奥氏体基体内的沉淀强化以及NbC、NbN、NbCrN和M23C6的强化作用,而得到很高的许用应力的一种新型的奥氏体不锈钢锅炉管,目前已经纳入日本MITI 标准,2000年3月已经由ASME code case 2328予以确认。

SUPER304H钢的焊接性能良好,持久强度高、组织稳定性好及较好的抗蒸汽氧化性能,很好的耐蚀性(几乎与细晶粒的TP347H相同)。在600-700℃,其105小时的持久强度为TP347H钢的倍以上。

SUPER304H钢管有极高的许用应力、且综合性能优良。该钢的最高使用温度为700℃。该钢在日本火力发电厂主要用于制造超(超)临界锅炉过热器和再热器的高温段等部件。由于其性能优良,无论从经济性(具有较好的性价比,价格上比TP347H约高9%左右,但可减薄管子壁厚约20%)和可靠性看,它都应是今后超(超)临界机组锅炉中过热器和再热器钢管的重要的、主力品种材料。从1993(小量是从1989年)年开始至2001年,日

本在电站锅炉上应用此钢已经达到6025吨。如Kobe 1号(1998年)、EPDC Tachibanawan 1、2号(1997年)、EPDC New-Isogo 1号(1999年)以及Tokai 1号(1998年)等十多家电站锅炉采用了此钢。

5)SA-213 HR3C

HR3C(火SUS310JITB)是日本住友金属株式会社考虑到18-8型(TP304H或TP347H 等)在含硫较多的环境中无足够的耐蚀性、而TP310型钢有足够的耐蚀性却只有较低的持久强度或许用应力的状况,从而研制开发的高Cr、Ni含量的奥氏体不锈钢,已经纳入日本MITI规范,牌号定为“火SUS310JITB”,近年由ASME Code Case 2115-1确认,列入ASME SA- 213,定名为TP310HCbN。由于在该钢中加入了很多的Cr、Ni、较多的Nb和N,该钢的抗拉强度高于常规的18-8不锈钢,持久强度和许用应力远高于常规的18-8不锈钢以及TP310钢,高温耐热蚀抗力大大优于含Cr较少的钢,且抗蒸汽氧化性能极优。

主要用于制造超临界压力参数的大型发电锅炉或循环流化床锅炉的温度不超过700℃的高温过热器、高温再热器、屏式过热器的高温段以及各种耐高温、高压或高硫或高氯环境腐蚀的管件等。日本Electric Power Development Co. Wakamatsu/PFBC 的71MW炉的再热器和过热器上应用此钢,出口温度均为593℃。此外,也在英国的National Power West Burton 的500MW、美国Tennessee Valley Authority Gallatin的300MW、South Carolina Electric & Gas AM Williams的560MW的再热器和过热器上应用。我厂分包的日本MIE工程中的循环流化床的末级过热器也应用此钢。由于其综合性能大大优于18-8不锈钢,且具有一定的经济性,将来必能得到广泛应用。

6)T92(P92)

T92(NF616)是日本新日铁在T91基础上,对成分做了进一步完善改进、采用复合-多元的强化手段,适当降低Mo含量至、加入的W并形成以W为主W-Mo的复合固溶强化,加入N形成间隙固溶强化,加入V、Nb和N形成碳氮化物弥散沉淀强化以及加入微量的B ()形成B的晶界强化,其所含的与T91一样的高Cr量保证了有与T91相同的抗氧化性和抗腐蚀性能,从而研制开发的新型铁素体耐热合金钢(之前日本新日铁曾对T91经过多年对T91的完善化研究,如控制热加工工艺[14]、通过加入%或%[15]的W以达到改善持久强度的目的)。此钢在日本称为NF616,近年由ASME code case 2179批准确认;现已纳入ASME SA-213和335标准。

T92与T91一样,具有比奥氏体钢更为优良的热膨胀系数和导热系数,其具有极好的持久强度、很高的许用应力、良好的韧性和可焊性,时效前后的组织和性能稳定。其许用应力较T91更高,在650℃的许用应力为T91的倍;且抗蒸汽氧化性能较好,与T91基本相同。与TP347H的等强温度为625℃,当温度低于625℃时,T92的持久强度高于TP347H。

T92钢管性能优良,使用温度可达650℃。可部分替代TP304H和TP347H奥氏体不锈钢管,制造金属壁温不超过650℃的亚临界、超临界乃至超超临界的电站锅炉的高温过热器、再热器管和主蒸汽管道等受压部件,避免或减少异种钢接头,改善钢管的运行性能。若用在亚临界锅炉上可用其代替TP347H和T91厚壁管。该钢作为将来、现有锅炉的最高温度区以及超临界压力锅炉管子用钢,将能得到广泛应用。例如,到1995年止,NF616(T92)钢管已经在日本、德国和丹麦的7台大型电站锅炉的高温过热器和主蒸管道上应用,未发现任何问题。

金属材料性能知识大汇总(超全)

金属材料性能知识大汇总 1、关于拉伸力-伸长曲线和应力-应变曲线的问题 低碳钢的应力-应变曲线 a、拉伸过程的变形:弹性变形,屈服变形,加工硬化(均匀塑性变形),不均匀集中塑性变形。 b、相关公式:工程应力σ=F/A0;工程应变ε=ΔL/L0;比例极限σP;弹性极限σ ε;屈服点σS;抗拉强度σb;断裂强度σk。 真应变e=ln(L/L0)=ln(1+ε) ;真应力s=σ(1+ε)= σ*eε指数e为真应变。 c、相关理论:真应变总是小于工程应变,且变形量越大,二者差距越大;真应力大于工程应力。弹性变形阶段,真应力—真应变曲线和应力—应变曲线基本吻合;塑性变形阶段两者出线显著差异。

2、关于弹性变形的问题 a、相关概念 弹性:表征材料弹性变形的能力 刚度:表征材料弹性变形的抗力 弹性模量:反映弹性变形应力和应变关系的常数,E=σ/ε;工程上也称刚度,表征材料对弹性变形的抗力。 弹性比功:称弹性比能或应变比能,是材料在弹性变形过程中吸收变形功的能力,评价材料弹性的好坏。 包申格效应:金属材料经预先加载产生少量塑性变形,再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 滞弹性:(弹性后效)是指材料在快速加载或卸载后,随时间的延长而产生的附加弹性应变的性能。 弹性滞后环:非理想弹性的情况下,由于应力和应变不同步,使加载线与卸载线不重合而形成一封闭回线。 金属材料在交变载荷作用下吸收不可逆变形功的能力,称为金属的循环韧性,也叫内耗 b、相关理论: 弹性变形都是可逆的。 理想弹性变形具有单值性、可逆性,瞬时性。但由于实际金属为多晶体并存在各种缺陷,弹性变形时,并不是完整的。 弹性变形本质是构成材料的原子或离子或分子自平衡位置产生可逆变形的反映

金属材料学基础试题及答案

金属材料的基本知识综合测试 一、判断题(正确的填√,错误的填×) 1、导热性好的金属散热也好,可用来制造散热器等零件。() 2、一般,金属材料导热性比非金属材料差。() 3、精密测量工具要选用膨胀系数较大的金属材料来制造。() 4、易熔金属广泛用于火箭、导弹、飞机等。() 5、铁磁性材料可用于变压器、测量仪表等。() 6、δ、ψ值越大,表示材料的塑性越好。() 7、维氏硬度测试手续较繁,不宜用于成批生产的常规检验。() 8、布氏硬度不能测试很硬的工件。() 9、布氏硬度与洛氏硬度实验条件不同,两种硬度没有换算关系。() 10、布氏硬度试验常用于成品件和较薄工件的硬度。 11、在F、D一定时,布氏硬度值仅与压痕直径的大小有关,直径愈小,硬度值愈大。() 12、材料硬度越高,耐磨性越好,抵抗局部变形的能力也越强。() 13、疲劳强度是考虑交变载荷作用下材料表现出来的性能。() 14、20钢比T12钢的含碳量高。() 15、金属材料的工艺性能有铸造性、锻压性,焊接性、热处理性能、切削加工性能、硬度、强度等。() 16、金属材料愈硬愈好切削加工。() 17、含碳量大于%的钢为高碳钢,合金元素总含量大于10%的钢为高合金钢。() 18、T10钢的平均含碳量比60Si2Mn的高。() 19、一般来说低碳钢的锻压性最好,中碳钢次之,高碳钢最差。() 20、布氏硬度的代号为HV,而洛氏硬度的代号为HR。() 21、疲劳强度是考虑交变载荷作用下材料表现出来的性能。() 22、某工人加工时,测量金属工件合格,交检验员后发现尺寸变动,其原因可能是金属材料有弹性变形。() 二、选择题 1、下列性能不属于金属材料物理性能的是()。 A、熔点 B、热膨胀性 C、耐腐蚀性 D、磁性 2、下列材料导电性最好的是()。 A、铜 B、铝 C、铁烙合金 D、银 3、下列材料导热性最好的是()。 A、银 B、塑料 C、铜 D、铝 4、铸造性能最好的是()。

金属材料基础知识汇总

《金属材料基础知识》 第一部分金属材料及热处理基本知识 一,材料性能:通常所指的金属材料性能包括两个方面: 1,使用性能即为了保证机械零件、设备、结构件等能够正常工作,材料所应具备的性能,主要有力学性能(强度、硬度、刚度、塑性、韧性等),物理性能(密度、熔点、导热性、热膨胀性等)。使用性能决定了材料的应用范围,使用安全可靠性和寿命。 2,工艺性能即材料被制造成为零件、设备、结构件的过程中适应的各种冷、热加工的性能,如铸造、焊接、热处理、压力加工、切削加工等方面的性能。 工艺性能对制造成本、生产效率、产品质量有重要影响。 二,材料力学基本知识 金属材料在加工和使用过程中都要承受不同形式外力的作用,当达到或超过某一限度时,材料就会发生变形以至于断裂。材料在外力作用下所表现的一些性能称为材料的力学性能。 承压类特种设备材料的力学性能指标主要有强度、硬度、塑性、韧性等。这些指标可以通过力学性能试验测定。 1,强度金属的强度是指金属抵抗永久变形和断裂的能力。材料强度指标可以通过拉伸试验测出。抗拉强度σb和屈服强度σs是评价材料强度性能的两个主要指标。一般金属材料构件都是在弹性状态下工作的。是不允许发生塑性变形,所以机械设计中一般采用屈服强度σs作为强度指标,并加安全系数。2,塑性材料在载荷作用下断裂前发生不可逆永久变形的能力。评定材料塑性的指标通常用伸长率和断面收缩率。 伸长率δ=[(L1—L0)/L0]100% L0---试件原来的长度L1---试件拉断后的长度 断面收缩率φ=[(A1—A0)/A0]100% A0----试件原来的截面积A1---试件拉断后颈缩处的截面积 断面收缩率不受试件标距长度的影响,因此能够更可靠的反映材料的塑性。 对必须承受 强烈变形的材料,塑性优良的材料冷压成型的性能好。 3,硬度金属的硬度是材料抵抗局部塑性变形或表面损伤的能力。硬度与强度有一定的关系,一般情况下,硬度较高的材料其强度也较高,所以可以通过测试硬度来估算材料强度。另外,硬度较高的材料耐磨性也较好。 工程中常用的硬度测试方法有以下四种 (1)布氏硬度HB (2)洛氏硬度HRc(3)维氏硬度HV (4)里氏硬度HL 4,冲击韧性指材料在外加冲击载荷作用下断裂时消耗的能量大小的特性。 材料的冲击韧性通常是在摆锤式冲击试验机是测定的,摆锤冲断试样所作的功称为冲击吸收功。以Ak表示,Sn为断口处的截面积,则冲击韧性ak=Ak/Sn。 在承压类特种设备材料的冲击试验中应用较多。 三金属学与热处理的基本知识 1,金属的晶体结构--物质是由原子构成的。根据原子在物质内部的排列方式不同,可将物质分为晶体和非晶体两大类。凡内部原子呈现规则排列的物质称为晶体,凡内部原子呈现不规则排列的物质称为非晶体,所有固态金属都是晶体。 晶体内部原子的排列方式称为晶体结构。常见的晶体结构有:

金属材料基础知识

金属材料及处理工艺基础知识 一、金属材料分类: 金属材料的分类有多种方式,有按照密度分的,价格分的…常用的是分类是把金属材料分成黑色金属和有色金属两大类。 1.黑色金属:通常指铁,锰、铬及它们的合金。常用的黑色材料为钢铁。其又分为三类:纯铁,钢,铸铁。 纯铁:其主要由Fe组成的,含C量在0.0218%以下,工业中很少用; 钢:含C量在0.0218%-2.3%之间的铁碳合金(不加其他元素的称碳素钢,加入其他合金元素的称合金钢)。其又可以按照成分分类(碳素钢,合金钢),用途分类(轴承钢,不锈钢,工具钢,模具钢,弹簧钢,渗碳用钢,耐磨钢,耐热钢…),品质分类(普通钢,优质钢,高级优质钢),成形方式分类(锻钢,铸钢,热轧钢,冷拉钢),形式分类(板材,棒材,管材,异形钢等)等等。 铸铁:含C量在2.3%-6.69%之间的铁碳合金成为铸铁。按石墨的形态其又可以分为灰铸铁,球墨铸铁,蠕墨铸铁等,石墨的不同形态和基体的配合而具有不同的性能。 2.有色金属:又称非铁金属,指除黑色金属外的金属和合金,如铜、锡、铅、锌、铝、镍锰以及黄铜、青铜、铝合金和轴承合金等。 二、金属材料的使用性能及指标 金属材料常用的性能指标有力学性能和物理性能。 1.力学性能:金属材料在外力作用下表现出来的各种特性,如弹性、塑性、韧性、强度、硬度等。 强度:金属材料在外力作用下抵抗变形和断裂的能力。屈服强度、抗拉强度是极为重要的强度指标,是金属材料选用的重要依据。强度的大小用应力来表示,即用单位面积所能承受的载荷(外力)来表示,常用单位为MPa。 屈服强度:金属试样在拉力试验过程中,载荷不再增加,而试样仍继续发生变形的现象,称为“屈服”。产生屈服现象时的应力,即开始产生塑性变形时的应力,称为屈服点,用符号σs表示,单位为MPa。一般的,材料达到屈服强度,就开始伴随着永久的塑性变形,因此其是非常重要的指标。 抗拉强度:金属试样在拉力试验时,拉断前所能承受的最大应力,用符号σb表示,单位为MPa。 塑性:金属材料在外力作用下产生永久变形(去掉外力后不能恢复原状的变形),但不会被破坏的能力。 弹性:金属材料在外力作用下抵抗塑性变形的能力(去掉外力后能恢复原状的变形)。 伸长率:金属在拉力试验时,试样拉断后,其标距部分所增加的长度与原始

(完整版)金属材料知识大全

金属材料是指金属元素或以金属元素为主构成的具有金属特性的材料的统称。包括纯金属、合金、金属材料金属间化合物和特种金属材料等。(注:金 属氧化物(如氧化铝)不属于金属材料) 1.意义 人类文明的发展和社会的进步同金属材料关系十分密切。继石器时代之后 出现的铜器时代、铁器时代,均以金属材料的应用为其时代的显著标志。现代,种类繁多的金属材料已成为人类社会发展的重要物质基础。 2.种类 金属材料通常分为黑色金属、有色金属和特种金属材料。 (1)黑色金属又称钢铁材料,包括含铁90%以上的工业纯铁,含碳2%~4%的铸铁,含碳小于 2%的碳钢,以及各种用途的结构钢、不锈钢、耐热钢、高温合金、不锈钢、精密合金等。广义的黑色金属还包括铬、锰及其合金。 (2)有色金属是指除铁、铬、锰以外的所有金属及其合金,通常分为轻金属、重金属、贵金属、半金属、稀有金属和稀土金属等。有色合金的强度和硬 度一般比纯金属高,并且电阻大、电阻温度系数小。 (3)特种金属材料包括不同用途的结构金属材料和功能金属材料。其中有通过快速冷凝工艺获得的非晶态金属材料,以及准晶、微晶、纳米晶金属材料等;还有隐身、抗氢、超导、形状记忆、耐磨、减振阻尼等特殊功能合金以及 金属基复合材料等。 3.性能 一般分为工艺性能和使用性能两类。所谓工艺性能是指机械零件在加工制 造过程中,金属材料在所定的冷、热加工条件下表现出来的性能。金属材料工 艺性能的好坏,决定了它在制造过程中加工成形的适应能力。由于加工条件不同,要求的工艺性能也就不同,如铸造性能、可焊性、可锻性、热处理性能、 切削加工性等。 所谓使用性能是指机械零件在使用条件下,金属材料表现出来的性能,它 包括力学性能、物理性能、化学性能等。金属材料使用性能的好坏,决定了它 的使用范围与使用寿命。在机械制造业中,一般机械零件都是在常温、常压和 非常强烈腐蚀性介质中使用的,且在使用过程中各机械零件都将承受不同载荷 的作用。金属材料在载荷作用下抵抗破坏的性能,称为力学性能(过去也称为 机械性能)。金属材料的力学性能是零件的设计和选材时的主要依据。外加载 荷性质不同(例如拉伸、压缩、扭转、冲击、循环载荷等),对金属材料要求 的力学性能也将不同。常用的力学性能包括:强度、塑性、硬度、冲击韧性、 多次冲击抗力和疲劳极限等。 金属材料特质

金属材料名称通用基础学习知识术语

金属材料名称常用基础术语 1.基础术语: 黑色金属:铁和铁的合金均称为黑色金属。如钢、生铁、铁合金、铸铁等。 纯铁:纯度很高的铁,化学纯铁含碳量几乎为零,工业纯铁含碳量<0.05%。纯铁是很软的,一般不应用到实际中。 铁碳合金:以铁为基础,以碳为主要添加元素的合金,统称为铁碳合金。如钢和生铁。 生铁:把铁矿石放到高炉中冶炼而成的,含碳量2%~4.3%(也有资料称3.5%—5.5%、2.11%-6.67%)的铁碳合金称为生铁。生铁质硬而脆,缺乏韧性,几乎没有塑性变形能力,因此不能通过锻造、轧制、拉拔等方法加工成形,主要用来炼钢和制造铸件,如白口铁、灰口铁和球墨铸铁。也有习惯上把炼钢生铁叫做生铁,把铸造生铁简称为铸铁。 白口铁:碳以Fe3C形态分布的生铁称为白口铁,其断口呈银白色,质硬而脆,不能进行机械加工,是炼钢的原料,故又称炼钢生铁。 灰口铁:碳以片状石墨形态分布的生铁称为灰口铁,其断口呈银灰色,由于石墨质软并有润滑作用,因而这种生铁具有良好的易切削、耐磨和铸造性能等优点。但是,由于有片状石墨的存在,降低了它的抗拉强度,使它不能锻轧,只能用于制造各种铸件,如铸造机床床座、铁管等。因此,通常把这种生铁叫做铸造生铁。 球墨铸铁:碳以球状石墨分布则称球墨铸铁,其机械性能、加工性能接近于钢。 钢:含碳量在0.04%-2.3%之间(也有资料称0.03%-1.2%)的铁碳合金称为钢。为了保证其韧性和塑性,含碳量一般不超过1.7%。钢的主要元素除铁、碳外,还有硅、锰、硫、磷等。 有色金属:又称非铁金属,指除黑色金属外的金属和合金,如铜、锡、铅、锌、铝等。第2章:钢的分类基础知识 1.按品质进行分类 ①普通钢:P≤0.045% S≤0.050%(如普通碳素结构钢Q195、Q235等) ②优质钢:P≤0.035% S≤0.035%(如优质碳素结构钢20号、45号钢等) ③高级优质钢:P≤0.035% S≤0.030%(比优质钢更优质,一般在钢号后加A以示区别,如08A等) 2.按化学成份进行分类 1)碳素钢: ①低碳钢:C≤0.25% ②中碳钢:C≤0.25~0.60% ③高碳钢:C≥0.60% 2)合金钢: ①低合金钢(合金元素总含量≤5%); ②中合金钢(合金元素总含量>5~10%); ③高合金钢(合金元素总含量>10%)。 3.按成形方法分类: ①锻钢 ②铸钢 ③热轧钢 ④冷拉钢。 4.按金相组织分类 1)退火状态的: ①亚共析钢(铁素体+珠光体); ②共析钢(珠光体);

金属材料基本知识

金属材料基本知识 1、什么是变形?变形有几种形式? 构件在外力作用下,发生尺寸和形状改变的现象。变形的基本形式:有弹性变形、永久变形(塑性变形)和断裂变形三种。构件在外力作用下发生变形,外力去除后能恢复原来形状和尺寸,材料的这一特性称为弹性。这种在外力去除后能消失的变形称为弹性变形。若外力去除后,只能部分的恢复原状,还残留一部分不能消失的变形,材料的这一特性称为塑性。外力去除后不能消失而永远残留的变形,称为塑性变形或残余变形,也称永久变形。工程上,一般要求构件在正常工作时,只能发生少量弹性变形,而不能出现永久变形。但对材料进行某种加工(如弯曲、压延、锻打)时,则希望它产生永久变形。 3、什么是强度?什么是刚度?什么是韧性? 材料或构件承受外力时,抵抗塑性变形或破坏的能力称强度。钢材在较大外力作用下可能不被破坏,木材在较小外力作用下而可能会断裂,我们说钢材的强度比木材高。材料或构件承受外力时抵抗变形的能力称为刚度。刚度不仅与材料种类有关,还与构件的结构形式、尺寸等有关。比如管式空气预热器管箱与钢管省煤器组件相比,前者抗变形能力要比后者好,我们称前者的刚度强(好),后者的刚度弱(差)。刚度好的构件,在外力作用下的稳定性也好。材料抵抗冲击载荷的能力称为韧性或冲击韧性,即材料承受冲击载荷时迅速产生塑性变形的性能。锅炉承压部件所使用的材料应具有较好的韧性。 4、什么是塑性材料?什么是脆性材料? 在外力作用下,虽然产生较显著变形而不被破坏的材料,称为塑性材料。在外力作用下,发生微小变形即被破坏的材料,称为脆性材料。材料的塑性和韧性的重要性并不亚于强度。塑性和韧性差的材料,工艺性能往往很差,难以满足各种加工及安装的要求,运行中还可能发生突然的脆性破坏。这种破坏往往滑事故前兆,其危险性也就更大。脆性材料抵抗冲击载荷的能力更差。 5、什么是应力、应变和弹性模量? 材料或构件在单位截面上所承受的垂直作用力称为应力。外力为拉力时,所产生的应力为拉应力;外力为压缩力时,产生的应力为压应力。在外力作用下,单位长度材料的伸长量或缩短量,称为应变量。在一定的应力范围(弹性形变)内,材料的应力与应变量成正比,它们的比例常数称为弹性模量或弹性系数。对于一定的材料,弹性模量是常数,弹性模量越大,在一定应力下,产生的弹性变形量越小。弹性模量随温度升高而降低。转动机械的轴与叶轮,要求在转动过程中产生较小的变形,就需要选用弹性模量较大的材料。 6、什么叫应力集中? 应力集中:由于构件截面尺寸突然变化而引起应力局部增大的现象,称为应力集中。在等截面构件中,应力是均匀分布的。若构件上有孔、沟槽、凸肩、阶梯等,使截面尺寸发生突然变化时,在截面发生变化的部位,应力不再是均匀分布,在附近小范围内,应力将局部增大。应力集中的程度,可用应力集中系数来表示。应力集中系数的大小,只与构件形状和尺寸有关,与材料无关。工程上常用典型构件的应力集中系数,已通过试验确定。应力集中处的局部应力值,有时可能很大,会影响部件使用奉命,是部件损坏的重要原因之一。为防止和减小这种不利影响,应尽可能避免截面尺寸发生突然变化,构件的外形轮廓应平缓光滑,必要的孔、槽最好配置在低应力区。另外,金属材料内部或焊缝有气孔、夹渣、裂纹以及“焊不透”、“咬边”等缺陷,也会引起应力集中。 7、什么是强度极限(抗拉强度)与屈服极限? 强度极限与屈服极限是通过试验确定的。在拉伸试验过程中,应力达到某一数值后,虽然不再增加甚至略有下降,试件的应变还在继续增加,并产生明显的塑性变形,好像材料暂

五金料基础知识

五金料基础知识 一、五金原料知识: (一)、概念: 1、金属材料(metal materials ): 以金属(包括合金与纯金属)为基础的材料。可分为钢铁材料和有色金属材料两大类。 2、种类: 3、性能: 热加工条件下表现出来的性能。 由于加工条件不同,要求的工艺性能也就不同,如铸造性能、可焊性、可锻性、热处理性能、切削加工性等。 ②所谓使用性能: 是指机械零件在使用条件下,金属材料表现出来的性能,它包括力学性能、物理性能、化学性能等。 常用的力学性能包括:强度、塑性、硬度、冲击韧性、多次冲击抗力和疲劳极限等。 (二)、金属材料特质: 1、疲劳 许多机械零件和工程构件,是承受交变载荷工作的。在交变载荷的作用下,虽然应力水平低于材料的屈服极限,但经过长时间的应力反复循环作用以后,也会发生突然脆性断裂,这种现象叫做金属材料的疲劳。 金属材料疲劳断裂的特点是: ⑴载荷应力是交变的; ⑵载荷的作用时间较长; ⑶断裂是瞬时发生的;

麻点剥落或表面压碎剥落,从而造成机件失效破坏。 2、塑性 形而不破坏。一般把延伸率大于百分之五的金属材料称为塑性材料(如低碳钢等),而把延伸率小于百分之五的金属材料称为脆性材料(如灰口铸铁等)。塑性好的材料,它能在较大的宏观范围内产生塑性变形,并在塑性变形的同时使金属材料因塑性变形而强化,从而提高材料的强度,保证了零件的安全使用。此外,塑性好的材料可以顺利地进行某些成型工艺加工,如冲压、冷弯、冷拔、校直等。因此,选择金属材料作机械零件时,必须满足一定的塑性指标。 3、耐久性 常导致突然破断。混凝土中的高强度钢筋(钢丝)可能发生这种破坏。 4、硬度

2020年最新金属材料知识大全

XX年最新金属材料知识大全 金属材料是指金属元素或以金属元素为主构成的具有金属特性的材料的统称。下面是为大家分享的xx年最新金属材料知识大全,欢迎大家阅读浏览。 【1】概述 金属材料是指金属元素或以金属元素为主构成的具有金属特性的材料的统称。包括纯金属、合金、金属材料金属间化合物和特种金属材料等。(注:金属氧化物(如氧化铝)不属于金属材料) 1.1意义: 人类文明的发展和社会的进步同金属材料关系十分密切。继石器时代之后出现的铜器时代、铁器时代,均以金属材料的应用为其时代的显著标志。现代,种类繁多的金属材料已成为人类社会发展的重要物质基础。 1.2种类: 金属材料通常分为黑色金属、有色金属和特种金属材料。 (1)黑色金属又称钢铁材料,包括含铁90%以上的工业纯铁,含碳2%~4%的铸铁,含碳小于2%的碳钢,以及各种用途的结构钢、不锈钢、耐热钢、高温合金、不锈钢、精密合金等。广义的黑色金属还包括铬、锰及其合金。 (2)有色金属是指除铁、铬、锰以外的所有金属及其合金,通常分为轻金属、重金属、贵金属、半金属、稀有金属和稀土金属等。有色合金的强度和硬度一般比纯金属高,并且电阻大、电阻温度系数小。

(3)特种金属材料包括不同用途的结构金属材料和功能金属材料。其中有通过快速冷凝工艺获得的非晶态金属材料,以及准晶、微晶、纳米晶金属材料等;还有隐身、抗氢、超导、形状记忆、耐磨、减振阻尼等特殊功能合金以及金属基复合材料等。 1.3性能: 一般分为工艺性能和使用性能两类。所谓工艺性能是指机械零件在加工制造过程中,金属材料在所定的冷、热加工条件下表现出来的性能。金属材料工艺性能的好坏,决定了它在制造过程中加工成形的适应能力。由于加工条件不同,要求的工艺性能也就不同,如铸造性能、可焊性、可锻性、热处理性能、切削加工性等。 所谓使用性能是指机械零件在使用条件下,金属材料表现出来的性能,它包括力学性能、物理性能、化学性能等。金属材料使用性能的好坏,决定了它的使用范围与使用寿命。在机械制造业中,一般机械零件都是在常温、常压和非常强烈腐蚀性介质中使用的,且在使用过程中各机械零件都将承受不同载荷的作用。金属材料在载荷作用下抵抗破坏的性能,称为力学性能(过去也称为机械性能)。金属材料的力学性能是零件的设计和选材时的主要依据。外加载荷性质不同(例如拉伸、压缩、扭转、冲击、循环载荷等),对金属材料要求的力学性能也将不同。常用的力学性能包括:强度、塑性、硬度、冲击韧性、多次冲击抗力和疲劳极限等。 【2】金属材料特质 2.1疲劳

第四章 金属材料和热处理基本知识(答案)

第四章金属材料的基础知识和热处理的基本知识 第一部分:学习内容 1、钢的分类:|(1)-碳钢:含碳量低于2%的铁碳合金;-合金钢:在钢中特意加入一种或几种其它合金元素组成的钢;-生铁:含碳量高于2%的铁碳合金.,可通过铸造方法制造零件,所以又称铸铁. (2)按化学成分分类: 碳钢-低碳钢:含碳量小于0.25%;-中碳钢:含碳量为0.25~0.55%;-高碳钢:含碳量大于0.55%. 合金钢-低合金钢:合金元素总含量小于3.5%;-中合金钢:合金元素总含量3.5~10%;-高合金钢:合金元素总含量大于10%; 2、洛氏硬度与布氏硬度值近似关系: HRC≈1/10HB 3、热处理及其常用工艺方法 热处理的定义-利用钢在固态下的组织转变,通过加热和冷却获得不同组织结构,从而得到所需性能的工艺方法统称热处理. 常用热处理工艺方法:退火-将钢加热到一定温度,保温一段时间,然后随炉一起缓慢冷却下来,以期得到接近平衡状态组织的一种热处理方法. 4、完全退火:AC3以上30~50℃,用于消除钢的某些组织缺陷和应力,改善切削加工性能; 等温退火:加热到AC3,以上30~50℃,较快的冷却到略低于Ar1的温度,并在此温度下等温到奥氏体全部分解为止,然后出炉空冷.适用于亚共析钢、共析钢,尤其广泛用于合金钢的退火。优点是周期短,组织和硬度均匀。 5、正火-正火和退火加热方法相似,只是冷却速度比退火稍快(空冷),得到的是细片状珠光体(索氏体),强度、硬度比退火的高,与退火相比,工艺周期短,设备利用率高。主要用于低碳钢获得满意的机械性能和切削性能、过共析工具钢消除网状渗碳体、中碳钢代替退火或作为淬火前的预先热处理。 6、淬火-将钢加热到AC1以上30~50℃(共析钢、过共析钢)或AC3以上30~50℃(亚共析钢),保温一段时间,然后快冷得到高硬度的马氏体组织的工艺方法。用以提高工件的耐磨性。 7、回火-将淬火后的工件加热到A1以下某一温度,保温一段时间,然后以一定的方式冷却(炉冷、空冷、油冷、水冷等) -目的:1)降低淬火工件的脆性,消除内应力(热应力和组织应力),使淬火组织趋于稳定,同时也使工件尺寸趋于稳定;2)获得所需的硬度和综合机械性能。 8、焊后消除应力热处理(PWHT、ISR):目的是消除应力、降低硬度、改善组织、稳定尺寸,避免制造和使用过程产生裂纹; 9、试述T8A的含义:含碳量为8‰的高级优质碳素工具钢。 10、怎样区别无螺纹的黑铁管与直径相似的无缝钢管? 答:无缝钢管是用优质碳钢、普通低合金钢、高强耐热钢、不锈钢等制成。不镀锌的瓦斯管习惯上称为黑铁管,从管子内壁有无焊缝和管子直径来判断。 11、何谓钢的热处理? 答:所谓钢的热处理就是在规定范围内将钢加热到预定的温度,并在这个温度保持一定的时间,然后以预定的速度和方法冷下来的一种生产工艺。 12、试述T7的含义。 答:T7的含义为:含碳量为7‰的碳素工具钢。 13,退火:将钢加热到一定的温度,保温一段时间,随后由炉中缓慢冷却的一种热处理工序。其作用是:消除内应力,提高强度和韧性,降低硬度,改善切削加工性。应用:高碳钢

人教版化学金属和金属材料知识点总结

金属和金属材料 金属材料 一、金属材料的发展与利用 1、从化学成分上划分,材料可以分为金属材料、非金属材料、有机材料及复合材料等四大类。 2、金属材料包括纯金属和合金。 金属材料:纯金属(90多种);合金(几千种) 黑色金属:通常指铁、锰、铬及它们的合金。 纯金属重金属:如铜、锌、铅等 有色金属 轻金属:如钠、镁、铝等; 有色金属:通常是指除黑色金属以外的其他金属。 (1)金属材料的发展 石器时代→青铜器时代→铁器时代→铝的应用→高分子时代 (2)金属材料的应用 ①最早应用的金属是铜,应用最广泛的金属是铁,公元一世纪最主要的金属是铁 ②现在世界上产量最大的金属依次为铁、铝和铜?③钛被称为21世纪重要的金属 二、金属的物理性质 1、金属共同的物理性质:常温下金属都是固体(汞除外),有金属光泽,大多数金属是电和热的良导体,有延展性(又称可塑性→金属所具有的展性和延性:在外力的作用下能够变形,而且在外力停止作用以后仍能保持已经变成的形状和性质。各种金属的可塑性有差别;金属的可塑性一般是随着温度的升高而增大。),密度较大,熔沸点较高等。 2、金属的特性:?①纯铁、铝等大多数金属都呈银白色,而铜呈紫红色,金呈黄色;?②常温下,大多数金属都是固体,汞却是液体; ③各种金属的导电性、导热性、密度、熔点、硬度等差异较大。 3、金属之最 地壳中含量最多的金属元素—铝(Al)人体中含量最多的金属元素—钙(Ca) 导电、导热性最好的金属——银(Ag) 目前世界年产量最高的金属—铁(Fe) 延展性最好的金属———金(Au)熔点最高的金属————钨(W) 熔点最低的金属————汞(Hg)硬度最大的金属————铬(Cr) 密度最小的金属————锂(Li)密度最大的金属————锇(Os) 最贵的金属————锎kāi(Cf) 4、金属的用途:金属在生活、生产中有着非常广泛的应用,不同的用途需要选择不同的金属。 【练习】

常用金属材料的密度表 钢 材 基 本 常 识

常用金属材料的密度表

钢材基本常识 (一) 敬告:本刊自即日起将连续刊登钢材的基本常识,敬请关注! 一、钢材的一般常识与管理 (一)普通结构钢普通结构钢简称普通钢。普通钢对硫、磷含量限制较宽,硫的含量不大于0.045%(≤0.045%)、磷的含量不大于0.045%(≤0.045%);普通结构钢主要用于一般要求的建筑和工程结构;普通结构钢主要包括碳素结构钢、低合金结构钢及由他们派生出来的专门用途的普通结构钢。 普通结构钢又可分为以下两类: (1)碳素结构钢(简称普碳钢),其中按屈服点分为Q195、Q215、Q235、Q255、Q275五种牌号;按硫、磷的含量分为A、B、C、D四个质量等级。A级含硫、磷量高,D级含硫、磷量低;按脱氧程度分为沸腾钢、半镇静钢、镇静钢和特殊镇静钢(见GB700-88标准)。(2)低合金结构钢按钢的组织分为三类:铁素体珠光体钢,通常在热轧状态下交货;低

碳贝氏体钢,通常在热轧或正火状态下交货;低碳马氏体钢,通常在淬火—回火状态下交货。以上三类组织的钢最常用的是铁素体珠光体钢。选用时,可在屈服点相同的钢号级别中选用。(二)合金结构钢合金结构钢是在优质碳素结构钢的基础上加入一种或数种合金元素组成的钢种。常加入的合金元素有Mn、Si、Cr、Ni、W、Mo、V、Ti、B、Nb等。合金结构钢含碳量小于0.55%;与碳素结构钢比较,具有高的淬透性,用于制造性能要求高、尺寸大、形状复杂的机构设备结构零件。 合金结构钢有以下四种分类: (1)按硫、磷含量不同分为三类:优质合金结构钢。钢中含S≤0.035%,P≤0.035%;高级优质合金结构钢,牌号后加“A”,钢中含S≤0.025%,P≤0.025%;特级优质合金结构钢,牌号后加“E”钢中含S≤0.015%,P≤0.025%。 (2)按合金元素含量分为三类:低合金钢(合金元素总含量﹤5%);中合金钢(合金元素总含量5%-10%);高合金钢(合金元素总含量﹙﹥10%)。 (3)按使用加工方法不同分为两类:压力加工用钢——热压力加工或冷拔坯料;切削加工用钢。钢材的使用加工方法应在合同中注明,未注明者,按切削加工用钢交货。 (4)按热处理方法不同分为调质钢和渗碳钢两类. 二、钢材的分类与相关概念钢材品种繁多,根据截面积形状的特点,可归纳为型材、板材、管材和金属制品四大类。 (一)分类 1、型钢特别是异型型钢,其截面形状与所要制成的构件或机构零件较适应或基本相同,不必加工或稍经加工即可使用,而且具有较高的抗弯、抗扭能力。大量用作各种建筑结构和工程结构,也大量用作各种机械零件和工具。 2、钢板钢板具有很大的表面积,有很大的覆盖和包容能力,可按使用要求进行剪裁和组合(焊接、铆接和咬接),可进行弯曲和冲压成型,不仅广泛用于制造各种结构件、容器、车辆和各种工业炉、反应塔器的壳体、机械零部件及日常生活用器皿、器具、而且大量用作生产冷弯型钢、焊接型钢和焊接钢管的坯料。 3、钢管钢管具有中空截面,大量用作输送流体的管道。钢管同圆钢、方钢等实心钢材相比,在抗弯、抗扭强度相同时,重量较轻,还广泛用于制造机械零件和结构件,如石油钻杆、汽车传动轴、自行车架等。为了提高材料利用率,有些钢管还用于制造各种环形零件的坯料、如螺母、滚动轴承套圈、千斤顶套等。在军事工业上,还用于制造某些常规武器,如枪管、炮筒等。

金属材料基本知识

金属材料基本知识 1 钢铁材料及其生产 在人们生活中所用的、遇到的材料分为金属材料和非金属材料。 金属材料是现代工业、农业、国防以及科学技术各个领域应用最广泛的工程材料。这不仅是由于其来源丰富、生产工艺简单、成熟,而且还具有优良的性能。 金属材料又有钢铁(黑色金属)和有色金属等,如碳钢、合金钢、有色金属、铸铁及其合金等。钢与生铁由于碳含量不同,性能和用途也不同。 生铁的含碳量一般有2.5-4.5%,按其用途分为炼钢生铁(含碳4%左右,是炼钢的主要原料)和铸造生铁(铸铁)。最终炼出来的钢碳含量一般都小于1.3%,除少数直接铸成各种形状的铸件外,绝大多数先铸成钢锭,再经轧制或锻压成各种钢件和锻件,然后供进一步加工使用。 其中应用最为广泛的是碳钢和合金钢。如将钢按用途来划分,有结构钢(建筑及工程用钢或结构用钢,如锅炉中的钢结构等)、工具钢(各种量具、刃具、模具钢等)和特殊性能钢(耐热钢、不锈耐酸钢及电工用钢);按质量来划分则有普通钢、优质钢和高级优质钢三类;按冶炼方法、钢液脱氧程度和铸锭工艺的不同来划分则有沸腾钢、镇静钢(脱氧完全的钢,化学成分和力学性能均匀、焊接性能和抗腐蚀性好,一般用来做较重要的部件;受压元件用钢即是)和半镇静钢三类;此外还有其余种类的如按金相组织分类方法。 电站锅炉所耗用的金属材料数量大、品种规格多,除少量有色金属和铸铁外,绝大多数为钢材。其中有钢管、钢板、棒材、工字钢、槽钢、角钢以及铸锻件等。一部分钢材为普通钢,用来制作锅炉的普通结构件,性能要求并不高(主要是一些普通钢结构,是从国家标准中所引用的一些钢号)。另一部分则用来制作高温、高压(或承受高应力)条件下或处于腐蚀性介质中长期工作的元件。这些锅炉钢是综合性能要求很高的材料。 从20世纪50年代起,我国冶金部门、锅炉制造行业和电力部门的科研、生产单位在锅炉钢合金化、冶金生产、焊接和热处理工艺、性能测试、寿命分析诸方面开展了大量的应用研究,形成了我国独特的锅炉用钢体系,有利地保证了火电设备向大容量、高参数的不断发展。从80年代以来,随着我国锅炉制造业与国外的不断交流,也引进了不少国外的优质锅炉钢种进入我国的标准体系。 1.1钢铁的冶炼 1.1.1铁的冶炼 炼铁的主要设备是高炉,高炉炼铁的原料主要是铁矿石、焦炭和熔剂(如石灰石等)。铁的冶炼过程,实质就是将铁矿石中的氧化铁还原成铁的过程。高炉中焦炭本身的碳及其燃烧反应的产物一氧化碳都对氧化铁起还原作用。 1.1.2钢的冶炼 钢与生铁的最主要区别就是碳含量不同,将生铁进行精炼以大幅度降低碳量(和各种杂质)就得到符合要求的钢。精炼所依托的原理主要含有脱碳反应(FeO+C=Fe+CO)、硅锰的氧化反应(2Fe0+Si=2Fe+ SiO2,Fe0+Mn=Fe+MnO)、去磷硫过程(去磷反应2Fe2P+5FeO=P2O5+9Fe,P2O5+4CaO=4 CaO.P2O5,去硫反应FeS+CaO=CaS+FeO)、脱氧反应(沉淀脱氧:将含有Si、Mn、Al等元素的脱氧剂直接加入钢液中,使在钢中的FeO还原,生成不溶于钢液的氧化物,然后

电厂金属材料基础知识

金属材料的基础知识 一、金属材料的分类方法:金属材料分为两大类:即黑色金属与有色金属 1、黑色金属元素:铁、锰、铬 2、有色金属元素:除上述三种元素外,其余称为有色金属元素。 通常将以铁、锰、铬为基的合金称为黑色金属,以铁为基的合金称为钢,以其余金属元素为基的合金称为有色金属。 二、金属材料的表示方法。 钢的编号方法:根据国标GB/T221-2000《钢铁产品牌号表示方法》的规定,一般采用汉语拼音字母、化学元素符号和阿拉伯数字相结合的方法表示。世界各国的钢号表示方法不一致,主要因为习惯上各自采用本国的国家标准,某部门标准或协会团体标准中的钢号表示方法,这给技术交流等带来很大的不便。 有色金属的编号方法:有色金属及其合金编号方法与钢的编号方法大致相同,都是采用汉语拼音字母,化学元素符号和阿拉伯数字相结合的方法表示。因为铝合金与钛合金分类方法相对简单,放在铝合金和钛合金的材料牌号中一般不出现化学元素符号。 三、合金元素在钢中的作用 铝

常用金属材料基础知识教材

常用金属材料基础知识教材 第1章:金属材料名称常用基础术语 1.基础术语: 黑色金属:铁和铁的合金均称为黑色金属。如钢、生铁、铁合金、铸铁等。 纯铁:纯度很高的铁,化学纯铁含碳量几乎为零,工业纯铁含碳量<0.05%。纯铁是很软的,一般不应用到实际中。铁碳合金:以铁为基础,以碳为主要添加元素的合金,统称为铁碳合金。如钢和生铁。 生铁:把铁矿石放到高炉中冶炼而成的,含碳量2%~4.3%(也有资料称 3.5%—5.5%、2.11%-6.67%)的铁碳合金称为生铁。生铁质硬而脆,缺乏韧性,几乎没有塑性变形能力,因此不能通过锻造、轧制、拉拔等方法加工成形, 主要用来炼钢和制造铸件,如白口铁、灰口铁和球墨铸铁。也有习惯上把炼钢生铁叫做生铁,把铸造生铁简称为铸 铁。 白口铁:碳以Fe3C形态分布的生铁称为白口铁,其断口呈银白色,质硬而脆,不能进行机械加工,是炼钢的原料,故又称炼钢生铁。 灰口铁:碳以片状石墨形态分布的生铁称为灰口铁,其断口呈银灰色,由于石墨质软并有润滑作用,因而这种生 铁具有良好的易切削、耐磨和铸造性能等优点。但是,由于有片状石墨的存在,降低了它的抗拉强度,使它不能锻 轧,只能用于制造各种铸件,如铸造机床床座、铁管等。因此,通常把这种生铁叫做铸造生铁。 球墨铸铁:碳以球状石墨分布则称球墨铸铁,其机械性能、加工性能接近于钢。 钢:含碳量在0.04%-2.3%之间(也有资料称0.03%-1.2%)的铁碳合金称为钢。为了保证其韧性和塑性,含碳量一 般不超过 1.7%。钢的主要元素除铁、碳外,还有硅、锰、硫、磷等。 有色金属:又称非铁金属,指除黑色金属外的金属和合金,如铜、锡、铅、锌、铝等。 第2章:金属材料的分类 1.按品质进行分类 ①普通钢:P≤0.045% S≤0.050%(如普通碳素结构钢Q195、Q235等) ②优质钢:P≤0.035% S≤0.035%(如优质碳素结构钢20号、45号钢等) ③高级优质钢:P≤0.035% S≤0.030%(比优质钢更优质,一般在钢号后加A以示区别,如08A等) 2.按化学成份进行分类 1)碳素钢: ①低碳钢:C≤0.25% ②中碳钢:C≤0.25~0.60% ③高碳钢:C≥0.60% 2)合金钢: ①低合金钢(合金元素总含量≤5%); ②中合金钢(合金元素总含量>5~10%); ③高合金钢(合金元素总含量>10%)。 3.按成形方法分类: ①锻钢 ②铸钢 ③热轧钢 ④冷拉钢。 4.按金相组织分类 1)退火状态的: ①亚共析钢(铁素体+珠光体); ②共析钢(珠光体); ③过共析钢(珠光体+渗碳体); ④莱氏体钢(珠光体+渗碳体)。 2)正火状态的: ①珠光体钢 ②贝氏体钢

初三化学知识点复习——金属和金属材料.docx

金属和金属材料 【单元分析】 本单元知识中金属活动性顺序表的应用,以及金属的保护和利用是中考的热点,其中金属活动性顺序也是本单元复习的难点 【复习目标】 1.了解一些常见的金属的性质和用途 2.理解,并会应用金属活动性顺序表 3.了解和掌握金属的保护和利用 4.知道金属材料及合金的特性 5.知道金属锈蚀的条件及防护方法。 【重点】:金属活动性顺序表;知道金属锈蚀的条件及防护方法。 【难点】:金属活动性顺序表的应用。 【考点透视】 命题落点 根据金属的性质推断其应用, 根据金属活动性顺序判断金属的化学性质。 由金属锈蚀的条件对金属进行保护和利用。 【考点清单】 一、基本考点 考点 1.几种重要的金属及合金 (1)金属的物理特性:常温下除汞(液体)外都是固体,有金属光泽,大多数为电和热的优良 导体,有延展性、密度较大、熔点较高。 (2)合金:①概念:在一种金属中加热熔合其他金属或非金属,而形成的具有金属特性的物质 称为合金。②合金的性质能:合金的很多性能与组成它们的纯金属不同,使合金更易适合不同的用途,日常生活中使用的金属材料,大多数为合金。③重要的铁合金:生铁和钢都是铁的合金,其区别是含碳量不同。④生铁的含铁量为 2%~%,钢的含碳量为 %~2%。考点 2.金属与氧气的反应

大多数金属都能与氧气反应,但反应的难易和剧烈程度不同,越活泼的金属,越容易与氧气发生 化学反应,反应越剧烈。 考点 3.金属活动性顺序及置换反应 (1)金属活动性顺序: K Ca Na Mg Al Zn Fe Sn Pb(H) Cu Hg Ag Pt Au (2)金属活动性顺序的作用:①判断金属与酸的反应: a.一般说来,排在氢前面的金属能置换 出酸中的氢,排在氢后面的金属不能置换出酸中的氢; b.酸不包括浓硫酸和硝酸,因为它们有 很强的氧化性,与金属反应不能生成氢气,而生成水。②判断金属与盐溶液反应。在金属活动性 顺序里,只有排在前面的金属,才能把排在后面的金属从它们的盐溶液中置换出来。③判断金属 活动性强弱:在金属活动性顺序里,金属的位置越靠前,它的活动性就越强。 考点 4.金属矿物及铁的冶炼 (1)金属矿物(矿石):①概念:工业上把能用来提炼金属的矿物叫做矿石。②常见的矿石: 赤铁矿( Fe2O3)、黄铁矿(F eS2)、菱铁矿(FeCO3)、铝土矿(Al 2O3)、黄铜矿(CuFeS2)、辉铜矿( Cu2S)。 (2)铁的冶炼:①原理:利用高温条件下,焦炭与氧气反应生成的一氧化碳把铁从铁矿石中还 高温 Fe2O3+CO====2Fe+3CO 原出来。如用赤铁矿石炼铁的化学方程式为:。②原料:铁矿石、焦炭、 石灰石及空气。③设备:高炉。④炼铁时选择铁矿石的标准: a. 铁矿石中铁元素的质量分数大(即 含铁量高);b. 炼铁过程中产物对空气不能造成污染;满足以上两个条件的矿石是理想的绿色矿 石。 考点 5.金属的腐蚀和防护 (1)铁生锈的条件:铁生锈的主要条件是与空气和水蒸气直接接触。铁制品锈蚀的过程,实际 上是铁与空气中的氧气、水蒸气等发生复杂的化学反应,铁锈的主要成分是Fe2O3· xH2O。 (2)铁的防锈:原理是隔绝空气或水,使铁失去生锈的条件。防锈措施:防止铁制品生锈,一 是保持铁制品表面的洁净和干燥,二是在铁制品表面涂上一层保护膜,防止铁与氧气和水的反应,例如: ①刷一层油漆;②涂上一层机油;③电镀一层不易生锈的金属,如镀锌等;④经加工使金 属表面生成一层致密的氧化膜,如烤蓝;⑤在金属表面覆盖搪瓷、塑料等。 考点 6.金属资源的保护 (1)矿物的储量有限,而且不能再生。( 2)废旧金属的回收和利用可以减少对环境的污染,还可 以节约金属资源。( 3)保护金属资源的有效途径:①防止金属腐蚀;②回收利用废旧金属;③合理 有效地开采矿物;④寻找金属的替代品。 二、能力与综合考点

金属材料基础知识

资料收集于网络,如有侵权请联系网站删除 金属材料的基础知识 第一章:金属与晶体 一.晶体、晶格和晶胞 在物质的结构中,原子、离子或分子按一定空间次序排列而形成的固体称为晶体。它具有规则外型、固定的熔点和各向异性,例如:雪花、食盐、石墨、金刚石等,所有的固体金属都属于晶体。相反,在物质结构中,原子呈无序状态排列的物质称为非晶体,例如:普通玻璃、树枝、松香、沥青等。 晶体内部原子的排列是有规律的,当外界温度改变时,原子排列的方式往往也会发生变化。为了更好的说明晶体中原子的排列规律,可把原子看成一个点,假想这些点通过线连接在一起,构成了空间格子,把这排列有序的空间格架成为晶格。 二.晶格的类型(如图所示) 1.体心立方晶格 2.面心立方晶格 3.密排立方晶格

只供学习与交流. 资料收集于网络,如有侵权请联系网站删除 三.金属的结晶过程 金属结晶过程是指原子从无序排列转变到有序排列的过程,也就是由原子不规则排列的液体逐步过渡到原子有序排列的晶体过程。 1.冷却曲线 过冷度2. T实际生产中,由于液态金属的冷却速度不是很慢,液态金属不在0处开始结晶,而是低于这一温度结晶,这种现象称为过冷现象。过冷度不是一个恒定理论结晶温度与实际结晶温度之差称为过冷度,的值,它是与冷却速度的快慢有关系。结晶过程3. 反之,原子间的物理引力作用也越弱,温度越高。原子运动速度越快,原子间物理引力作用也越强。 4. 晶粒的细化晶粒的大小影响着金属的力学性能增大过冷度孕育时处理附加振动只供学习与交流. 资料收集于网络,如有侵权请联系网站删除

金属晶体的结构与金属的性能4.与理论中的晶体结构金属晶体的结构受结晶及其他加工条件的影响,有很大差别,它对金属各方面的性能影响很大,尤其是塑形、强度、扩散等方面有着决定性作用。属的晶体结构 1)金(晶体一般分为单晶体和多晶体,晶粒呈相同位相的晶体为单晶体,由许多晶粒组成的晶体为多晶体。常见的金属大多数为多晶体,只有一些特殊的用途才制造单晶体。四.金属材料的工艺性能 1.铸造性能焊接性能2. 3.锻压性能切削加工性能4.只 供学习与交流. 资料收集于网络,如有侵权请联系网站删除 第二章.铁碳和金相图及应用 一.铁碳和金的基本组织 1.铁素体 2.奥氏体 3.渗碳体

相关文档
最新文档